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TENSOR TRIANGULATED CATEGORY TO A CYCLES DUALITY IN

THE QUANTUM VERSION OF MOTIVIC COHOMOLOGY

FRANCISCO BULNES

Abstract. We consider the tensor structure of triangulated categories in derived

categories of étale sheaves with transfers. The total tensor product on the category

PSLpkq, is required to obtain the generalizations on derived categories using pre-
sheaves, contravariant and covariant functors on additive categories of the type ZpAq,
or A`, to determine the exactness of infinite sequences of cochain complexes and

resolution of spectral sequences. Further, considering all referent to a triangulated
category whose motivic cohomology is a hypercohomology from the category Smk,

and the implications in the geometrical motives applied to a bundle of geometrical

stacks in field theory, that is to say, to the context to the category DQFT, was
established a lemma that incorporates a 2-simplicial decomposition of ∆3 � A1, in

four triangular diagrams of derived categories from the category Smk, whose goal
was evidence the tensor structure of DQFT. Now in this research, we consider a

theorem that relates the hypercohomology groups obtained with the spectrum through

the its singular homology taking components Ztrpkq, and the A1� homotopy in the

action of the symmetric group on the derived category DMeff,�
Nis pkq. This finally

give us a crystallographic space-time model of simplicial type from the microscopic

aspects that define it, and its re-interpretation in field theory under the dualities of
the hypercohomology Nisnevich groups that are the vertices in the decomposition of

the space ∆3 �A1, which are equivalent to the field waves, for example gravitational

waves. Then is established an isomorphism of waves and particles in the context of
the category DMgmpkq. The equivalence exists in this category.

1. Introduction

We remember that in before papers [1,2] we consider commutative diagrams con-
structed from the category PSLpkq, is Abelian [3] and therefore has enough injectives
and projectives that can be used to create the conditions for the invariant presheaves
of homotopy required to realization of the commutative diagrams in A1� homotopy of
morphisms in the category Smk, as the corresponding diagrams of A1� morphisms in the
category C�ZtrpX �A1q (Figure 1),

Figure 1. 2-Simplicial decomposition of ∆2 �A1.

2010 Mathematics Subject Classification. MSC2020 subject classifications: 14A30, 18M25, 13D03,
13D09, 18G40, 19D23, 19D55, 24D23.

Key words and phrases. DQFT, étale Sheaves Cohomology, Hypercohomology, Motivic cohomology,
Tensor triangulated category, Quantum version of hypercohomology, Simplicial.

41



42 FRANCISCO BULNES

which is a 2-Simplicial decomposition of ∆2 � A1 . Or the case of consider ∆3, we have
the correspondence(Figure 2):

Figure 2. 2-Simplicial decomposition of ∆3 �A1.

which represents a 2-Simplicial decomposition of ∆3 � A1. This last case, was used
to obtain a general diagram that was induced to the category DQFT, from a scheme
of associated motives to scheme X, (which is the class mpXq of C�ZtrpXq, which is

clearly modulus A1-homotopy in an approximate triangulated category DMeff,�
Nis pk,Rq1,

constructed from the derived category of PSLpkq. Remember that the hypercohomology
determined in [4, 5] to solutions of a big class of field equations corresponding to the
representation of the cosmic Galois group2, establish that in quantum field theory also
can be established that the motives are objects whose triangulated category of geometrical
motives are in the category DMgmpk,Rq, or written simply as DMgmpkq.

The following corollary to homotopy invariant presheaves [6, 7] and deduced from
the fact that for every smooth scheme X, exists a natural homomorphism (is to say a
homotopy) which explained a diagram that belongs to the correspondence planted in
(Figure 1), or as factor of the correspondence planted in the (Figure 2). Likewise we
have:

Corollary 1. C�ZtrpX �A1q Ñ C�ZtrpXq, is a chain homotopy equivalence.

Then in the motives context and after of demonstrate the equivalences (in A1� ho-
motopy) of the correspondences morphisms of injectives and projections, we can to have
the motives scheme equivalence mpXq � mpX � A1q, for all X, which helps to establish
in a general way that any A1� homotopy equivalence X Ñ Y , induces an isomorphism
mpXq � mpY q, considering inverses.

2. Derived triangulated categories with structure
by pre-sheaves bL and btrL,ét

The tensor product of the derived category of bounded above complexes of étale sheaves
of R� modules btrL,ét, preserves quasi-isomorphisms. Also the category of bounded above
complexes of étale sheaves of R�modules with transfers is a tensor triangulated cate-
gory[8,9].

Particularly, and considering a motives algebra into the derived category of étale
sheaves of a Z{m� module with transfers, we have the operation

mÑ mp1q � mbtrL,ét Z{Mp1q (1)

is inversible. Then @E,F , étale sheaves we have

1The category is endowed of total tensor product inherited from the total tensor product of PSLpkq.
2K2n�1pKq b Q � HpGLpn, kqq, is the linear group of entries in k.
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E btrL,ét F Ñ E1 btrL,ét F (2)

is quasi-isomorphism for F . Now if F , is a locally complete étale sheaf of R�modules
then E1btrL,étF,Ñ EbtrL,étF , is quasi-isomorphism for every étale sheaf with transfers E.

But in the aspects of tensor products we have b � bL, in ℘, and considering the a natural
mapping of presheaves established by λ : hX btrét hY Ñ hXbtr

étY
,for every hXi

� RpXiq,

considering the right exactness of bR, and btrét, and being E,F , are bounded above
complexes of locally constant étale sheaves of R�module the E btrL,ét F Ñ E bL

R F , is
also a quasi-isomorphism.

Similarly as has been with the étale sheaves, a presheaf with functors F , is a Nisnevich
sheaf with transfers if its underlying presheaf is a Nisnevich sheaf on the category Sm{k.
Consequently every étale sheaf with transfers is a Nisnevich sheaf with transfers. In the
motive context with Q-coefficients with transfers we can enunciate the following result.

Lemma 1. Let F , be a Zariski sheaf of Q� étale sheaf with transfers. Then F , is also
an étale sheaf with transfers.

Proof. 1,7 �

Then we can deduce considering the theorem that characterizes the Nisnevich sheaves
[6-8] whose category is the space ShNispCorkq, and the lemma 1, the following corollary.

Corollary 2. If F , is a presheaf of Q�modules with transfers then FNis � Fét.

Likewise, the construction of a derived category as DMeff.�
Nis pk,Rq, is analogous to

the construction of DMeff.�
ét pk,Rq. If k, admits regularizations of singularities then

DMeff.�
ét pk,Rq, permit us to extend motivic cohomology to all schemes of finite type

as a cdh, hypercohomology group.

Remember that Q � R, which showed us that DMeff.�
Nis pk,Rq, and DMeff.�

ét pk,Rq,
are equivalent [1, 7]. Then D� � D�pShétpCork, Rqq, is a derived category which is a
tensor triangulated category. The same is applicable in the Nisnevich topology for derived
category D�pShNispCork, Rqq.

Then, @C,D P ℘, and thus in Ch�RpAq, we have:

C btrL,Nis D � pC btrL DqNis1 . (3)

Particularly the derived category D�, of bounded above complexes of Nisnevich sheaves
with transfers is a tensor triangulated category under the tensor product btrL,Nis. Then

by the proposition [7] that affirms that hX � RtrpXq is projective if

RtrpXq b
tr RtrpY q � RtrpX � Y q. (4)

Then we have in the motives context

mpXq btrL,Nis mpY q � mpX � Y q. (5)

Then can be defined the categoryDMeff
gm pk,Rq, as the thick subcategory ofDMeff.�

Nis pk,Rq,

generated by all motives mpXq, where X is smooth over k. The objects in DMeff
gm pk,Rq,

are the effective geometric motives, which will be the useful objects required in our motivic
cohomology that we want establish and that we obtain for resolution of the decomposing
of X �A1 in A1�homotopy of morphisms in the category Smk.

This will be the beginning of the next section to a category DQFT, already character-
ized and studied in [1,4].
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3. Result

Many studies realized and published in [5] and the motivic cohomology treatment

given in [6-8, 10] as the embedding theorem in DMeff
ét pkq, can be considered the following

triangule:

Smk Ñ DMeff
ét pkq

m× Ó Id, (6)

DMeff
ét pkq

with implications in the geometrical motives applied to the bundle of geometrical stacks
in mathematical physics, as has been studied and showed in [6, 8, 11]. An important
theorem was obtained in [4, 5], where considering M, as space-time modeled as a complex
Riemannian manifold with singularities was obtained the following tensor triangulated
diagram, which is true and commutative:

DQFT

iÖ × F, (7)

DMgmpQq Ñ DMpDY q

Proof. 8. �

The category DMeff
gm pk,Rq, as tensor triangulated category has a tensor product of

its motives describe as mpXq b mpY q � mpX � Y q. An important note is consider
that the triangulated category of geometrical motives DMgmpk,Rq, is defined formally
inverting the functor of the Tate objects3 which are objects of a motivic category. In before
researches was considered a tensor triangulated category to a quantum version of motivic
cohomology on étale sheaves, from ∆3� simplicial that shows the A1� homotopy in an

approximate triangulated category DMeff,�
Niss pk,Rq, which for every Nisnevich sheaf with

transfers, that is each one an every étale sheaf with transfers, is a category DMeff,�
ét pk,Rq.

The Nisnevich detail in the derived category is due to the importance in motivic homotopy
theory of that the objects of interests are ”spaces”, which are simplicial sheaves of sets
on the big Nisnevich site that is the category Sm{k. In reality we consider two topologies
for aspects of localization and covering. We have the following commutative diagram in
the geometrical motives context that are useful to link the derived category DQFT.

Lemma 2. The following diagram is commutative

Smk
i1
ÝÑ DMeff

gm pkq
σ
ÝÑ DMgmpkq

i
ÐÝ DQFT

m× Ù Id σ Ö Ù� Ö F, (8)

DMeff
gm pkq

�
ÝÑ DMpDY q

Proof. 13. �

3The Tate motives or mixed Tate motives (the mixed Tate motives are the iterated extensions of the
pure Tate motives, thus are same by nature) are central objects in the study of cohomology groups of

algebraic varieties and their arithmetic invariants. These have a crucial role in several problems and

questions related with the algebraic K-theory, hyperbolic geometry, and particle physics among others.
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In the demonstration was considered QFT
i
ÝÑDMgmpkq

σ
ÝÑDMeff

gm pkq, which is zero (see
lemma 21.9 [1,13]). And the high importance was consider the singular homology [14] to
start Cork{A

1� homotopy.
An corollary of the diagram (6) will be the re-interpretation from the étale sheaves

topology and simplicial decomposition of ∆3 �A1,for DQFT, considering their spectrum
of its singular homology. This precisely will complete the research on the equivalence of
co-cycles through its spectrum in a derived category of motives, will be consigned in a
corollary.

From category of motives, we can consider the following proposition worked in [15]:
Proposition 1. If X, is any scheme of finite type over k, then

Hsing
n pX,Rq � Hn,0pX,Rq. (9)

Into the demonstration of (9) are considered the hyper-cohomology groups
H�NispSpeck,Kq � HpKpSpeckqq, which represent the spectrum of the corresponding
singular homology. This spectrum can be a projective vector bundle used to work sin-
gularities. Then in a deep research realized in [2] was conjectured that oscillations and
singularities can be the same in motivic cohomology through of certain duality.

For our goal will be very useful the following theorem.

Theorem 1. (Projective Bundle Theorem). Let p : Ppεq Ñ X, be a projective bundle
associated to the vector bundle ε,of rank n� 1. Then the canonical mapping

bni�0ZtrpXqpiqr2is Ñ ZtrpPpεqq (10)

is an isomorphism in the category DMeff
gm pkq, and p, is the projection onto the factor

ZtrpXq.

Proof. 15. �

Then have the orthogonal composition4:

ZtrpPnk � bni�0Zpiq, (11)

of motivic complex of singularities.
Likewise, we can consider the following theorem proved and published in [12].

Theorem 2. (F. Bulnes) H�pGLpn, kqq has the decomposing in components HipXq,
that are hyper-cohomology groups corresponding to solutions as H� states in VecC, for
field equations dda � 0.

Proof. 12. �

Into the demonstration of the theorem was proved that the oscillations of H�states are
the solutions of a wide field equations class where these solutions are hyper-cohomology
groups to superposition of H�states, considering the corresponding Hitchin base [11,
16, 17]. In field theory, considering duality, particle and wave are equivalent. Then
oscillations or waves are singularities in the space-time too.In our category of motives are
undistinguishable. In an after theorem proved in [2] was demonstrated in terms of singular
cohomology that the group H�pSLpn, kqq, has a decomposing in components Zpiqr2is, that
are hypercohomology groups to solutions as H�states in VecP, and are solutions to a wide

4Zpnq, is the motivic complex of manifold singularities whose dual as hypersurfaces in a manifold

(that our case we want a complex Riemannian with singularities) is the projective space Pn.
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field equations class. In the demonstration is considered the Proposition 1, where is clear
that:

Hsing
n pX,Rq � H�nNispSpeck, C�RtrpXqq. (12)

Likewise results natural the following corollary considering the actions of the corre-
sponding group on the complexes given.

Corollary 3. The action of the symmetric group Σn, on Zpnq, is A1� homotopic to

the trivial action. Hence it is trivial in the category DMeff,�
Nis pkq, an on the motivic

cohomology(hypercohomology)HrpX,Zpnqq.
Proof. 15. �

Theorem 3. We consider H�pSLpn, kqq. This has a decomposing in components Zpiqr2is,
5 that are hypercohomology groups to solutions as H�states in VecP, to field equations
dda � 0. on singularities.

Proof. 12. �

Here the important point was use the diagram

DMgmpkq
i
ÐÝ DQFT

Ù� Ö F, (13)

DMpDY q
directly deduced from diagram (8), and use the Spec of the motivic hypercohomology
H�NispSpeck, kq, considering the projective vector bundle.

Corollary 4. The waves or oscillations are singularities in the microscopic space-time.
In our category of motives are undistinguishable.

Proof. In QFT-applications, the singular homology groups of ∆3 � A1, for DQFT, are
dual to the corresponding H�states in VecC, to the motivic cohomology. These are
continuous in their spectrum H�nNispSpeck, C�RtrpXqq. By the theorem 3.3 this spectrum
can be a projective vector bundle Ppεq, used to work singularities. Of fact there is a
quiasi-isomorphism MpPnq � C�ZtrpPnq Ñ Z`Zp1qr2s`, ...,`Zpnqr2ns, that are Spec of
corresponding Chow groups. In the demonstration of this theorem, oscillations or waves
and singularities are the same considering motivic cohomology [2]. Of fact all motives are
in a Tannakian category [8] generated for Tate motives.6 �

In the case of a spinor representation the corresponding H�states can be as spinor
waves [18] which can be consigned in oscillations in the space-time to a microscopic context
(for example all fermions, even some neutrino oscillations) deformation measured [19, 20]
in H. Now these waves states in field theory are motives in the category DTMpkq[4],

which is the derived category DbpTMqpkqq, that is a full subcategory of the Tate category
of motives TMpkq,before mentioned. Then oscillations are singularities in the microscopic
space-time. In our category of motives are undistinguishable. Then directly from the
corresponding triangle of the diagram (8) all are geometrical motives of DMgmpkq, and
are in DMpDY q, which is a category of the microscopic space-time.�

5These are the Spec of a corresponding Chow groups. We consider the following Corollary [15]. There
is quasi-isomorphism

MpPnq � C�ZtrpPnq Ñ Z` Zp1qr2s`, ...,`Zpnqr2ns.

6Let MT(Zq, denote the category of mixed Tate motives unramified over Z. It is a Tannakian category

with Galois group GalMT.The Tannakian category is obtained for the inverting of the objects �b Z.p1q.
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4. Examples

The following examples sign different field theory objects where all these are mixed
motives of the same derived category of motives, established in the demonstration of the
corollary.

Example 1. In the QFT-applications and considering the singular homology groups
of ∆3 � A1, for DQFT, we can consider the duality that comes given by the isomor-
phism Hsing

n�p pG^nm ,Cq � Hn�ppCPm�1,Cq. This duality lives in the Tannakian category
TMpkq[4].

Example 2. We consider the isomorphism PicpPq � H2
NispP,Zp1qq � HomD�pZtrpPq,

Zp1qr2sq.7 By deformation theory, we cosider the Picard group of the Picard variety of a
curve C, defined for M � PicpCq, where M, is the microscopic space-time. In a physi-
cal context PicpCq, represents a trace or curve of a particle in the symplectic geometry
that can be characterized in a Hamiltonian manifold H, as H�states. In this case the
particles(singularities)and H�states are the same, in the case of PicpPq, represents a
wave at infinitum which is constructed or formed when more H�states are being added
indefinitely. Its Spec is T_BunLG

. The isomorphism(equivalence) comes given by the cor-
responding Penrose transform such that its kernel set has elements the fields h P H such
that Isomdh � 0, in the corresponding hyper-cohomology [10]. Likewise, in the Hamilton
densities space [17] we have a superposition of H�states, considering a Hitchin basis8[4].
Likewise, we have for a concrete case H2pBunGpΣ,

LGq,Cq � Ω1rHs, [12] (where the
second differential operator is defined as d : Ω1rHs Ñ C � Bq that for M � PicpCq, we
obtain H_, which is its deformation or spectrum, whose general integral is the extended
Hitchin base [17,18] H � H0pωCq `H0pωb2

C q ` ...`H0pωbnC q, 9 whose hypercohomology
has an image in the category of spaces VecC,[4].In the case of a spinor representation the
corresponding H�states can be as spinor waves, which can be consigned in oscillations in
the space-time to a microscopic deformation measured [19, 20] in H.

Example 3. Oscillations or waves of H�states are produced when are realized rotations
around of a vertex (this could be considered like a source in field theory)in presence of
electromagnetic fields give a field torsion accompanied of gravitational waves as effect of
the particles mass (that is to say, in presence of matter) (see the figure 1). To quantum

gravity, might be natural to want obtain a spectrum in the dual T̂BunG, 10 considering
the triangle given in (8), whose geometrical motives will be stacks of holomorphic bundles.

7The category D� � D�pShétpCork, Rqq.
8This is possible if is had a projective bundle
9Each motive M , can be expressed as ωpMq, which is direct sum of ωnpMq, which have images as the

Grassmannians Grw�2npMq. For realization of motives we have:

MTk Ñ GrVecMpXq ÞÑ H�pXk,Qq,

Each ωbj
C , is a connection for Z� grade Q� vector spaces such that for all motives M , that are

elements of a tensor derived category, is had that:

M ÞÑ ωpMq � `nωnpMq,

with

ωnpMq � HompQpnq,Grw�2npMqq.

10Dual image of the lines bundle which is divisor of holomorphic bundles. This is stack.
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Figure 3. The triangle (35) in the demonstration of the theorem 3.3,
[2] and the Chow ring of the hypersurface modeled considering the space-
time expansion. We will consider this sequence as a sequence of coherent
sheaves in Pn. The cohomology of coherent sheaves is the same that the
cohomology to étale sheaves.

5. Conclusions

The construction of a Universe model on simplicial framework, considering the quan-
tum field theory of simplicial geometry establish morphism of homotopy commutative
relations which can induce to a hypercohomology to the solution of some field equations
and aspects of gravitation at least in a microscopic level. As example, we can consider
the field theory as the established by the Schwinger-Dyson equation in 3-dimensional sim-
plicial quantum gravity, established by new triangle relations and absence of Tachyons
in a Liouville string field theory [19], whose D�modules are coherent D�modules and
where could be contained in the derived category DMpDY q, or also in the diagrams of
the Polyakov string theory [20], with marble Polyakov integrals as intertwining operators
between strings and particles (sources as vertices). However the obtaining of a derived
category of mixed motives where dualities between field theory objects of the derived
category DQFT are defined by isomorphisms, even developed through stacks of the holo-
morphic bundles, establish in a advanced level the total equivalence of singularities and
waves or oscillations, traying also the deformation theory meaning to corresponding co-
cycles of their spectrum in each case. The corollary 3. 2., is a direct consequence of the
theorems 3. 2, and 3.3, which are consequence of a previous study on geometrical motives
categories to determine co-cycles as solutions in field theory [5], where previously also was
demonstrated the commutativity of scheme of derived categories [12] to demonstrate the
equivalence of solutions of certain field equations classes and obtain a same derived cate-
gory of such co-cycles to both objects in QFT of field equations. Then the solutions of the
all field equations classes are obtained in a hypercohomology. Likewise to give treatment
to the singularities we use the simplicial geometry and its decomposition in triangulated
diagrams of schemes belonging to the category Smk, and morphisms between schemes of
the category Cork, all with the total tensor product on the category PSLpkq, as example
its component elements Ztrpkq, to obtain the generalizations on derived categories us-
ing sheaves (étale or Nisnevich) or pre-sheaves and contravariant and covariant functors
on additive categories to define the exactness of infinite sequences and resolution their
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spectral sequences. The advantages from the tensor triangulated category to a quantum
version considering a motivic cohomology on étale Sheaves is the respective factorization
algebras in QFT, where is necessary consider the combined observation measures from
many components with an commutative property for their diagrams between their derived
categories. Finally we establish some examples that are equivalents under different QFT
approach due to that all its elements have the same hypercohomology too.
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