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GENERALIZED BICONVEX FUNCTIONS AND DIRECTIONAL

BIVARIATIONAL INEQUALITIES

MUHAMMAD ASLAM NOOR AND KHALIDA INAYAT NOOR

Abstract. Some new classes of generalized biconvex sets and biconvex func-
tions with respect to an arbitrary function k and the bifunction β(. − .) are
introduced and studied. These new biconvex functions are nonconvex functions
and include the convex functions and k-convex as special cases. We study some
basic properties of generalized biconvex functions. It is shown that the min-
imum of generalized biconvex functions on the generalized biconvex sets can
be characterized by a class of variational inequalities, which is called the di-
rectional bivariational inequalities. Using the auxiliary technique, several new
inertial type methods for solving the bivariational inequalities are proposed and
analyzed. Convergence analysis of the proposed methods is considered under
suitable pseudomonotonicity, which are weaker conditions than monotonicity.
Some open problems are also suggested for future research.

1. Introduction

In recent years, several extensions and generalizations of the convex sets and
convex functions have been considered and investigated. Noor and Noor [22] intro-
duced the concepts of the biconvex set and biconvex functions, which are playing
part in various branches of pure and applied sciences. It have been shows that the
biconvex set and biconvex functions are classical convex set and convex functions
as special cases. Noor [17] and Noor et al [17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32]
proved that the minimum of the differentiable biconvex functions on the biconnvex
set can be characterized by a class of variational inequalities, which is known as the
bivariational inequality. It is worth mentioning that bivariational inequalities in-
clude variational inequalities, which were introduced and studies by Stamapcchia
[38]. Variational inequalities can be viewed as a novel and significant extension of
the variational principles, the origin of which can be traced back to Euler, Hamil-
ton, Newton, Lagnarange and Bernoulli brothers. These results have inspired
a great deal of subsequent work, which has expanded the role and applications
of the convexity in nonlinear optimization and engineering sciences. For the re-
cent developments in bivariational inequalities and biequilibrium problems, see
[17, 21, 22, 24, 25, 26, 27, 28, 29, 32, 35] and the references therein.
In a many problems, a set may not be a convex set. To overcome this drawback,
the underlying set can be made a k-convex set with respect to an arbitrary func-
tion k. Cristescu et al [1], Micherda et al [7] and Hazy [4] defined the so-called
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(h, k) convex function involving two arbitrary functions, which is a natural gen-
eralization of the usual convexity, the s-convexity in the first and second sense.
Noor [16, 18] and Noor et al [19] introduced the k-convex functions and studied
their characterizations. It is worth mentioning that for k(t) = teiϕ, the ϕ-convex
functions were introduced and studied by Noor [16].

We would like to point out that biconvex set, biconvex functions, k-convex set
and k-convex functions are distinctly different generalizations of convex sets and
convex functions in various directions. These type of functions have played a lead-
ing role in the developments of various branches of pure and applied sciences. It
is natural to unify these classes and investigate their characterizations. Motivated
and inspired by the recent activities in these fields, we introduce some new classes
of biconvex sets and biconvex functions which are called modified generalized bi-
convex set and generalized biconvex functions. These new class of generalized
biconvex set and generalized biconvex functions include the ϕ-biconvex sets, ϕ-
biconvex and Toader type k-convex sets and k-convex functions. The new class
of generalized biconvex functions can be viewed as modified refinement of the
(h, k) convex functions of Hazy [4]. Several new concepts are introduced and
their properties have been studied. We prove that the minimum of the differential
generalized biconvex functions on the generalized biconvex set can be character-
ized by a class of variational inequalities, which are called directional bivariational
inequalities. This results inspired us to consider the directional bivariational in-
equalities. It is well known that the projection methods, resolvent methods and
their variant forms can not be used to solve the directional bivariational inequali-
ties due to their nature. To overcome this drawback, one usually use the auxiliary
principle technique, which is mainly due to Lions et al [6] and Glowinski et al
[3], which has been used [9, 11, 12, 14, 15, 20, 26, 27, 28, 29, 30, 32, 33, 34, 35]
to suggest and analyze several new iterative methods for solving a wide class of
unrelated problems arising in pure and applied sciences. We apply the auxiliary
principle technique to suggest some inertial proximal iterative methods for solving
directional bivariational inequalities. Convergence analysis of the new proposed
methods is considered under pseudomonontoncity and partially strongly mono-
tonicity. Our method of convergence proof is very simple as compared with other
methods. We have tried to convey the basic characterizations of these new classes
of generalized biconvex functions and their applications in optimization theory
along with some open problems.

2. Preliminaries

Let K be a nonempty closed set in a normed space H. We denote by 〈·, ·〉 and
‖ · ‖ the inner product and norm, respectively. Let β(. − .) : Kkβ × Kkβ −→
R, be a bifunction. We now recall the following basic concepts and results of
the generalized biconvex sets and biconvex functions, which are introduced and
studied in [17, 21, 24, 24, 25].
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Definition 1. The set Kkβ is said to be generalized biconvex set with respect to
arbitrary function k and the bifunction β(.− .), if

u+ k(t)β(v − u) ∈ Kkβ, ∀u, v ∈ Kkβ, t ∈ [0, 1].

Clearly, for k(t) = t, the set Kkβ is an biconvex set Kβ.

If k(t) = ts, s ∈ [0, 1], then the generalized biconvex set Kkβ reduces to:

u+ tsβ(v − u) ∈ Kkβ, ∀u, v ∈ Kkβ, t ∈ [0, 1],

which is known as Toader type kβ-biconvex set and appears to be a new one.
If β(v − u) = v − u, then the sets Kkβ reduces to the set k-convex sets Kk which
have been introduced and studied in [1, 4, 7].

From now onwards, the set Kkβ is a generalized biconvex set, unless otherwise
specified.
We now introduce the concept of generalized biconvex function with respect to
an arbitrary function k and bifunction β(.− .).

Definition 2. The function f on Kkβ is called generalized biconvex function, if
there exists an arbitrary function k and bifunction β(.− .), such that

f(u+ k(t)β(v − u)) ≤ (1− k(t))f(u) + k(t)f(v), ∀u, v ∈ Kkβ, t ∈ [0, 1].

Obviously every biconvex function with k(t) = t is a generalized biconvex func-
tion, but the converse may not be true.
Also for t = 1, the generalized biconvex function reduces to:

f(u+ k(1)β(v − u)) ≤ f(v), ∀u, v ∈ Kkβ. (1)

If k(t) = ts, s ∈ [0, 1], then we have a new class of biconvex functions, which is
called Toader’s type biconvex functions.

Definition 3. The function f on Kkβ is said to be generalized quasi biconvex
function , if there exist a function k and the bifunction β(.− .), such that

f(u+ k(t)β(v − u)) ≤ max{f(u), f(v)}, ∀u, v ∈ Kkβ, t ∈ [0, 1].

Definition 4. The function f on Kkβ is said to be logarithmic generalized bicon-
vex function, if there exist a function k and the bifunction β(.− .), such that

f(u+ k(t)β(v − u)) ≤ (f(u))1−k(t)(f(v))k(t), ∀u, v ∈ Kkβ, t ∈ [0, 1],

where f(·) > 0.

From the above definitions, we have

f(u+ k(t)β(v − u)) ≤ (f(u))1−k(t)(f(v))k(t)

≤ (1− k(t))f(u) + k(t)f(v)

≤ max{f(u), f(v)}, ∀u, v ∈ Kkβ, t ∈ [0, 1],

Logarithmic generalized biconvex function =⇒ generalized biconvex functions
and generalized biconvex functions =⇒ quasi generalized biconvex functions, but
the converse is not true.
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We also need the following assumption regarding the bifunction β(· − ·) and
the function k(t).

Condition M. Let β(·, ·) : Kkβ ×Kkβ → H satisfy assumptions

β(−k(t)β(v − u)) = −k(t)β(v − u)

β(v − u− k(t)β(v − u)) = (1− k(t))β(v − u), ∀u, v ∈ Kkβ, t ∈ [0, 1].

3. Properties of generalized biconvex functions

In this section, we discuss the properties of generalized biconvex functions and
their variant forms.

Lemma 1. Let f be a generalized biconvex function. Then any local minimum of
f on Kkβ is a global minimum.

Proof. Let the generalized biconvex function f have a local minimum at u ∈ Kkβ.
Assume the contrary, that is, f(v) < f(u) for some v ∈ Kkβ. Since f is a kβ-
biconvex function, so

f(u+ k(t)β(v − u)) ≤ f(u) + k(t)(f(v)− f(u)),

which implies that

f(u+ k(t)β(v − u))− f(u) < 0,

for arbitrary small k(t) > 0, contradicting the local minimum. �

Essentially using the technique and ideas of the classical convexity [2, 8, 36],
one can easily prove the following results.

Theorem 1. If f is a generalized biconvex function on the generalized biconvex
set Kkβ, then the level set Lα = {u ∈ Kkβ : f(u) ≤ α, α ∈ R} is a generalized
biconvex set with respect to the function k and bifunction η(.− .).

Theorem 2. The function f is a generalized biconvex function, if and only if,
epi(f) = {(u, α) : u ∈ Kkβ, α ∈ R, f(u) ≤ α} is a generalized biconvex set with
respect to the function k and bifunction β(.− .).

Theorem 3. The function f is a quasi generalized biconvex function, if and only
if, the level set Lα = {u ∈ Kkβ : f(u) ≤ α, α ∈ R} is a generalized biconvex set
with respect to the function k and the bifunction β(.− .).

Definition 5. The function f is said to be a pseudo generalized biconvex function
with respect to the function k and the bifunction β(., .), if there exists a strictly
positive bifunction W (· − ·) such that

f(v) < f(u)⇒
f(u+ k(t)β(v, u)) ≤ f(u) + k(t)(k(t)− 1)W (u− v), ∀u, v ∈ Kkβ, t ∈ (0, 1).

Theorem 4. If the function f is a generalized biconvex function, then f is pseudo
generalized biconvex function.
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Proof. Without loss of generality, we assume that f(v) < f(u), ∀u, v ∈ Kkβ. For
every t ∈ [0, 1], we have

f(u+ k(t)β(v − u)) ≤ (1− k(t))f(u) + k(t)f(v)

< f(u) + k(t)(k(t)− 1){f(u)− f(v)}
= f(u) + k(t)(k(t)− 1)W (u− v),

where W (u, v) = f(u) − f(v) > 0. Thus, it follows the function f is a pseudo
generalized biconvex function, which is the required result. �

Theorem 5. Let f be a generalized biconvex function. If g : L → R is a nonde-
creasing function, then g ◦ f is a generalized biconvex function.

Proof. Since f is a generalized biconvex function and g is decreasing, we have,
∀u, v ∈ Kkβ, t ∈ [0, 1]

g ◦ f(u+ k(t)β(v − u)) ≤ g[(1− k(t))f(u) + k(t)f(v)]

≤ (1− k(t))g ◦ f(u) + k(t)g ◦ f(v),

from which it follows that g ◦ f is a generalized biconvex function. �

We now introduce the concept of k-directional derivative.

Definition 6. We define the k-directional derivative of f at a point u ∈ Kkβ in
the direction v ∈ Kkβ by

Df(u, β(v − u)) : = f ′kβ(u;β(v − u))

= lim
k(t)→0+

{f(u+ k(t)β(v − u))− f(u)

k(t)
}.

Note that for k(t) = t and β(v − u) = v, the k-directional derivative of f at
u ∈ K in the direction v ∈ K coincides with the usual directional derivative of f
at u in a direction v given by

Df(u, v) := f ′(u; v) = lim
t→0+

f(u+ tv)− f(u)

t
.

It is well known that the function v → f ′kβ(u;β(v − u)) is subadditive, positively
homogeneous.

Definition 7. The differentiable function f on Kkβ is said to be k-biconvex, if

f(v)− f(u) ≥ f ′kβ(u;β(v − u)), ∀u, v ∈ Kkβ,

where f ′kη(u;β(v − u)) is the k-directional derivative of f at u ∈ Kkβ.

Theorem 6. Let f be a k-differential generalized biconvex function on the
generalized biconvex set Kkβ. Then the function v → f ′kβ(u;β(v−u)) is positively
homogeneous and generalized biconvex function.

Proof. It is follow from the definition of the k-directional derivative that f ′kβ(u;λβ(v−
u)) = λf ′kβ(u;β(v − u)), whenever v ∈ Kkβ and λ ≥ 0. Thus the function

v → f ′kβ(u;β(v − u)) is positively homogeneous.
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To prove the generalized biconvexity of the function v → f ′kβ(u;β(v − u)),

we consider ∀u, v, z ∈ Kkβ, k(t) ≥ 0, λ ∈ (0, 1),

1

t
[f(u+ k(t)(λv + (1− λ)β(v − z)))− f(u)]

=
1

k(t)
[f(λ(u+ k(t)β(v − u)) + (1− λ)(u+ k(t)β(z − u)))− f(u)]

≤ 1

k(t)
[λf(u+ k(t)β(v, u)) + (1− λ)f(u+ k(t)β(z − u))− f(u)]

= λ
f(u+ k(t)β(v − u))− f(u)

k(t)
+ (1− λ)

f(u+ k(t)β(z − u))− f(u)

k(t)
. (2)

Taking the limit as k(t)→ 0+ in (2), we have

f ′kβ(u;λβ(v − u) + (1− λ)z) ≤ λf ′kβ(u;β(v − u)) + (1− λ)f ′kβ(u;β(z − u)),

which shows that the function v → f ′kβ(u;β(v−u)) is generalized biconvex, which
is the required result. �

For k(t) = t, the generalized biconvex function f becomes the biconvex function
and the generalized biconvex set Kk is an biconvex set.

Theorem 7. Let the function f : Kkβ → R be a k-differentiable generalized
biconvex function such that k(0) = 0, and (1) holds. If Condition M holds, then
the following statements are equivalent.

(1) f is a generalized biconvex function.
(2) f(v)− f(u) ≥ f ′(u;β(v − u)), ∀u, v ∈ Kkβ.
(3) kβ-directional derivative f ′kβ(· − ·) of f is kβ-monotone, that is,

f ′kη(u;β(v − u)) + f ′kβ(v;β(u− v)) ≤ 0, ∀u, v ∈ Kkβ.

Proof. Let f be a generalized biconvex function. Then

f(u+ k(t)β(v, u)) ≤ f(u) + k(t){f(v)− f(u)} ∀u, v ∈ Kkβ, t ∈ [0, 1],

which can be written as

(f(v)− f(u)) ≥ {f(u+ k(t)β((v − u))− f(u)

k(t)
}. (3)

Taking the limit as k(t)→ 0+ in (3), we have

f(v)− f(u) ≥ f ′kβ(u;β(v − u)), ∀u, v ∈ Kkβ, (4)

showing that the generalized biconvex function f is a generalized biconvex func-
tion.

Changing the role of u and v in (4), we have

f(u)− f(v) ≥ f ′kβ(v;β(u− v)), ∀u, v ∈ Kkβ, (5)

Adding (4) and (5), we have

f ′kβ(u;β(v − u)) + f ′kβ(v;β(u− v)) ≤ 0, ∀u, v ∈ Kkβ, (6)



DIRECTIONAL BIVARIATIONAL INEQUALITIES 85

which shows that the k-directional derivative f ′kβ(· − ·) is kβ-monotone.

Conversely, let (6) hold. Since Kkβ is a kβ-biconvex set, so

∀u, v ∈ Kkβ, t ∈ [0, 1], vt = u+ k(t)β(v − u) ∈ Kkβ.

Replacing v by vt in (6) and simplifying, we have

f ′kβ(vt;β(v − u)) ≥ f ′kβ(u;β(v − u)), ∀u, v ∈ Kkβ. (7)

Consider the auxiliary function

ζ(t) = f(u+ k(t)β(v − u)))− f(u)

+tf ′kβ(u;β(v − u)), ∀u, v ∈ Kkβ. (8)

Using k(0) = 0, we have

ζ(0) = 0 ,

ζ(1) = f(u+ k(1)β(v − u))− f(u) + f ′kβ(u : β(v − u)). (9)

Since f is differentiable, so the function ζ(t) is also differentiable. Hence, using
(7), we have

ζ ′(t) = f ′(u+ k(t)β(v − u)), β(v − u))

≥ f ′kβ(u;β(v − u)). (10)

Integrating the inequality (10) on the interval [0, 1] and using (9), we have

f(u+ k(1)β(v − u))− f(u) + f ′kβ(u : β(v − u)) = ζ(1)− ζ(0)

≥
∫ 1

0
f ′kβ(u;β(v − u))dt

= f ′kβ(u;β(v − u)),

from which, using (1), we obtain

f ′kβ(u;β(v − u)) ≤ f(u+ k(1)β(v − u))− f(u) ≤ f(v)− f(u).

which is the required(4).
Now from (4), we have

f(v)− f(u+ k(t)β(v − u)) ≥ f ′kβ(u+ k(t)β(v − u));β(v − (u+ k(t))β(v − u)))

= (1− k(t))f ′kβ(u+ k(t)β(v − u));β(v − u))). (11)

f(u)− f(u+ k(t)β(v − u)) ≥ f ′kβ(u+ k(t)β(v − u));β(u− (u+ k(t))β(v − u)))

= −k(t)f ′kβ(u+ k(t)β(v − u));β(v − u))). (12)

Multiplying (11) by k(t), (12) by (1− k(t)) and adding the resultant, we have

f(u+ k(t)η(v, u)) ≤ f(u) + k(t){f(v)− f(u)} ∀u, v ∈ Kkη, ∈ [0, 1],

which shows that the function f is a generalized biconvex function. �
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Theorem 8. Let the differential f ′kβ(.− .) of the generalized biconvex function

f be Lipschitz continuous with constant ξ ≥ 0. If k(0) = 0, then

f(u+ k(1)β(v − u))− f(u)

≤ f ′kβ(u;β(v − u)) + ξ‖β(v − u)‖2
∫ ′
0
k(t)dt, ∀u, v ∈ Kkβ. (13)

Proof. Since Kkβ is a generalized biconvex set, ∀u, v ∈ Kkβ, t ∈ [0, 1], we con-
sider the function

ϕ(t) = f(u+ k(t)β(v − u))− f(u)− tf ′kβ(u;β(v − u)).

Using k(0) = 0, we obtain

ϕ(0) = 0, ϕ(1) = f(u+ k(1)β(v − u))− f(u)− f ′kβ(u;β(v − u)).

Also

ϕ′(t) = f ′k(u+ k(t)β(v − u);β(v − u))− f ′k(u;β(v − u)). (14)

Integrating (14) on the interval [0, 1] and using the Lipschitz continuity of f ′k(.− .)
with constant β ≥ 0, we have

ϕ(1) = f(u+ k(1)β(v − u))− f(u)− f ′k(u;β(v − u))

≤
∫ 1

0
|ϕ′(t)|dt

=

∫ ′
0
|f ′k(u+ k(t)β(v − u));β(v − u))− f ′k(u;β(v − u))|dt

≤ ξ

∫ ′
0
k(t)‖β(v − u)‖2dt = ξ‖β(v − u)‖2

∫ ′
0
k(t)dt,

�

4. Directional bivariational inequalities

In this section, we introduce and consider a new class of bivariational inequal-
ities, which is called directional bivariational inequality.
For given bifunctions D(., .), β(.− .) : Kkβ ×Kkβ −→ R, we consider the problem
of finding u ∈ Kkβ such that

D(u, β(v − u)) ≥ 0, ∀v ∈ Kkβ, (15)

which is called the directional bivariational inequality.
We now show that the inequality (15) naturally arises as a minimum of the
k-differentiable generalized biconvex functions on the generalized biconvex sets.
This is the main motivation of our next result.

Theorem 9. Let f be a k-differentiable generalized biconvex function on the
generalized biconvex set Kkβ. Then the u ∈ Kkβ is the minimum of the k-differentiable
generalized biconvex function f on the generalized biconvex set Kkβ, if and
only if, u ∈ Kkβ satisfies the inequality

f ′kβ(u;β(v − u)) ≥ 0, ∀u, v ∈ Kkβ. (16)
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Proof. Let u ∈ Kkβ be a minimum of the generalized biconvex function f . Then

f(u) ≤ f(v), ∀v ∈ Kkβ. (17)

Since Kkβ is generalized biconvex set, so, ∀u, v,∈ Kkβ, t ∈ [0, 1],
vt = u+ k(t)β(v − u) ∈ Kkβ. Taking v = vt in (17), we have

f(u) ≤ f(vt) = f(u+ k(t)β(v − u)),

which implies that

f(u+ k(t)β(v − u))− f(u)

k(t)
≥ 0.

Taking the limit as t→ 0+ in the above inequality, we have

f ′k(u;β(v − u)) ≥ 0 ∀v ∈ Kkβ,

the required (16).
Conversely, let u ∈ Kkβ be a solution of (16). Since f is a generalized biconvex
function, it follows that

f(v)− f(u) ≥ f ′kβ(u;β(v − u)) ≥ 0,

which implies that

f(u) ≤ f(v), ∀v ∈ Kkβ,

showing that u ∈ Kkβ is the minimum of the generalized biconvex function f , the
required result. �

The inequality of the type (16) is called the directional bivariational inequality,
which is a special case of directional bivariational inequality (15).

For k(t) = t, the generalized biconvex functions reduces to biconvex function,
then the problem (16) coincides with classical directional variational inequalities.
It is worth mentioning that even the directional variational inequalities have not
been studied in the literature.

We now discuss some important special cases of directional bivariational in-
equalities.

Special Cases

(I). We note that, if Kkβ ≡ Kβ, the biconvex set in H, then problem (15) is
equivalent to finding u ∈ Kβ such that

D(u, β(v − u)) ≥ 0, ∀v ∈ Kβ. (18)

Inequality of type (18) is called the directional bivariational inequality, which ap-
pears to be a new one.

(II). If D(u, β(v − u)) = 〈Tu, β(v − u)〉, Kkβ = Kβ, where T is a nonlinear
operator, then problem (15) is equivalent to finding u ∈ Kβ such that

〈Tu, β(v − u)〉 ≥ 0, ∀v ∈ Kβ, (19)
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which is called the bivariational inequality.

(III). If D(u, β(v, u)) = 〈Tu, v − u)〉, where T is a nonlinear operator
and Kkβ = K, the convex set, then problem (19) is equivalent to finding u ∈ K
such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K, (20)

which is called t variational inequality, introduced and studied by Stampachia
[38]. It has been shown a wide class of obstacle boundary value and initial value
problems which arise in various branches of pure and applied sciences can be stud-
ied in the general framework of variational inequalities (37). For the applications,
numerical methods, sensitivity analysis, dynamical system, merit functions and
other aspects of variational inequalities, see [3, 5, 6, 10, 13, 14, 15, 17, 18, 19, 21,
22, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 38, 39, 40] and the references therein.

It is worth mentioning that for suitable and appropriate choice of the operators,
generalized biconnvex sets and spaces, one can obtain a wide class of variational
inequalities and optimization programming. This shows that the directional bi-
variational inequalities are quite flexible and unified ones.

We now recall the following concepts and results.

Definition 8. A bifunction D(., .) : H ×H → H is said to be:
(i) kβ-monotone, if and only if,

D(u, β(v − u)) +D(v, β(u− v)) ≤ 0, ∀u, v ∈ H.

(ii) kβ-pseudomonotone, if and only if,

D(u, β(v − u))) ≥ 0 implies that −D(v, β(u− v)) ≥ 0, ∀u, v ∈ H.

(iii) partially relaxed strongly kβ-monotone, if and only if, there exists a con-
stant α > 0 such that

D(u, β(v − u))) +D(v, β(z − v)) ≤ α‖β(z − u)‖2, ∀u, v, z ∈ H.

Note that for z = u, partially relaxed strongly kβ-monotonicity reduces to β-
monotonicity. It is known that β-monotonicity implies kbeta-pseudomonotonicity;
but the converse is not true.

We also recall the well-known result.

2〈u, v〉 = ‖u+ v‖2 − ‖u‖2 − ‖v‖2, ∀u, v ∈ H. (21)

Theorem 10. Let the bifucntion D(., .) be kβ-pseudo-monotone, hemicontinuous
and limt−→0 k(t) = 0. If Condition M holds, then the directional bivariational
inequality is equivalent to finding u ∈ Kkβ such that

D(v, β(u− v)) ≥ 0, ∀v ∈ Kkβ. (22)
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Proof. Let u ∈ Kkβ be a solution of inequality (15). Then, using
the kβ-pseudo monotonicity of the bifunction D(., .), we have

−D(v, β(u− v)) ≥ 0, ∀v ∈ Kkβ. (23)

Since Kkβ is a generalized biconvex set, so, ∀u, v ∈ Kkβ, t ∈ [0, 1],
vt = u+ k(t)β(v − u) ∈ Kkβ.
Replacing v by vt in (23) and using Condition M, we obtain

−D(vt, β(u− vt)) = −D(u+ k(t)β(v − u);β(u− (u+ k(t))β(v − u)))

= k(t)D(u+ k(t)β(v − u);β(v − u)) ≥ 0,

which implies that

D(u+ k(t)β(v − u), β(v − u)) ≥ 0, ∀v ∈ Kkβ

Using the hemicontinuity of the bifunction D(., .) and taking the limit, we
obtain the inequality (15), since limt−→0 k(t) = 0. �

Remark 1. We would like to mention that the inequality of the type (23) is known
as the Minty directional bivariational inequality or dual directional bivariational
inequality. Using this equivalent result, one can show that the solution set of the
directional bivariational inequalities is a closed generalized biconvex set.

Due to the inherent nonlinearity, the projection method and its variant form
can not be used to suggest the iterative methods for solving these directional bi-
variational inequalities. To overcome these drawback, we now use the auxiliary
principle technique of Glowinski et al.[3] as developed in [15, 33, 34, 40] to sug-
gest and analyze some iterative methods for solving the directional bivariational
inequality (15). This technique does not involve the concept of the projection and
the resolvent, which is the main advantage of this technique.

For a given u ∈ Kkβ satisfying (15), consider the problem of finding w ∈∈ Kkβ

such that

ρD((w + ζ(u− w), β(v − w)) + 〈w − u, v − w〉 ≥ 0,∀v ∈ Kkβ, (24)

where ρ > 0 and ζ ∈ [0.1] are constants. Inequality of type (24) is called the
auxiliary directionally bivariational inequality. Note that if w = u, then w is
a solution of (15). This simple observation enables us to suggest the following
iterative method for solving the problem(15).

Algorithm 1. For a given u0 ∈ Kkβ, compute the approximate solution un+1

by the iterative scheme

ρD(un+1 + ζ(un − un+1)), β(u− un+1)) + 〈un+1 − un, v − un+1〉
≥ 0, ∀v ∈ Kkβ. (25)

Algorithm 2 is called the hybrid proximal point algorithm for solving the
problem(15).
If ζ = 0, then Algorithm 1 reduces to:
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Algorithm 2. For a given u0 ∈ Kβ, compute the approximate solution un+1

by the iterative scheme

ρD(un+1, β(v − un+1)) + 〈un+1 − un, v − un+1〉 ≥ 0, ∀v ∈ Kkβ,

which is known as the proximal point algorithm for solving directional bivari-
ational inequalities (15).
We now consider the convergence criteria of Algorithm 2 and this is the main
motivation of our next result.

Theorem 11. Let the operator D(., .) : Kkβ×Kkβ −→ H be kβ-pseudomonotone.
If un+1 is the approximate solution obtained from Algorithm 2 and u ∈ Kkβ is a
solution of (15), then

‖u− un+1‖2 ≤ ‖u− un‖2 − ‖un − un+1‖2. (26)

Proof. Let u ∈ Kkβ be a solution of (15). Then

−D(g(v, β(u− v)) ≥ 0, ∀v ∈ Kkβ, (27)

since D(., .) is kβ-pseudomonotone.
Taking v = un+1 in (27), we have

−D(g(un+1), β(u, un+1)) ≥ 0. (28)

Setting v = u in (16), and using (37), we have

〈un+1 − un, u− un+1〉 ≥ −ρD(un+1, η(u, un+1)) ≥ 0. (29)

Setting v = u− un+1 and u = un+1 − un in (21), we obtain

2〈un+1 − un, u− un+1〉 = ‖u− un‖2 − ‖un − un+1‖2

−‖u− un+1‖2. (30)

From (29) and (30), we obtain (26), which is the required result. �

Theorem 12. Let H be a finite dimension subspace and let un+1 be the approx-
imate solution obtained from Algorithm 2. If u ∈ Kkβ is a solution of (15), then
limn−→∞ un = u.

Proof. Let u ∈ Kkβ be a solution of(15). Then it follows from (26) that the
sequence {un} is bounded and

∞∑
n=0

‖un − un+1‖2 ≤ ‖u0 − u‖2,

which implies that

lim
n−→∞

‖un − un+1‖ = 0. (31)

Let û be a cluster point of the sequence {un} and let the subsequence {uj} of the
sequence {un} converge to û ∈ Kkβ. replacing un by unj in (31) and taking the
limit nj −→∞ and using (37), we have

D(û, β(v − û)) ≥ 0, ∀v ∈ Kkβ,
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which implies that û solves the directional bivariational inequality (15) and

‖un − un+1‖2 ≤ ‖û− un‖2.
Thus it follows from the above inequality that the sequence {un} has exactly one
cluster point û and limn−→∞ un = û. the required result. �

It is well-known that to implement the proximal point methods, one has to
calculate the approximate solution implicitly, which is in itself a difficult problem.
To overcome this drawback, we suggest another iterative method, the convergence
of which requires only partially relaxed strongly monotonicity, which is a weaker
condition that monotonicity.
If ζ = 1, then Algorithm 1 reduces to:

Algorithm 3. For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme

ρD(un, β(v − un+1)) + 〈un+1 − un, v − un+1〉 ≥ 0,∀v ∈ Kkβ. (32)

We now study the convergence of Algorithm 3 and this is the main motivation
of our next result.

Theorem 13. Let the operator D(., .) be partially relaxed strongly kβ-monotone
with constant α > 0. If un+1 is the approximate solution obtained from Algorithm
3 and u ∈ Kkβ is a solution of (15), then

‖u− un+1‖2 ≤ ‖u− un‖2 − {1− 2ρα}‖un − un+1‖2. (33)

Proof. Let u ∈ Kkβ be a solution of (15). Then

D(u, β(v − u)) ≥ 0, ∀v ∈ Kkβ. (34)

Taking v = un+1 in (34), we have

D(u, β(un+1 − u)) ≥ 0. (35)

Letting v = u in (32), we obtain

ρD(un, β(u− un+1)) + 〈un+1 − un, u− un+1〉 ≥ 0,

which implies that

〈un+1 − un, u− un+1〉 ≥ −ρD(un, β(u− un+1))

≥ −ρ{D(un, β(u, un+1)) +D(u, β(un+1 − u)}
≥ −αρ‖un − un+1‖2. (36)

since D(., .) is partially relaxed strongly monotone with constant α > 0.

Combining (35) and (36), we obtain the required result (33). �

If ζ = 1
2 , then Algorithm 1 reduces to:

Algorithm 4. For a given u0 ∈ Kkβ, compute the approximate solution un+1

by the iterative scheme

ρD(
un+1 + un

2
)), β(u− un+1)) + 〈un+1 − un, v − un+1〉 ≥ 0,∀v ∈ Kkβ.
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which is called midpoint proximal method. Using essentially the technique of
Theorem 12, one can study the convergence analysis of Algorithm 4.

Recently inertial methods are being developed for solving the variational inequal-
ities and related optimization problems. Polyak [37] introduced these inertial
methods to speed up the fast convergence criteria of the iterative methods. For
more details and numerical implementation of these methods, see [15, 31, 33, 34]
and the references therein. Using again the auxiliary principle technique, we can
suggest some inertial iterative methods.

For a given u ∈ Kkβ satisfying (15), consider the problem of finding w ∈ Kkβ

such that

ρD((w + ζ(u− w)), β(v − w)) + 〈w − u+ α(u− u), v − w〉
≥ 0, ∀v ∈ Kkβ, (37)

where ρ > 0, α and ζ are constants. Note that, if w = u, then w is a solution of
(15). Consequently, one can suggest and analyze the following iterative method
for solving the directional bivariational inequality (15).

Algorithm 5. For a given u0, u1 ∈ Kkη, compute the approximate solution
un+1 by the iterative scheme

ρD((un+1 + ζ(un − un+1)), β(v − un+1))

+〈un+1 − un + α(un − un−1), v − un+1〉 ≥ 0, ∀v ∈ Kkβ.

Algorithm 5 is called the inertial proximal point algorithm for solving direc-
tional bivariational inequality (15).

If ζ = 1, then Algorithm 5 reduces to:

Algorithm 6. For a given u0, u1 ∈ Kkβ, compute the approximate solution
un+1 by the iterative scheme

ρD(un, β(v,−un+1)) + 〈un+1 − un + α(un − un−1), v − un+1〉 ≥ 0, ∀v ∈ Kkβ.

Algorithm 7 is called the inertial explicit algorithm for solving directional bi-
variational inequality (15).
If ζ = 0, then Algorithm 5 reduces to:

Algorithm 7. For a given u0, u1 ∈ Kkβ, compute the approximate solution
un+1 by the iterative scheme

ρD(un+1, β(v,−un+1)) + 〈un+1 − un + α(un − un−1), v − un+1〉
≥ 0, ∀v ∈ Kkβ.

Algorithm 7 is called the inertial implicit algorithm for solving directional bi-
variational inequality (15). Convergence analysis of Algorithm 5 and Algorithm
7 can be studied using the above ideas and techniques of Noor [15] and Noor at
al. [31, 33].
We again the apply the auxiliary principle technique to suggest another inertial
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type algorithm for solving the problem(15).
For a given u ∈ Kkβ satisfying (15), consider the problem of finding w ∈ Kkβ such
that

ρD((u− ζ(u− u)), β(v − w))

+〈w − (u− α(u− u)), v − w〉 ≥ 0, ∀v ∈ Kkβ, (38)

where α is a constant. Note that, if w = u, then w is a solution of (15). Con-
sequently, one can suggest and analyze the following iterative method for solving
the directional bivariational inequality (15).

Algorithm 8. For a given u0, u1 ∈ Kkβ, compute the approximate solution
un+1 by the iterative scheme

ρD((un − α(un − un−1)), β(v − un+1))

+ 〈un+1 − (un − α(un − un−1)), v − un+1〉 ≥ 0, ∀v ∈ Kkβ.

which is known as the inertial iterative method.

Algorithm 9) is equivalent to the following two-step method.

Algorithm 9. For a given u0, u1 ∈ Kkβ, compute the approximate solution
un+1 by the iterative scheme

yn = (un − α(un − un−1)
ρD(yn, β(v − un+1)) + 〈un+1 − yn, v − un+1〉 ≥ 0, ∀v ∈ Kkβ.

which is known as the two-step (predictor-corrector) inertial iterative method.

Remark 2. For k(t) = k, the directional bivariational inequalities reduce to bi-
variational inequalities. Interested readers may explore the applications and other
aspects such as gap functions, error bounds, well-posedness, sensitivity of direc-
tional bivariational inequalities in various branches of pure and applied sciences.

Conclusion

In this paper, we have introduced and studied some new classes biconvex func-
tions, which is called the generalized biconvex functions. These concepts are more
general and unifying ones than the previous ones. Several new properties of these
generalized biconvex functions are considered and their relations with previously
known results are highlighted. It is shown that the optimality conditions of the
differentiable generalized biconvex functions can be characterised by a class of
directional bivariational inequalities. This result is used to introduce some new
classes of directional bivariational inequalities (15). Some new inertial type prox-
imal methods are proposed using the auxiliary principle technique for solving the
bivariational inequalities. Convergence analysis is considered under some suitable
pseudomonotone conditions. It is itself an interesting problem to develop some
efficient numerical methods for solving directional bivariational inequalities along
with their applications in pure and applied sciences. Despite the current activity,
much clearly remains to be done in these fields. It is expected that the ideas and
techniques of this paper may be starting point for future research activities.
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