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ALGEBRAIC POINTS OF LOW DEGREES ON CURVES OF AFFINE

EQUATION y2n = x5 + 1

MOUSSA FALL, PAPE MODOU SARR AND EL HADJI SOW

Abstract. IIn this paper, we use the Chevalley-Weil theorem and the result of Scha-

effer (see [5]) to determine explicitly the algebraic points of degree at most two over

Q of the family curves of affine equations y2n = x5 + 1. This result extends the work
of Schaeffer who determined the algebraic points of degree two over Q of the curve

y2 = x5 + 1.

1. Introduction and main result

1.1. Introduction

Let C be a smooth projective plane curve defined over Q. For all algebraic extension
field K of Q, we denote by C(K) the set of K-rational points of C on K and by C(d)(Q)
the set of algebraic points of degree d over Q. The degree of an algebraic point R is
the degree of its field of definition on Q i.e deg(R) = [Q(R) : Q]. A famous theorem of
Faltings [6] shows that if C is a smooth projective plane curve defined over K of genus
g ≥ 2, then C(K) is finite. Faltings’s proof is still ineffective in the sense that it does
not provide an algorithm for computing C(K). A most precise theorem of Debarre and
Klassen [4] show that if C be a smooth projective plane curve defined by an equation of
degree d ≥ 7 with rational coefficients then C(d−2)(Q) is finite. This theorem often us to
characterize the set C(2)(Q) of all algebraic points of degree at most 2 over Q.
Currently for curve C defined over a numbers field K of genus g ≥ 2, there is no know
algorithm for computing the set C(K) or for deciding if C(K) is empty. But there is a bag
of strikes that can be used to show that C(K) is empty, or to determine C(K) if it is not
empty. These include local method, Chabauty method [3], Descent method [12], Mordell-
Weil sieves method [1]. These methods often succeed with less than full knowledge of the
jacobian of the curve. If it is finite it is not hard to determine C(Q) and to generalize for
all number field K. So we can easily deduce C(d)(Q) [8].
Let n be a positive integer and Cn the family curves defined over the rational numbers
Q by affines equations Cn : y2n = x5 + 1. The Mordell-Weil group of the Jacobian of
each curve of the family is not known except for C1 whose Mordell-Weil group is given by
schaeffer in [11].
The purpose of this note is to work around the finiteness of the Mordell-Weil group by
using the Chevalley-Weil theorem and the results obtained by Schaeffer on the curve C1
to determine explicitly the set of rational points and quadratic points of the curves Cn.
In [11] Schaefer gave a description of the rational points and the quadratic points over Q
on the algebraic curve C of affine equation : y2 = x5 + 1.
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Let P0 = (−1, 0), P1 = (0, 1), P 1 = (0,−1), ∞ be the point at infinity and C(d)(Q) be
the set of algebraic points of degree d over Q on a curve C.
Let us denote by Q1 = (1 + i, 1− 2i), Q2 = (1− i, 1 + 2i), Q1 = (1 + i,−1 + 2i),
Q2 = (1− i,−1− 2i), R0 = P0 + P1.
The following proposition describes the rational and quadratic points on the curve C1 (see
[11]) :

Proposition 1.
The Q-rational points on C1 are given by the set :

C(1)
1 (Q) = {P0 , P1 , P 1 , ∞}.

The quadratic points on C1 over Q are given by the set :

C(2)
1 (Q) =

{
Q1 , Q2 , Q1 , Q2

}
∪
{(
a,±

√
a5 + 1

)
| a ∈ Qffl∗ \ {−1}

}
Proof. See [11]. �

1.2. Main result

Our main result describes the rational and quadratic points on the curves Cn is given
by the following theorem :

Theorem 1. Let n be a positive integer and n ≥ 2.

(1) The Q-rational points on Cn are given by the set :⋃
n≥2

C(1)
n (Q) =

{
P0 , P1 , P 1 , ∞

}
.

(2) The quadratic points on Cn over Q are given by the set :⋃
n≥2

C(2)
n (Q) =

{
(0, y) | (y2 + 1)(y2 + y + 1)(y2 − y + 1) = 0

}
2. Preliminary results

2.1. Algebraic extension

An algebraic extension is a field L/K such that every element of the larger field L is
algebraic over the smaller field K ; that is, if every element of L is a root of a non-zero
polynomial with coefficients in K. A field extension that is not algebraic, is said to be
transcendental equation.
Let L be an extension field of K, and a ∈ L. If a is algebraic over K, then K(a), the set
of all polynomials in a with coefficients in K, is not only a ring but a field: K(a) is an
algebraic extension of K which has finite degree over K.
We have the classical lemma:

Lemma 1. Let K(x) and K(y) be two algebraic extensions of the field K , such that
[K(x) : K] = m > 0 and [K(y) : K] = n > 0. Then the extension K(x, y) is of finite
degree on K. In particular, this degree is a multiple of m and n such that 1 ≤ [K(x, y) :
K] ≤ mn. Moreover, if m and n are prime to each other, then [K(x, y) : K] = mn.

Proof. See [2]. �

2.2. Mordell-Weil group

Let j be the jacobian embedding C → JC(Q). The class [P −∞] of P −∞ is denoted
j(P ). We have the following lemma :
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Lemma 2. JC(Q) ∼= (Z / 10Z) ∼= 〈 j(R0) 〉 .

Proof. See [11]. �

2.3. Cyclotomic polynomial

Definition 1. Let n be a positive integer and ξn the complex number exp( 2iπ
n ). The nth

cyclotomic polynomial is equal to

Φn (x) =
∏

1≤k<n,k∧n=1

(
x− ξkn

)
An important relation linking cyclotomic polynomials and primitive roots of unity is

given by this following lemma

Lemma 3. For any n positive integer, the polynomial Pn(x) = xn− 1 can be factored as:

Pn(x) = xn − 1 =
∏
d|n

Φd (x) .

Proof. See [10] �

Remark 1. We have the following properties

• For any positive integer n, the cyclotomic polynomials Φn are monic polynomi-
als with integer coefficients that are irreducible over the field Q of the rational
numbers.

• The degree of Φn , or in other words the number of nth primitive roots of unity,
is ϕ(n), where ϕ is Euler’s quotient function.

• The only cyclotomic polynomials of degree at most 2 are the following:
Φ1(x) = x − 1, Φ2(x) = x + 1, Φ3(x) = x2 + x + 1, Φ4(x) = x2 + 1 and
Φ6(x) = x2 − x+ 1.

2.4. Chevalley-Weil theorem
The Chevalley-Weil theorem that we use here is the following

Theorem 2. Let φ : X −→ Y be an unramified covering of normal projective varieties
defined over a numbers field K. Then there exists a finite extension L/K of K such that

φ−1 ((Y (K)) ⊂ X(L).

Proof. See [7]. �

3. Proof of the main theorem

Let us consider the morphism

f : Cn −→ C

(x, y) 7−→ (x, yn)

where n is an integer and n ≥ 1. Thus, we have (See [9]):

C(d)
n (Q) ⊂ f−1

 ⋃
1≤k≤d

C(k)(Q)

 and JCn(Q) � JC(Q)

We know that JC(Q) is finite and the curve C1 has been studied in [5]. The Chevalley-Weil
theorem will allow us to determine some algebraic points on Cn from those on C1.
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3.1. Rational points on Cn over Q
We know in [11] that the Q-rational points on C are given by :

C(1)(Q) = {P0 , P1 , P 1 , ∞}.

Then we have C(1)
n (Q) ⊂ f−1

(
{P0, P1, P 1, ∞}

)
.

f−1
(
{P0, P1, P 1, ∞}

)
= f−1 ({P0}) ∪ f−1 ({P1}) ∪ f−1

({
P1

})
∪ f−1 ({∞})

We remark that if n = 1, the problem is solved in [11]. Let us suppose n ≥ 2 and
determine the rational points on the curves Cn :

(1) The point (x, y) ∈ f−1 ({P0})⇐⇒ f(x, y) = (0, 0).
f(x, y) = (0, 0)⇐⇒ (x, yn) = (0, 0)⇐⇒ (x, y) = (0, 0).
So we get f−1 ({P0}) = {P0}.

(2) The point (x, y) ∈ f−1 ({P1})⇐⇒ f(x, y) = (0, 1).
f(x, y) = (0, 1)⇐⇒ (x, yn) = (0, 1)⇐⇒ x = 0 et yn − 1 = 0.
By the remark 1, yn − 1 is divisible by the cyclotomic polynomials of degree 1
which are :
- Φ1(x) = x− 1 and Φ2(x) = x+ 1 if n is even,
- Φ1(x) = x− 1 if n is odd.
So we get f−1 ({P1}) =

{
P1, P1

}
.

(3) The point (x, y) ∈ f−1
({
P1

})
⇐⇒ f(x, y) = (0,−1)

f(x, y) = (0,−1) ⇐⇒ (x, yn) = (0,−1) ⇐⇒ x = 0 and yn + 1 = 0. By the
remark 1, yn + 1 is divisible by the cyclotomic polynomial of degree 1 which is
Φ2(x) = x+ 1 if n is odd.
So we get f−1

({
P1

})
=
{
P1

}
.

(4) The point (x, y) ∈ f−1 ({∞})⇔ f(x, y) = (0, 1) =∞ and we find the case (2).

(5) The point at infinity of Cn noted ∞ is either (1, 0) if n ≥ 3 or (0, 1) if n ≤ 2 is a
rational point.

We obtain then the set ⋃
n≥2

C(1)
n (Q) = {P0 , P1 , P 1 , ∞}.

3.2. Quadratic points on Cn

The quadratic points on C1 are given by :

C(2)(Q) =
{
Q1 , Q2 , Q1 , Q2

}
∪
{(
a,±

√
a5 + 1

)
| a ∈ Q∗ \ {−1}

}
.

We get

C(2)
n (Q) ⊂ f−1

(
C(1)(Q) ∪ C(2)(Q)

)
If n = 1, then the problem is solved [11]. We assume that n ≥ 2. There are two different
cases :
Case 1: We compute the quadratic points contained in f−1

(
C(2)(Q)

)
.

(1) The point (x, y) ∈ f−1 ({Q1}) ⇐⇒ f(x, y) = Q1 = (1 + i, 1 − 2i). We have
x = 1 + i and yn = 1 − 2i. The equation yn = 1 − 2i has exactly n roots
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yk = n
√

1− 2iξkn with 0 ≤ k ≤ n− 1.
let be Rk =

(
1 + i, n

√
1− 2iξkn

)
and Let’s study of the point Rk. We have :

[Q(Rk) : Q] =
[
Q
(

1 + i, n
√

1− 2iξkn

)
: Q
]

et 1 + i /∈ Q.

n ≥ 2 =⇒
[
Q
(

1 + i, n
√

1− 2iξkn

)
: Q
]
>
[
Q
(√

1− 2i
)

: Q
]

= 4

=⇒
[
Q
(

1 + i, n
√

1− 2iξkn

)
: Q
]
> 4.

The point Rk =
(
1 + i, n

√
1− 2iξkn

)
has a degree greater than 2, and we show in

the same way that the reciprocal images of the points Q1, Q2 and Q2 are also
degree greater than 2.

(2) The point (x, y) ∈ f−1
({(

a,±
√
a5 + 1

)})
⇔ f(x, y) =

(
a,±
√
a5 + 1

)
i.e x = a

and yn = ±
√
a5 + 1. The equation yn = ±

√
a5 + 1 has exactly n roots yk =

n
√
±
√
a5 + 1ξkn with 0 ≤ k ≤ n− 1.

Let’s study the degree of Ra,k =
(
a,

n
√
±
√
a5 + 1ξkn

)
. We have :

[Q(Ra,k) : Q] ≥ [Q(Ra,0) : Q] =

[
Q
(
a,

n

√
±
√
a5 + 1

)
: Q
]
.

In addition, Q(Ra,0) contains Q(a) and Q
(

n
√
±
√
a5 + 1

)
which are respectively

fields of degree 1 and 2n with n ≥ 2.
Let n ≥ 2 and by the lemma 1, we have :[
Q
(
a,

n

√
±
√
a5 + 1

)
: Q
]

= [Q(a) : Q]×
[
Q
(

n

√
±
√
a5 + 1

)
: Q
]

= 2n.

The point Ra,0 =
(
a,

n
√
±
√
a5 + 1

)
is a point of degree 2n > 2.

So the set of quadratic points on Cn over Q in f−1
(
C(2)
n (Q)

)
is empty.

Case 2: Let us determine the quadratic points contained in f−1
(
C(1)(Q)

)
:

(1) The point (x, y) ∈ f−1 ({P0})⇐⇒ f(x, y) = (0, 0)
f(x, y) = (0, 0)⇐⇒ (x, yn) = (0, 0)⇐⇒ x = 0 and y = 0.
We see that P0 is rational and therefore not of degree 2.

(2) The point (x, y) ∈ f−1 ({P1})⇐⇒ f(x, y) = (0, 1).
f(x, y) = (0, 1)⇐⇒ (x, yn) = (0, 1)⇐⇒ x = 0 and yn − 1 = 0.
By remark 1, yn − 1 is divisible by the cyclotomic polynomials of degree 2 which
are
- Φ3(y) = y2 + y + 1 if n is a multiple of 3;
- Φ4(y) = y2 + 1 if n is a multiple of 4;
- Φ6(y) = y2 − y + 1 if n is a multiple of 6.
So f−1 ({P1}) =

{
(0, y) | (y2 + 1)(y2 + y + 1)(y2 − y + 1) = 0

}
.

(3) The point (x, y) ∈ f−1
({
P1

})
⇐⇒ f(x, y) = (0,−1).

f(x, y) = (0,−1)⇐⇒ (x, yn) = (0,−1)⇐⇒ x = 0 et yn + 1 = 0.
By remark 1, yn + 1 is divisible by the cyclotomic polynomial of degree 2 which
is Φ2(y) = y2 + 1 if n is even.
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So f−1
({
P1

})
=
{

(0, y) | y root of the equation : y2 + 1 = 0
}

.

(4) The point (x, y) ∈ f−1 ({∞}) ⇐⇒ f(x, y) = (−1, 0) = ∞. We see that ∞ is
rational so it is not of degree 2.

In summary, the set of quadratic points on the curves Cn over Q is given by⋃
n≥2

C(2)
n (Q) =

{
(0, y) | (y2 + 1)(y2 + y + 1)(y2 − y + 1) = 0

}
.
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