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THE USE OF THE PARTIAL CONVOLUTION PRODUCT IN THE

STUDY OF VISCOELASTIC ROD VIBRATIONS

WILHELM W. KECS

Abstract. The study of viscoelastic rod vibrations leads to a class of partial differen-

tial equations, defined with the help of a linear operator having the particularity that

its coefficients are related to the operator by the partial convolution product. The
considered operator can describe the longitudinal, transverse and torsional vibrations

of viscoelastic rods.

1. Introduction

The study and solution of boundary problems in the dynamics of viscoelastic solids
leads to a class of partial differential equations with the particularity that its coefficients
are distributions that are related to the unknown distribution by means of the partial
convolution product. This is due to the fact that the constitutive law of viscoelastic
solids in the linear theory of viscoelasticity is expressed in the most general form by
means of the partial convolution product with respect to the time variable.

We shall denote by D(Rn) Schwartz’ space of indefinitely differentiable functions with
compact support, and by D′(Rn) the set of linear continuous functionals defined on D(Rn).

The notion of partial convolution product was introduced in [1] and represents a law
of composition of two distributions from different spaces. Its properties were studied in
[2], [16], [3], [13].

We shall remember the following:

Definition 1. Let be the distributions f(x, t) ∈ D′(Rn+m) and g(x) ∈ D′(Rn). We
call partial convolution product of the distribution f with g, the distribution denoted
f(x, t)⊗

x
g(x) ∈ D′(Rn), defined by the formula

f(x, t)⊗
x
g(x) = f(x, t) ∗ (g(x)× δ(t)) , (1)

where δ(t) ∈ D′(Rm) is Dirac’s delta distribution.

The symbol ⊗
x

for the convolution product denotes that the convolution is performed

only with respect to the variable x ∈ Rn, common to the distributions f(x, t) ∈ D′(Rn+m)
and g(x) ∈ D′(Rn), considered in different spaces.

In the right member of the formula (1), the convolution product denoted by the symbol
∗ obviously refers to the variables (x, t) ∈ Rn × Rm.

In the case of existence of the partial convolution product, the latter is a distribution
from D′(Rn+m), hence f(x, t)⊗

x
g(x) ∈ D′(Rn+m).
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Taking into account the definition of the commutativity of the partial convolution
product, we will not distinguish between the distributions f(x, t)⊗

x
g(x) and g(x)⊗

x
f(x, t).

Proposition 1. Let be f(x, t) ∈ D′(Rn+m) and g(x) ∈ D′(Rn). The partial convolution
product f(x, t)⊗

x
g(x) ∈ D′(Rn+m) exists if one of the distributions f , g has compact

support.

From the above considerations, it follows that the partial convolution product denoted
by the symbol ⊗

x
is a new law of composition for the distributions f(x, t) ∈ D′(Rn+m)

and g(x) ∈ D′(Rn) with respect to the common variable x ∈ Rn.
This convolution product has wide applications in the deformable solid mechanics and

in particular in visco-elasticity [4], [5], [6], [7], [8], [9], [10], [11] .
The structure relation of the partial convolution product is showed as follows:

Proposition 2. (Representation formula) Let be the distributions f(x, t) ∈ D′(Rn+m)
and g(x) ∈ D′(Rn). If the partial convolution product f(x, t)⊗

x
g(x) ∈ D′(Rn+m), then

the relation(
f(x, t)⊗

x
g(x), ϕ

)
=

(
f(x, t), gν ⊗

x
ϕ(x, t)

)
, ∀ϕ(x, t) ∈ D(Rn+m), (2)

takes place, where gν is the symmetric with respect to the origin of the distribution g(x) ∈
D′(Rn).

The partial convolution product is a generalization of the ordinary convolution product.

Definition 2. Let be f ∈ D′(Rn) and Dα = D|α|
/
∂xα1

1 ...∂xαn
n the derivative operator of

order |α| =
n∑
i=1

αi. We call the derivative of order |α| of the distribution f , the distribution

denoted Dαf and given by the relation

(Dαf, ϕ) = (−1)|α| (f, Dαϕ) , ∀ϕ ∈ D(Rn). (3)

We emphasize that the distributions’ derivative does not depend on the order of deriva-
tion, so that there is the relation

Dα+βf = Dα
(

Dβf
)

= Dβ (Dαf) , f ∈ D′. (4)

Below, we give some properties of the partial convolution product.

Proposition 3. Let be the distributions f(x, t) ∈ D′(Rn+m), g(x) ∈ D′(Rn). If the prod-

uct f(x, t)⊗
x
g(x) ∈ D′(Rn+m) exists and Dα

x , Dβ
t are derivation operators with respect to

the variables x ∈ Rn, t ∈ Rm, respectively, then the following formulae take place

Dα
x

[
f(x, t)⊗

x
g(x)

]
= Dα

xf(x, t)⊗
x
g(x) = f(x, t)⊗

x
Dα
xg(x), (5)

Dβ
t

[
f(x, t)⊗

x
g(x)

]
= Dβ

t f(x, t)⊗
x
g(x), (6)(

Dβ
t f(x, t)⊗

x
g(x), ϕ(x)

)
= Dβ

t

(
f(x, t)⊗

x
g(x), ϕ(x)

)
, ∀ϕ ∈ D(Rn). (7)

Remark 1. A similar relation takes place for the distributions depending on the pa-
rameter t ∈ Rm. Thus, if ft(x), g(x) ∈ D′(Rn) and ft(x) ∗ g(x) ∈ D′(Rn) exists, then
∀ϕ(x) ∈ D(Rn) and we have(

Dβ
t ft(x) ∗ g(x), ϕ(x)

)
= Dβ

t (ft(x) ∗ g(x), ϕ(x)) . (8)



THE USE OF THE PARTIAL CONVOLUTION PRODUCT IN THE STUDY OF VISCOELASTIC ...67

Proposition 4. Let be the distributions f ∈ D′(Rn), h ∈ E′(Rn), g ∈ D′(Rm). Then we
have

(f(x)× g(t))⊗
x
h(x) = (f ∗ h) (x)× g(t). (9)

The partial convolution product has the property of continuity as the usual convolution
product.

We have seen that the partial convolution product exists if one of the factors is a
distribution with compact support. Another case of existence of the partial convolution
product which has particular importance in mechanics is given by [16]:

Proposition 5. If f(x, t) ∈ D′(R × Rm), g(x) ∈ D′(R) and supp (f) = (a,∞) ×
T, supp (g) ⊂ (b,∞), T ⊂ Rm, then f(x, t)⊗

x
g(x) ∈ D′(R× Rm) exists.

Proposition 6. Let be f(x, t) ∈ D′(R × Rm), g(x) ∈ D′(R). If supp (f) ⊂ Ω × T ,
Ω-compact, T ⊂ Rm and supp (g) = Ω′ arbitrary, then the partial convolution product
f(x, t)⊗

x
g(x) ∈ D′(R× Rm) exists.

A property that expresses a certain relation between the partial convolution product
and the usual one is given by

Proposition 7. Let be the distributions f(x, t) ∈ D′(Rn+m) and g1(x), g2(x) ∈ E′(Rn).
We have

f ⊗
x

(g1 ∗ g2) =

(
f ⊗
x
g1

)
⊗
x
g2 =

(
f ⊗
x
g2

)
⊗
x
g1. (10)

2. Properties of the operator

The rod theory constitutes an unidimensional theory of the solids which describes the
behavior of thin three-dimensional solid bodies, by a system of equations having only two
independent variables, namely, a curve parameter and the time.

In the vibrations study of homogeneous and straight isotropic one-dimensional vis-
coelastic rods with constant cross-section, the operator L : (R2)→ D′(R2) defined by

L(∂t, ∂x) = ∂t∂
4
x⊗
t
a1(t) + ∂t∂

2
x⊗
t
a2(t) + ∂2t ∂

2
x⊗
t
a3(t)+

∂t⊗
t
a4(t) + ∂2t ⊗

t
a5(t) + ∂2x⊗

t
a6(t),

(11)

where ai(t) ∈ D′
+, i = 1, 6, so there are distributions with supports in [0,∞], has wide

applications.
Let be the distributions u(x, t), v(x, t) ∈ D′(R2) , null for t < 0, that is, supp(u, v) ⊂

R× [0,∞) . If the convolution product u ∗ v ∈ D′(R2) exists, then the following relations
hold

L(∂t, ∂x)(αu+ βv) = αL(∂t, ∂x)(u) + β L(∂t, ∂x)(v), (12)

L(∂t, ∂x)(u ∗ v) = L(∂t, ∂x)(u) ∗ v = u ∗ L(∂t, ∂x)(v). (13)

We note that the L(∂t, ∂x) operator, although it is a linear operator, its coefficients are
related to the operator using the partial convolution product. Properties (12) and (13)
highlight the structural characteristics of the operator.

It is said that the constitutive law of the viscoelastic solid is of differential type if
between the stress σ(x, t) ∈ D′(R2) and the specific deformation ε(x, t) ∈ D′(R2) take
place:

P(∂t)σ = Q(∂t)ε, (14)
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where P,Q are linear differential operators with constant coefficients in the distribution
space D′(R2).

We have the following result:
If the constitutive law of the viscoelastic solid is of differential type (14), then the

relaxation distribution ψ(t) ∈ D′
+ satisfies the equation:

P(∂t)ψ
′(t) = Q(∂t)δ(t). (15)

This result suggests the assumption that the coefficients ai(t) ∈ D′
+, i = 1, 6 of the

operator (11) satisfy the differential type relations:

Pi(∂t)a
′
i(t) = Qi(∂t)δ(t), i = 1, 5,

P6(∂t)a6(t) = Q6(∂t)δ(t),
(16)

where Pi and Qi, i = 1, 6, are linear differential operators with constant coefficients.
We say that the distribution E(x, t) ∈ D′(R2) is the fundamental solution for the

operator L(∂t, ∂x) defined by (11) if it satisfies the following relation:

L(∂t, ∂x)E(x, t) = δ(x, t), (17)

where δ(x, t) = δ(x)× δ(t) represents the Dirac distribution.

3. Applications of the operator in the study of viscoelastic rod
vibrations

The considered operator can describe the longitudinal, transverse and torsional vibra-
tions of viscoelastic rods. We will exemplify this below.

I. The generalized equation of longitudinal vibrations of viscoelastic rods that also
takes into account the influence of tangential stresses [15], [5], [3] is:

L1(∂t, ∂x)u(x, t) = F1(x, t), F1 ∈ D′(R2) (18)

where the operator L1 : D′(R2)→ D′(R2) has the expression

L1(∂t, ∂x) = ∂t∂
4
x⊗
t
α0ψ(t)−∂t∂2x⊗

t
ψ(t)−β0∂2t ∂2x+ρ∂2t , α0 =

ν2r20
2(1 + ν)

, β0 = ρν2r20 (19)

where ψ ∈ D′
+, represents the relaxation distribution, ρ ∈ R the density and r0 the radius

of gyration.
The operator L1 is obtained from (11) considering a1(t) = α0ψ(t), a2(t) = −ψ(t), a3(t) =

−β0δ(t), a4 = 0, a5 = ρδ(t) and a6=0.
II. The equation of torsional vibrations of viscoelastic rods [3], [14] is

L2(∂t, ∂x)θ(x, t) = F2(x, t), F2 ∈ D′(R2) (20)

in which the operator L2 : D′(R2)→ D′(R2) has the expression

L2(∂t, ∂x) = −∂t∂2x⊗
t

ψ(t)

2(1 + ν)
+ ρ∂2t . (21)

The operator L2 is obtained from (11) considering a1(t) = 0, a2(t) = − ψ(t)
2(1+ν) , a3(t) =

a4 = a6 = 0, a5 = ρδ(t).
III. The equation of transversal vibrations of viscoelastic rods on viscoelastic foundation

(the Winkler hypothesis is adopted) [17], [3] is

L3(∂t, ∂x)v(x, t) = F3(x, t), F3 ∈ D′(R2) (22)

where the operator L3 : D′(R2)→ D′(R2) has the expression

L3(∂t, ∂x) = ∂t∂
4
x⊗
t
Iψ(t) + ∂t⊗

t
k0ψf (t) + ρ∂2t , (23)
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where I ∈ R+ - the axial moment of inertia of the rod, k0 ∈ R - the stiffness coefficient of
the foundation and ψ(t), ψf (t) ∈ D′

+ represent the relaxation distributions corresponding
to the rod and the viscoelastic foundation, respectively.

The operator L3 is obtained from (11) considering a1(t) = Iψ(t), a2 = a3 = a6 =
0, a4(t) = k0ψf (t), a5 = ρδ(t).

4. Conclusions

The study of viscoelastic rod vibrations leads to a class of partial differential equa-
tions, defined with the help of the operator (11). As we saw in the last chapter, many
mathematical models for the viscoelastic rod vibrations can described using the operator
(11).
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