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HARMONIC NONCONVEX VARIATIONAL INEQUALITIES

MUHAMMAD ASLAM NOOR AND KHALIDA INAYAT NOOR

Abstract. In this paper, we introduce and study the harmonic nonconvex
variational inequalities. The auxiliary principle technique is applied to suggest
and analyze some inertial iterative schemes for solving harmonic nonconvex
variational inequalities. The convergence criteria of the proposed methods is
discussed. Results obtained in this paper continue to hold for various new and
known classes of harmonic variational inequalities and related optimization
problems. The ideas and techniques of this paper may inspire further research
in various branches of pure and applied sciences.

1. Introduction

The variational principles have been one of the major branches of mathemat-
ical and engineering sciences, the origin of which can be traced back to Euler,
Newton, Lagrange and the Bernoulli’s brothers. The ideas and techniques are
being applied in a variety of diverse areas of sciences and prove to be productive
and innovative. The variational principles can be applied to interpret the basic
principles of mathematical and physical sciences in the form of simplicity and
elegance. During this period, the variational principles have played an important
and significant part as a unifying influence in the development of the general the-
ory of relativity, gauge field theory in modern particle physics and soliton theory.
Stampacchia [51] proved that the minimum of the energy (potential) functional
associated with the obstacle problems arising in the potential on the convex set
can be be characterised by the inequality, called the variational inequality. We
would like to point out that the variational inequality theory describes a broad
spectrum of very interesting developments involving a link among various fields
of mathematics, physics, economics, regional and engineering sciences. For the
applications, formulations, extensions, generalizations, dynamical systems, sensi-
tivity analysis, numerical results, climate change, solar penal designing, and other
aspects of variational inequalities, see [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 37, 40, 42, 43, 44, 45, 46, 47, 51]
and the references therein.

Convexity theory contains a wealth of novel ideas and techniques, which have
played the significant role in the development of almost all the branches of pure
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and applied sciences. Several new generalizations and extensions of the convex
functions and convex sets have been introduced and studied to tackle unrelated
complicated and complex problems in a unified manner. Harmonic functions and
harmonic convex sets are important generalizations of the convex functions and
convex sets. Anderson et al. [4] have investigated several aspects of the harmonic
convex functions. The harmonic means have novel applications in electrical cir-
cuits theory, stock exchange [3] and played in developing parallel algorithms for
solving complicated problems. Noor et al[32] have shown that the minimum of
the differentiable harmonic convex function on the harmonic convex set can be
characterized by a class of variational inequalities, known as harmonic variational
inequalities. For the formulation, motivation, numerical methods, generalizations
and other aspects of harmonic convex functions and harmonic variational inequal-
ities, see [1, 2, 3, 11, 12, 32, 33, 34, 35, 36, 38, 39, 40].
It is worth mentioning that almost all the results regarding the existence and
iterative schemes for variational inequalities, which have been investigated and
considered, if the underlying set is a convex set. This is because all the tech-
niques are based on the properties of the projection operator over convex sets,
which may not hold in general, when the sets are nonconvex. Poliquin et al.[49]
and Clarke et al. [6] have introduced and studied a new class of nonconvex sets,
which is called uniformly prox-regular sets. This class of uniformly prox-regular
sets has played an important part in many nonconvex applications such as opti-
mization, dynamic systems and differential inclusions. The uniformly prox-regular
sets include the convex sets as a special case.

It is natural to study these different problems in a unified framework. This
motivated us to introduce and consider some new classes of harmonic noncon-
vex variational inequalities. It is well known that projection method, resolvent
method and descent methods are not applicable to propose numerical methods
for solving harmonic variational inequalities. We apply the auxiliary principle
technique, which is mainly due to Lions et al [13] and Glowinski et al[9]. Noor
[15, 20, 21] and Noor et al[32, 33, 34, 41, 42, 43, 45] have used this technique to
develop some iterative schemes for solving various classes of variational inequali-
ties and equilibrium problems. We point out that this technique does not involve
any projection and resolvent of the operator and is flexible. In this paper, we
show that the auxiliary principle technique can be applied to suggest and analyze
some new classes of inertial iterative methods for solving harmonic nonconvex
variational inequalities. We also prove that the convergence of these new meth-
ods requires pseudomonotonicity, which is weaker conation than monotonicity. As
special cases, one obtain several known and new results for harmonic variational
inequalities, variational inequalities and related optimization problems. Results
obtained in this paper, represent an improvement and refinement of the known
results for harmonic variational inequalities and their variant forms.
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2. Basic Results and Formulation

Let H be a real Hilbert space whose inner product and norm are denoted by
〈·, ·〉 and ‖.‖, respectively.

First of all, we recall the following concepts and results from convex analysis
and nonsmooth analysis, see [4, 8, 14, 49]. For the sake of completeness and to
convey the main ideas, we include the relevant details.

Definition 1. [4] A set Ch is said to be a harmonic convex set, if
uv

v + λ(u− v)
∈ Ch, ∀u, v ∈ Ch, λ ∈ [0, 1].

Definition 2. [4] A function φ on the harmonic convex set Ch is said to be
harmonic convex, if

φ(
uv

v + λ(u− v)
) ≤ (1− λ)φ(u) + λφ(v), ∀u, v ∈ Ch λ ∈ [0, 1].

A function φ is said to be a harmonic concave function, if −φ is harmonic con-
vex function.

We recall that the minimum of a differentiable harmonic convex function on
the harmonic convex set Ch can be characterized by the variational inequality.
This is result is due to Noor and Noor [32].

Theorem 1. [32] Let φ be a differentiable harmonic convex function on the
harmonic convex set Ch. Then u ∈ Ch is a minimum of φ, if and only if, u ∈ Ch

satisfies the inequality

〈φ′(u),
uv

u− v
〉 ≥ 0, ∀v ∈ Ch. (1)

The inequality of type (1) is called the harmonic variational inequality.

We would like to mention that Theorem 1 implies that harmonic optimization
programming problem can be studied via the harmonic variational inequality (2).
Using the ideas and techniques of Theorem 1, we can derive the following result.

Theorem 2. Let φ be a differentiable harmonic convex functions on the har-
monic convex set Ch. Then

(i). φ(v)− φ(u) ≥ 〈φ′(u),
uv

u− v
〉, ∀u, v ∈ Ch.

(ii). 〈φ′(u)− φ′(v),
uv

v − u
〉 ≥ 0, ∀u, v ∈ Ch.

Motivated by Theorem 1 and Theorem 2, we introduce some new concepts.

Definition 3. An operator T is said to be a harmonic monotone operator, if and
only if,

〈Tu− Tv, uv

u− v
〉 ≥ 0, ∀u, v ∈ H.
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Definition 4. An operator T is said to a harmonic pseudomonotone operator,
if

〈Tu, uv

u− v
〉 ≥ 0 ⇒ −〈Tv, uv

u− v
〉 ≥ 0, ∀u, v ∈ H.

An harmonic monotone operator is a harmonic pseudomonotone operator, but
the converse is not true.

Definition 5. [3, 44] The proximal normal cone of C at u ∈ H is given by

NP
C (u) := {ξ ∈ H : u ∈ PC [u+ αξ]},

where α > 0 is a constant and

PC [u] = {u∗ ∈ C : dC(u) = ‖u− u∗‖}.
Here dC(.) is the usual distance function to the subset C, that is

dK(u) = inf
v∈C
‖v − u‖.

The proximal normal cone NP
C (u) has the following characterization.

Lemma 1. [6, 49] Let C be a nonempty, closed and convex subset in H. Then
ζ ∈ NP

C (u),
if and only if, there exists a constant α > 0 such that

〈ζ, v − u〉 ≤ α‖v − u‖2, ∀v ∈ C.

Definition 6. [6, 49] The Clarke normal cone, denoted by NC
C (u), is defined as

NC
C (u) = co[NP

C (u)],

where co means the closure of the convex hull.

Clearly NP
C (u) ⊂ NC

C (u), but the converse is not true. Note that NP
C (u) is

always closed and convex, whereas NC
C (u) is convex, but may not be closed [6, 49].

Poliquin et al.[49] and Clarke et al. [6] have introduced and studied a new
class of nonconvex sets, which are called uniformly prox-regular sets. This class
of uniformly prox-regular sets has played an important part in many nonconvex
applications such as optimization, dynamic systems and differential inclusions.

Definition 7. [6, 49] For a given r ∈ (0,∞], a subset Cr is said to be normalized
uniformly r-prox-regular, if and only if, every nonzero proximal normal to Cr can
be realized by an r-ball, that is, ∀u ∈ Cr and 0 6= ξ ∈ NP

Cr
(u), one has

〈(ξ)/‖ξ‖, v − u〉 ≤ (1/2r)‖v − u‖2, ∀v ∈ Cr.

Remark 1. It is clear that the class of normalized uniformly prox-regular sets is
sufficiently large to include the class of convex sets, p-convex sets, C1,1 subman-
ifolds (possibly with boundary) of H, the images under a C1,1 diffeomorphism of
convex sets and many other nonconvex sets; see [6, 49]. It is clear that if r =∞,
then uniformly prox-regularity of Cr is equivalent to the convexity of C. It is known
that if Cr is a uniformly prox-regular set, then the proximal normal cone NP

Cr
(u)

is closed as a set-valued mapping. Thus, we have NP
Cr

(u) = NC
Cr

(u). Using the
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idea of Definition 7, we define the concept of normalized uniformly pros-regular
harmonic convex subset Crh, which is called harmonic nonconvex set. In recent
years, quantum calculus and fuzzy function techniques are being applied in the
convex analysis, which is another area of future research.

In many applications, the inequalities of the type (1) may not arise as the
minimum of the differentiable harmonic convex functions. These facts motivated
us to consider more general harmonic variational inequality, which contains the
inequalities (1) as a special case.

For a given nonlinear continuous operator T : H −→ H, we consider the prob-
lem of finding u ∈ Crh such that

〈Tu, uv

u− v
〉 ≥ 0, ∀v ∈ Crh, (2)

which is called the harmonic nonconvex variational inequality.
We now discuss some important special cases of the harmonic nonconvex varia-
tional inequalities (2).
(i). If Crh = Ch, harmonic convex set in H, then problem (2) is equivalent to
fining u ∈ Ch, such that

〈Tu, uv

u− v
〉 ≥ 0, ∀v ∈ Ch, (3)

which is called the harmonic variational inequality, introduced and studied by
Noor [32].

(ii). If (Crh)? = {u ∈ H : 〈u, uv
u−v 〉 ≥ 0, ∀v ∈ Crh} is a polar harmonic

convex cone of the harmonic convex Crh, then problem (2) is equivalent to fining
u ∈ H, such that

uv

u− v
∈ Crh, Tu ∈ C?

rh, 〈Tu, uv

u− v
〉 = 0, (4)

is called the harmonic complementarity problem. For the applications, numerical
methods and other aspects of complementarity problems, see [7, 16, 17, 20, 41,
42, 43, 46] and the references therein.
(iii). If Crh = H, then problem (2 is equivalent to fining u ∈ H, such that

〈Tu, uv

u− v
〉 = 0, ∀v ∈ H, (5)

which is called the weak formulation of the harmonic boundary value problem.

(iv). For Crh = C, convex set in H, then the problem (2) reduces to finding
u ∈ C such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ C, (6)

is called the variational inequality. For the recent applications, motivation, nu-
merical methods, sensitivity analysis and local uniqueness of solutions of harmonic
variational inequalities and related optimization problems, see [1, 2, 3, 11, 12, 32,
33, 34, 35, 36, 38, 39, 40] and the references therein.
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This show that the problem (2) is quite and unified one. Due to the structure
and nonlinearity involved, one has to consider its own. It is an open problem
to develop unified implementation numerical methods for solving the harmonic
variational inequalities and related optimization problems.

3. Main Results

In this section, we apply the auxiliary principle technique, which is mainly due
to Lions et. al.[13] and Glowinski et al [10] as developed in [1, 2, 12, 15, 18, 20,
21, 22, 23, 24, 25, 29, 30, 30, 35, 36, 40, 41, 42, 48], to suggest and analyze some
inertial iterative methods for solving harmonic nonconvex variational inequalities
(2).

For a given u ∈ Crh satisfying (2), consider the problem of finding w ∈ Crh

such that

〈ρT (w + η(u− w)),
uw

u− w
〉+ 〈M(w)−M(u), v − w〉 ≥ 0, ∀v ∈ Crh, (7)

where ρ > 0, η ∈ [0, 1] are constants and M : H −→ H, is an arbitrary operator.
Inequality of type (7) is called the modified auxiliary harmonic nonconvex vari-
ational inequality involving an arbitrary operator, which is mainly due to Noor
[18].
If w = u, then w is a solution of (2). This simple observation enables us to suggest
the following iterative method for solving (2).

Algorithm 1. For a given u0 ∈ Crh, compute the approximate solution un+1

by the iterative scheme

〈ρT (un+1 + η(un − un+1)),
unun+1

un − un+1
〉+ 〈M(un+1)−M(un), v − un+1〉 ≥ 0, ∀v ∈ Crh.

Algorithm 1 is called the hybrid proximal point algorithm for solving harmonic
nonconvex variational inequalities(2).

Special Cases

We now consider some cases of Algorithm 1.

(I). For η = 0, Algorithm 1 reduces to:

Algorithm 2. For a given u0 ∈ Crh, compute the approximate solution un+1

by the iterative scheme

〈ρTun+1,
unun+1

un − un+1
〉+ 〈M(un+1)−M(un), v − un+1〉 ≥ 0, ∀v ∈ Crh. (8)

(II). If η = 1, then Algorithm 1 reduces to:

Algorithm 3. For a given u0 ∈ Crh, compute the approximate solution un+1

by the iterative scheme

〈ρT (un,
unun+1

un − un+1
〉+ 〈M(un+1)−M(un), v − un+1〉 ≥ 0, ∀v ∈ Crh.
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(III). If η = 1
2 , then Algorithm 1 collapses to:

Algorithm 4. For a given u0 ∈ Crh, compute the approximate solution un+1

by the iterative scheme

〈ρT (
un+1 + un

2
),

unun+1

un − un+1
〉+ 〈M(un+1)−M(un), v − un+1〉 ≥ 0, ∀v ∈ Crh.

which is called the mid-point proximal method for solving the problem (2).

For the convergence analysis of Algorithm 2, we recall the following concepts
and results.

Definition 8. An operator T : H → H is said to be:
(i). harmonic monotone, if and only if,

〈Tu− Tv, uv

u− v
〉 ≥ 0, ∀u, v ∈ H.

(ii) harmonic pseudomonotone if and only if,

〈Tu, uv

u− v
〉 ≥ 0 =⇒ 〈Tv, uv

u− v
〉 ≥ 0, ∀u, v ∈ H.

It is known that harmonic monotonicity implies harmonic pseudomonotonicity;
but the converse is not true. Consequently, the class of harmonic pseudomonotone
operators is bigger than the one of harmonic monotone operators.

We now consider the convergence criteria of Algorithm 2 using the idea and
technique developed in [1, 2, 35, 36]. We include the proof for the sake of com-
pleteness and to convey an idea of the technique involved.

Theorem 3. Let u ∈ Crh be a solution of (2) and let un+1 be the approximate
solution obtained from Algorithm 2. Let the operators T and A are harmonic.
If the operator M is a strongly monotone with constant ξ > 0 and Lipschitz
continuous with consatnt ζ > 0, then

ξ‖un+1 − un‖ ≤ ζ‖un − u‖. (9)

Proof. Let u ∈ Crh be a solution of (2). Then

〈Tv, uv

v − u
〉 ≥ 0, ∀v ∈ Crh. (10)

since T is a harmonic pseudomonotone operator.
Now taking v = un+1 in (10), we have

〈Tu, uun+1

un+1 − u
〉 ≥ 0. (11)

Taking v = u in (8), we get

〈ρT (un+1,
unun+1

un − un+1
〉+ 〈M(un+1)−M(un), u− un+1〉 ≥ 0,

which can be written as

〈M(un+1)−M(un), u− un+1〉 ≥ 〈ρTun+1,
uun+1

un+1 − u
〉 ≥ 0, (12)
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where we have used (11).
From (12), we have

0 ≤ 〈M(un+1)−M(un), u− un+1〉
= −〈M(un+1 −M(un), un+1 − un〉+ 〈M(un+1)−M(un), u− un〉,

which implies that

〈M(un+1 −M(un), un+1 − un〉 ≤ 〈M(un+1)−M(un), u− un〉.

Since the operator M is strongly monotone with constant ξ > 0 and Lipschitz
continuous with constant ζ > 0, we obtain

ξ‖un+1 − un‖ ≤ ζ‖u− un‖,

the required result (9). �

Theorem 4. Let H be a finite dimensional space and all the assumptions of
Theorem 3 hold. Then the sequence {un}

∞

1
given by Algorithm 2 converges to a

solution u of (2).

Proof. Let u ∈ K be a solution of (2). From (9), it follows that the sequence
{‖u− un‖} is nonincreasing and consequently {un} is bounded. Furthermore, we
have

∞∑
n=0

‖un+1 − un‖2 ≤ ‖u0 − u‖2,

which implies that

lim
n→∞

‖un+1 − un‖ = 0. (13)

Let û be the limit point of {un}
∞

0
; whose subsequence {unj}

∞

1
of {un}

∞

0
converges

to û ∈ H. Replacing wn by unj in (8), taking the limit nj −→∞ and using (13),
we have

〈T û, ûv

v − û
〉 ≥ 0, ∀v ∈ Ch,

which implies that û solves the harmonic hemivariational inequality (2) and

‖un+1 − u‖2 ≤ ‖un − u‖2.

Thus, it follows from the above inequality that {un}
∞

1
has exactly one limit point

û and

lim
n→∞

(un) = û.

the required result. �

Recently, inertial methods for solving the variational inequalities are being con-
sidered for finding the speeding the convergence criteria, the origin of which can
be traced back to Polyak [50]. We again consider the auxiliary principle technique
to suggest some hybrid inertial proximal point methods for solving the problem
(2).
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For a given u ∈ Ch satisfying (2), consider the problem of finding w ∈ Crh such
that

〈ρT (w + η(u− w)),
uw

u− w
〉+ 〈M(w)−M(u) + α(u− u), v − w〉 ≥ 0, ∀v ∈ Crh,(14)

where ρ > 0, α, ξ, η,∈ [0, 1] are constants and M is an arbitrary operator.

Clearly, for w = u, w is a solution of (2). This fact motivated us to to suggest
the following inertial iterative method for solving (2).

Algorithm 5. For given u0, u1 ∈ Crh, compute the approximate solution un+1

by the iterative scheme

〈ρT (un+1 + η(un − un+1)),
unun+1

un − un+1
〉

+〈M(un+1)−M(un) + α(un − un−1, v − un+1〉 ≥ ∀v ∈ Crh.

which is known as the inertial iterative method.

Note that for α = 0, α = 0, Algorithm 5 is exactly the Algorithm 1. Using
essentially the technique of Theorem 3, Alshejari et al. [1, 2] and Noor et al.
[35, 36], one can study the convergence analysis of Algorithm 5.

For different and appropriate values of the parameters, η, α, the operators T,M
and spaces, one can obtain a wide class of inertial type iterative methods for
solving the harmonic variational inequalities and related optimization problems.

Conclusion: Some new classes of harmonic nonconvex variational inequalities
are introduced in this paper. It is shown that several important problems such
as harmonic complementarity problems, variational inequalities and related prob-
lems can be obtained as special cases. The auxiliary principle technique involving
an arbitrary operator is applied to suggest several inertial type methods for solv-
ing harmonic variational inequalities with suitable modifications. We note that
this technique is independent of the projection and the resolvent of the opera-
tor. Moreover, we have studied the convergence analysis of these new methods
under weaker conditions. We have only considered the theoretical aspects of the
hybrid inertial iterative methods. It is an interesting problem to develop some
numerically implemntable methods and compare with other iterative schemes.
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