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PERIODIC AND SOLITARY WAVE SOLUTIONS FOR A MODIFIED KADOMTSEV
PETVIASHVILI MODEL

ION BICA

Abstract. Using a similar approach as Korteweg and de Vries we obtain periodic solutions ex-
pressed in terms of the Jacobi elliptic function cn for a modified Kadomtsev–Petviashvili (MKP)
equation, and we will call them internal cnoidal waves. As well, we will show that internal solitary
wave solutions are recovered through a limiting process after the elliptic modulus of the Jacobi
elliptic function cn that describes the cnoidal waves for the MKP equation.

1. Introduction

Internal waves oscillate within a stratified fluid, and they are gravity dominated waves. We
will refer to them as internal gravity waves. They exist on the interface between two stratified
moving fluids of different densities. When low density fluid overlies high density fluid, the inter-
nal gravity waves will propagate horizontally along the interface, just as surface gravity waves,
with a speed determined by the difference between the above and below densities at the internal
interface. Following [14] ”we ensuing waves are a simple model of gravity waves that exist in the
interior of the atmosphere and, perhaps especially, the ocean, in which we idealize the continuous
stratification of the real fluid by supposing that the fluid comprises two (or conceivably more)
layers of immiscible fluids of different densities stacked on top of each other. We will consider
only the hydrostatic case in which case the layers form a ‘stacked shallow water’ system.” We
will limit ourselves to two moving layers.

Due to the density change at the internal interface, the internal gravity waves will have a
slight deviation in the second space-dimension, i.e., wave-refraction, thus becoming quasi two-
dimensional internal gravity waves.

To derive an appropriate model for internal gravity wave propagation at the fluid interface we
seek solutions in the form

u = ei(k1 x+k2y−ωt), 0 < k2 � k1. (1)
satisfying the dispersion relation

ω = k2
1 − 6 − λ

(
k2

k1

)2

, λ > 0 (2)

Observations on the dispersion relation (2):
• The term k2

1 shows the dispersive nature of the internal gravity waves.
• The term 6 addresses the nonlinearity nature of the internal gravity waves. The term 6 is

chosen to aid in the integration of the resulting partial differential model.
• λ is related to the unit force applied per unit mass of water that refracts in shallow layer

water by a small angular velocity, and such, the waves becoming quasi two-dimensional.
λ > 0 signifies that we have only internal gravity waves at the internal interface (we

have immiscible fluids), i.e., there is no surface tension at the internal interface as in the
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case of air-water interface. As well λ signifies that the unit for the force applied per unit
mass in unit time is 1 Newton. Therefore we will use λ = 1

[
N
kg · s

]
, and we will work

in the International System of Units (SI Units), i.e., the units of length-weight-time used
will be measured in meter-kilogram-second.

• The term
(

k2
k1

)2
� 0 shows the quasi-two-dimensionality of the internal gravity waves.

The dispersion relation (2) suggests that u satisfies the partial differential equation (PDE)

(iuxt + 6|u|mux + uxxx)x + λuyy = 0,m ∈ R (3)

where u is a complex-valued function.
In (3) we will use m = 2, following the model of describing deepwater waves given by the

nonlinear Schrödinger equation (NLS).

iut ±
α

2
uxx − αu|u|2 = 0, α > 0 constant. (4)

The NLS model (4) is suggested by the works [12] and [17]. It is important to note that the
function u in the model (4) is complex-valued as in the proposed model (3) too.

The proposed model (3) is a ”combination,” justified by the dispersion relation (2), of the NLS
model (4) and the renowned Kadomtsev-Petviashvili model [5]

(ut + 6uux + uxxx)x + λuyy = 0. (5)

proposed in 1970 by Kadomtsev and Petviashvili as a two-dimensional dispersive wave equa-
tion for studying the stability of the one-dimensional soliton solution of the Korteweg de Vries
equation

ut + 6uux + uxxx = 0 (6)
under the influence of weakly transverse perturbations.

Hence, the model proposed for our analysis is(
iuxt + 6|u|2ux + uxxx

)
x

+ λuyy = 0 (7)

where u is a complex-valued function. The model describes the propagation of quasi-two-dimensional
nonlinear and dispersive internal gravity waves in a fluid (i.e., water) comprised of two layers of
immiscible fluids of different densities stacked on top of each other, where we consider the hy-
drostatic case where the layers form a ’stacked shallow water’ system.

The interfacial waves described by the model (7) are similar to surface waves. But, because
the density difference between the two underwater layers is not comparable with the density
difference between air and water (it is much less), the gravitational acceleration that a displaced
fluid parcel is subject to is reduced by about a factor thousand. Thus, internal gravity waves can
have

• larger amplitudes,
• longer periods,
• shorter wavelengths than the surface gravity waves of same period.

In this paper we will follow a similar type of thinking as Korteweg and de Vries in 1895 [7].
We will obtain periodic solutions expressed in terms of the Jacobi elliptic function cn [3] for the
MKP equation (7). Also, we will derive solitary wave solutions for the MKP equation (7) from
the periodic solutions by considering a limiting process onto the elliptic modulus of the Jacobi
elliptic function cn.

The results obtained in this paper align with the continuous endeavour of studying the periodic
wave nature and solitary wave nature described by the KP model, two relevant examples being
[6] and [11].

The novelty of this paper is showing the periodic wave nature and solitary wave nature of
internal waves described by a modified KP model.



PERIODIC AND SOLITARY WAVE SOLUTIONS FOR A MODIFIED KADOMTSEV PETVIASHVILI MODEL 15

2. Periodic Solutions for theMKP Equation (7)

Using separation of variables in (7)

u(x, y, t) = r(x, y)T (t), (8)

such that r(x, y) is a real-valued function and T (t) is a complex-valued function such that |T | = 1,
we obtain

i T ′

T
=

(6r2rx)x + rxxxx + λryy

−rxx
= µ, µ constant, (9)

and we will be interested to analyze the case when µ < 0.
From (9) we obtain

T (t) = e−iµt, (10)

and the following second order nonlinear partial differential equation for r = r(x, y)

µrxx + (6r2rx)x + rxxxx + λryy = 0. (11)

We look for solutions for the equation (11) of the form

r(x, y) = hη(k1x + k2y), h > 0, k1 > 0, k2 > 0, k1 � k2. (12)

where h is the height of the lower layer underneath the interface.
Substituting (12) into the equation (11), and simplifying, we obtain

µk2
1η
′′ + 6h2k2

1

(
η2η′

)′
+ k4

1η
iv + λk2

2η
′′ = 0. (13)

Integrating (13) and choosing the integration constant zero, and simplifying, we obtain

µk2
1η
′ + 2h2k2

1

(
η3

)′
+ k4

1η
′′′ + λk2

2η
′ = 0. (14)

Integrating (14), we obtain

µk2
1η + 2h2k2

1η
3 + k4

1η
′′ + λk2

2η = C1, C1 integration constant. (15)

Multiplying (15) by η′ and integrating, we readily obtain

µk2
1η

2 + h2k2
1η

4 + k4
1
(
η′

)2
+ λk2

2η
2 = 2C1η + C2, C2 integration constant. (16)

We write the ordinary differential equation (16) as follows

k1

h
η′ = ±

√
P(η), P(η) = −η4 −

µk2
1 + λk2

2

h2k2
1

η2 +
2C1

h2k2
1

η +
C2

h2k2
1

. (17)

We are interested in the case when C1 = 0 and the polynomial P factors as follows

P(η) = (η2 + η1)(η2 − η
2), 0 ≤ η1 < η2, η2 − η1 = −

µk2
1 + λk2

2

h2k2
1

,

C2 = h2k2
1η1η2.

(18)

From (17) and (18), we obtain
k1

h
dη√

(η2 + η1)(η2 − η2)
= ±d(k1x + k2y) (19)

Integrating (19), we obtain

k1

h

∫ η

√
η2

dw√
(w2 + η1)(η2 − w2)

= ±(k1x + k2y + C), C integration constant. (20)

Making the substitution
w =

√
η2 cos θ, (21)
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and performing all the calculations, the equation (20) becomes

∓
h
k1

√
η1 + η2(k1x + k2y + C) =

∫ φ

0

1√
1 − m sin2 θ

dθ, m =
η2

η1 + η2
,

⇓

cn
(

h
k1

√
η1 + η2(k1x + k2y + C)

∣∣∣∣∣ m)
= cos φ, (22)

where cn is the Jacobi elliptic function defined as follows [3]

cn(τ|m) = cos φ, τ =

∫ φ

0

dθ√
1 − m sin2 θ

, m ∈ [0, 1]. (23)

As well, we used the fact that the cn function is an even function. Then, referring back to the
substitution (21), we finally obtain

η =
√
η2 cos φ =

√
η2cn

(
h
k1

√
η1 + η2(k1x + k2y + C)

∣∣∣∣∣ m)
. (24)

Thus, the solution we were looking for the equation (11) is

r(x, y) = hη(k1x + k2y) = h
√
η2cn

(
h
k1

√
η1 + η2(k1x + k2y + C)

∣∣∣∣∣ m)
,

m =
η2

η1 + η2
, 0 ≤ η1 < η2, η2 − η1 = −

µk2
1 + λk2

2

h2k2
1

, C ∈ R.
(25)

From (8), (10), and (25), the MKP equation (7) has the following periodic solution

u(x, y, t) = r(x, y)e−iµt,

r(x, y) = h
√
η2cn

(
h
k1

√
η1 + η2(k1x + k2y + C)

∣∣∣∣∣ m)
,

m =
η2

η1 + η2
, 0 ≤ η1 < η2, η2 − η1 = −

µk2
1 + λk2

2

h2k2
1

, C ∈ R,

h > 0, k1 > 0, k2 > 0, k1 � k2.

(26)

The solution (26) is periodic due to the fact that the cn function is periodic with period 4K [16]
where K is the constant given by the following integral

K =

∫ 1

0

dt√
(1 − t2)(1 − m2t2)

, m ∈ [0, 1]. (27)

Figure 1 illustrates the time evolution of a periodic solution for the MKP (7). Physically
speaking, the cnoidal wave depicted in Figure 1 is nothing else but the envelope of the modulated
carrier waves (i.e., the modulated oscillatory components) of the solution (26). The envelope of
the modulated carrier waves is given by the graphs of the functions ±A = ±|u| = ±

√
uu. We will

call the upper part of the envelope the profile of a cnoidal wave, given by the formula below,

A(x, t) =
√
η2

∣∣∣∣∣∣cn
(

h
√
η1 + η2

k1
(k1x + k2y + C)|

η2

η1 + η2

)∣∣∣∣∣∣ . (28)

Properties of the solution (26):
• Standing wave; it oscillates in time, but the envelope of the carrier waves, i.e., the profile

of the cnoidal wave, does not propagate in space.
• The peak amplitude of the cnoidal wave at any point in space is constant with respect to

time.
• The oscillations at different points throughout the cnoidal wave are in phase.
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Figure 1. Cnoidal wave of the MKP (7) for h = 0.5, λ = 1, µ = −1, η1 = 1,
k1 = 0.2, k2 = 0.00001, and C = 0.

Figure 2. Cnoidal wave of the MKP (7) for h = 0.5, λ = 1, µ = −1, η1 = 1,
k1 = 0.2, k2 = 0.00001, and C = 0.

Figure 2 illustrates the properties mentioned above about the solution (26).
Applying scale symmetry [9] onto the solution (26), we obtain the following scaled solution

for the MKP (7)
u(x, y, t) 7−→ u(x, y, t|δ) = δu(δx, δy, δ2t), δ > 0. (29)

The MKP (7) is Galilean invariant as follows: If u(x, y, t) is a solution of the MKP (7) then we
can obtain a new solution by changing the inertial reference frame, and adding a phase factor as
follows

u(x, y, t) 7−→ u(x, t|v) = u(x − vt, y − vt, t)e−
i
2α

2v(k1 x+k2y+C− vt
2 ),

α =

√
−(µk2

1 + λk2
2)

hk1
, v ∈ R.

(30)

Applying the Galilean invariance (30) onto the scaled solution (29), we obtain the following
complex-valued solution of the MKP (7)

u(x, t) = δr(δ(x − vt), δ(y − vt))e−
i
4 (2α2v(k1 x+k2y+C)−(α2v2−4δ2µ)t),
µ < 0, λ > 0, δ > 0, v ∈ R,

r(x, y) = h
√
η2cn

(
h
k1

√
η1 + η2(k1x + k2y + C)

∣∣∣∣∣ m)
,

m =
η2

η1 + η2
, 0 ≤ η1 < η2, η2 − η1 = α2 = −

µk2
1 + λk2

2

h2k2
1

, C ∈ R,

h > 0, k1 > 0, k2 > 0, k1 � k2.

(31)
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Properties of the solution (31):

• No longer standing wave; it oscillates in time and the envelope of the carrier waves, i.e.,
the profile of the cnoidal wave, propagate in space.

• The peak amplitude of the cnoidal wave at any point in space varies with respect to time.

Figure 3. Cnoidal wave of the MKP (7) for h = 0.5, λ = 1, µ = −1, δ = 0.1,
v = 1, η1 = 1, k1 = 0.2, k2 = 0.00001, and C = 0.

Figure 3 illustrates the time evolution of a periodic solution for the MKP (7). The oscillations
at different points throughout the cnoidal wave are not in phase, and the phase invariance allows
the oscillatory components of the carrier waves of MKP to undergo modulation. The envelope of
the modulated carrier waves is given by the formula below

A(x, t) = δ
√
η2

∣∣∣∣∣∣cn
(

h
√
η1 + η2

k1
(δ (k1x + k2y − (k1 + k2)vt) + C)|

η2

η1 + η2

)∣∣∣∣∣∣ , (32)

and it propagates with the group velocity

vg = ∇(k1,k2)Ω, Ω = −
1
4
α2v2 + δ2µ, α2 = −

µk2
1 + λk2

2

h2k2
1

,

µ < 0, λ > 0, δ > 0, v ∈ R,

h > 0, k1 > 0, k2 > 0, k1 � k2.

(33)

3. Solitary Solutions for the KP equation (7)

When a dispersive harmonic wave of the MKP model (7) is subject to the cubic nonlinear-
ity |u|2ux, the wave will be subject to a ”force” that will act against the dispersion process. In
other words, the nonlinearity will cancel out the dispersive effect so that the wave will steepen
its wavefront. When the wave reaches a ”perfect” balance between dispersion and nonlinearity,
its oscillatory components will become modulated waves with a localized shaped envelope that
decays at infinity. In other words, they will become wave packets. The envelope of these modu-
lated carrier waves is known as the profile of a solitary wave, or a soliton. In this section, we will
obtain solitary wave solutions for the MKP model (7) through a limiting process for the elliptic
modulus, m, in (31).

Taking the limiting process η1 −→ 0 in (31), the elliptic modulus m will approach 1, and the
solution (31) will have the profile of a solitary wave given by the formula below,

u(x, t) = δr(δ(x − vt), δ(y − vt))e−
i
4 (2α2v(k1 x+k2y+C)−(α2v2−4δ2µ)t),
µ < 0, λ > 0, δ > 0, v ∈ R,

r(x, y) =
√
η2 sech

(
h
k1

√
η2(k1x + k2y + C)

)
,

η2 > 0, η2 = α2 = −
µk2

1 + λk2
2

h2k2
1

, C ∈ R,

h > 0, k1 > 0, k2 > 0, k1 � k2.

(34)
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The solitary wave described by formula (34), i.e., the profile of the complex-valued function
u, A = |u| =

√
uu, satisfies the expected boundary conditions mentioned below,

∇(x,y)A(x, y, t) = 0, (x, y) ∈
{
k1x + k2y = (k1 + k2)vt −

C
δ
| t ∈ R

}
,

A(x, y, t)→ 0 as ||(x, y)|| → ∞.
(35)

The dispersion and the nonlinearity of the solitary wave described by the formula (34) are in
”perfect” balance, and its oscillatory components are modulated carrier waves given by

Re (u(x, y, t)) = δ
√
η2

cos
(
α2v
2 (k1x + k2y + C) +

(
− 1

4α
2v2 + δ2µ

)
t
)

cosh (λ(δ(x − vt) + C))
,

Im (u(x, y, t)) = −δ
√
η2

sin
(
α2v
2 (k1x + k2y + C) +

(
− 1

4α
2v2 + δ2µ

)
t
)

cosh (λ(δ(x − vt) + C))
,

α2 = −
µk2

1 + λk2
2

h2k2
1

, C ∈ R,

µ < 0, λ > 0, δ > 0, v ∈ R,

h > 0, k1 > 0, k2 > 0, k1 � k2.

(36)

The envelope of the modulated carrier waves (36) propagates with the group velocity (33), and
it is given by the graphs of the functions ±A = ±|u| = ±

√
uu. We will call the upper part of the

envelope the profile of a solitary wave.

Figure 4. Solitary wave of the MKP (7) for h = 0.5, λ = 1, µ = −1, δ = 0.1,
v = 1, η2 = 3.99, k1 = 0.2, k2 = 0.00001, and C = 0.

Figure 4 illustrates the time evolution of a solitary wave of the MKP (7), and Figure 5 illustrates
the time evolution of the modulated carrier waves (36) and their envelope for the MKP (7). They
travel from left to right with the group velocity (33).

Figure 5. Modulated carrier waves and solitary wave for the MKP (7) for h =

0.5, λ = 1, µ = −1, δ = 0.1, v = 1, η2 = 3.99, k1 = 0.2, k2 = 0.00001, and
C = 0.
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4. Summary

Periodic and solitary dispersive nonlinear waves are already a familiar topic in nonlinear dis-
persive waves literature, few examples being [1] [2] [18]. There are already numerous studies
performed on the KP equation (5), and the equation has been studied in a modified or general-
ized way. An example of periodic and solitary wave solutions for the generalized KP equation is
[11]. In this article, the KP model (5) describing dispersive nonlinear gravity waves in shallow
water was synergized with the NLS model (4) describing dispersive nonlinear gravity waves in
deep water to create a proposed model (7) to describe the propagation of quasi-two-dimensional
nonlinear and dispersive internal gravity waves in a ’stacked shallow water’ system.

We often think of waves as surface phenomena occurring at the air-water interface. When low-
density water overlies high-density water, internal waves propagate along the interface between
the two fluid layers. These internal waves usually occur along the continental shelf in oceans or
at density boundaries between subsurface layers. They are responsible for creating ”dead water”
[15] first reported by the Norwegian polymath Fridtjof Nansen in 1893. The solutions obtained in
this paper may explain the formation of such internal waves and their time evolution. The model
proposed here refers to the hydrostatic case where the layers form a ’stacked shallow water’
system, which can fit the scenario of a boat experiencing strong resistance, due to the energy-
producing internal waves, to forward motion in apparently calm conditions occurring when the
ship is sailing in a freshwater layer whose depth is comparable to the boat’s draft. This strong
resistance can also be experienced by submersibles [4] when they encounter dead water between
subsurface layers.

The discussion regarding the existence of internal solitary waves started in the late twentieth
century, and an excellent example of such debate is [10]. For instance, when underwater inter-
facial tides steepen, they may form internal solitary waves whose intense energy may affect the
movement of a submersible. As well, when there is a proximity of the internal interface to the
surface, the solitary waves may leave an imprint at the surface; an example of such phenomenon
is presented in [13] at the transition between North Sea water (salt water) and the Rhine River
water (freshwater) that flows out on top of the salty water. Internal solitary waves form at the
internal interface between the two-water media, distinct from the short wind waves.

While internal gravity waves propagating in continuously stratified deep water may go unno-
ticed, the suggested model presented here is a conceptual, theoretical study for such phenomena,
leaving the discovery of the space-time patterns created by such waves in nature for future work.
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