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GENERALIZED FRESNEL INTEGRALS AND THE DIRAC

REPRESENTATIVE SEQUENCES GENERATED BY THEM

WILHELM W. KECS

Abstract. The Fresnel cosine and sine integrals are generalized in the Euclidean

space Rn, n ≥ 2. Two families of functions are associated with them and it is shown

that they converge in the sense of distributions towards Dirac’s distribution. The
properties of these Dirac representative sequences are established, and the obtained

results are exemplified in cases n = 1, 2, 3.

1. Introduction

The theory of distributions (generalized functions) is used not only in many math-
ematical disciplines, such as functional analysis and applied mathematics, but also in
physics and engineering sciences. It represents a general and unitary background regard-
ing the mathematical representation of some physical quantities and the analysis of some
discontinuous phenomena.

The Dirac representative sequences have many applications not only in the solving
of boundary value problems from engineering sciences, but also in the representation of
physical quantities with punctual support, such as force and moment concentrated in a
point [1], [2].

We shall denote by D(Rn) Schwartz’ space of indefinitely differentiable functions with
compact support, and by D′(Rn) the set of linear continuous functionals defined on D(Rn).

With the help of these representative Dirac sequences we can express the solutions of
some boundary problems, such as the ones regarding the transverse vibrations of elastic
bars [3].

Thus, in this case, we consider the families of functions

ft(x) =
1

√
2πct

cos
x2

4ct
, gt(x) =

1
√

2πct
sin

x2

4ct
, x ∈ R, t > 0, c = const. (1)

which have the proprieties

I1 =

∫
R

1
√

2πct
cos

x2

4ct
dx =

∫
R
ft(x)dx = 1, (2)

I2 =

∫
R

1
√

2πct
sin

x2

4ct
dx =

∫
R
gt(x)dx = 1. (3)

Hence I1 = I2 = 1.
Consequently, two families of sequences correspond to the Fresnel integrals, namely

(ft)t>0, (gt)t>0 given by (1).
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The families of functions (1) are Dirac representative sequences, since we have

lim
t→+0

ft(x) = lim
t→+0

1
√

2πct
cos

x2

4ct
= δ(x), (4)

lim
t→+0

gt(x) = lim
t→+0

1
√

2πct
sin

x2

4ct
= δ(x), (5)

where the limit is considered in the sense of distributions from D′(R).
From here it follows

lim
t→+0

1

2
√

2πct

(
cos

x2

4ct
+ sin

x2

4ct

)
= δ(x), (6)

hence, the distribution depending on the parameter t > 0 ,

ht(x) =
1

2
√

2πct

(
cos

x2

4ct
+ sin

x2

4ct

)
, t > 0

represents a Dirac representative sequence.

2. Fresnel cosine and sine integrals from Rn, n ≥ 2

Let be the functions f, g : R→ R, where

f(x) = cos(ax2), g(x) = sin(ax2), a > 0. (7)

The integrals

I∗1 =

∫ ∞
0

cos(ax2)dx, (8)

I∗2 =

∫ ∞
0

sin(ax2)dx, (9)

are called Fresnel’s integrals in cosine and sine [8], [6], and we have

I∗1 = I∗2 =
1

2

√
π

2a
, a > 0. (10)

Due to the parity of the functions (7) we have

I1 = I2 =

∫
R

cos(ax2)dx =

∫
R

sin(ax2)dx =

√
π

2a
, a > 0. (11)

We will call these integrals Fresnel’s integrals in cosine and sine from R. Fresnel
integrals and Cornu’s spiral occurred originally in the analysis of the diffraction of light.
These integrals occur in a variety of physical applications, and also in engineering sciences,
for example in the study of transverse vibrations of elastic bars [4].

Let be the functions f, g : Rn → Rn, where

f(x) = cos
(
a‖x‖2n

)
, g(x) = sin

(
a‖x‖2n

)
, ‖x‖ =

√
x21 + ...+ x2n, a > 0. (12)

Definition 1. The integrals

I1 =

∫
Rn

cos
(
a‖x‖2n

)
dx, (13)

I2 =

∫
Rn

sin
(
a‖x‖2n

)
dx, (14)

will be named, Fresnel cosine and sine integrals from Rn.
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Due to the parity of the functions (12) we can write

I1 = 2

∫ ∞
0

...

∫ ∞
0

cos
(
a‖x‖2n

)
dx, I2 = 2

∫ ∞
0

...

∫ ∞
0

sin
(
a‖x‖2n

)
dx, (15)

where

I∗1 =

∫ ∞
0

...

∫ ∞
0

cos
(
a‖x‖2n

)
dx, I∗2 =

∫ ∞
0

...

∫ ∞
0

sin
(
a‖x‖2n

)
dx, (16)

represents the Fresnel integrals from Rn
+ = {x ∈ Rn, x1 ≥ 0, ..., xn ≥ 0}.

Proposition 1. The Fresnel integrals (13), (14) are convergent, and we have

I1 = I2 =
1

n
√

2a

π(n+1)/2

Γ

(
n

2

) , (17)

where Γ(x) represets gamma function.

Proof. In the n-dimensional Euclidean space Rn we shall use the spherical coordinates
(r, θ1, θ2, ..., θn−1) ∈ Rn, whose connection with the Cartesian coordinates (x1, x2, ..., xn) ∈
Rn is expressed by the relations

x1 = r sin θ1 sin θ2... sin θn−2 sin θn−1,

x2 = r sin θ1 sin θ2... sin θn−2 cos θn−1,

x3 = r sin θ1 sin θ2... sin θn−3 cos θn−2,

.......................................................

xn−2 = r sin θ1 sin θ2 cos θ3,

xn−1 = r sin θ1 cos θ2,

xn = r cos θ1,

(18)

where

r > 0, θi ∈ [0, π], i = 1, n− 2, θn−1 ∈ [0, 2π). (19)

The Jacobian of the transformation (18) is

J(r, θ1, θ2, ..., θn−1) =
∂(x1, x2, ..., xn)

∂(r, θ1, θ2, ..., θn−1)

= rn−1sinn−2θ1sinn−3θ2... sin θn−2.

(20)

The volume element dx = dx1...dxn in spherical coordinates (18) has the expression

dx = dv = J(r, θ1, ..., θn−1)drdθ1...dθn−1 = rn−1drdS1. (21)

where dS1 represents the area element of the unit radius sphere from Rn, centered at the
origin, S1 = {x ∈ Rn, ‖x‖ = 1}.

It results that

dS1 =
J

rn−1
drdθ1...dθn−1 = sinn−2θ1sinn−3θ2...sin θn−2dθ1...dθn−1. (22)

Regarding the area of the unit radius sphere S1 it has the expression

|S1| = areaS1 =
2πn/2

Γ

(
n

2

). (23)
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Consequently, we can write for the integrals from (13) and (14)

I1 =

∫
Rn

cos
(
a‖x‖2n

)
dx =

∫ ∞
0

∫
S1

cos
(
ar2n

)
rn−1drdS1 =∫ ∞

0

rn−1 cos
(
ar2n

)
dr

∫
S1

dS1 = |S1|
∫ ∞
0

rn−1 cos
(
ar2n

)
dr.

(24)

Taking into account (23) we obtain

I1 =
|S1|
n

∫ ∞
0

cos
(
ar2n

)
d (rn) =

2πn/2

nΓ

(
n

2

)∫ ∞
0

cos
(
ar2n

)
d (rn) . (25)

Making the change of variable rn = y ≥ 0, we have

I1 =
2π

n

2

nΓ

(
n

2

)1

2

√
π

2a
=

1

n
√

2a

π

n+ 1

2

Γ

(
n

2

), (26)

hence, the formula (17).
Proceeding analogously, we have

I2 =

∫
Rn

sin
(
a‖x‖2n

)
dx =

∫ ∞
0

∫
S1

sin
(
ar2n

)
rn−1drdS1 =

=
|S1|
n

∫ ∞
0

sin
(
ar2n

)
d (rn) =

1

n
√

2a

π

n+ 1

2

Γ

(
n

2

), (27)

hence, the formula (17), which proves proposition 1.1. �

Remark 1. Although the relation (17) was proved for n ≥ 2, it is valid for n = 1 as well.

Remark 2. From the formula (17), for n = 1, we will find (11). Indeed,∫
R

cos
(
ax2
)

dx =

∫
R

sin
(
ax2
)

dx =

√
π

2a
, (28)

because ‖x‖ = |x| and Γ

(
n

2

)
=
√
π.

In R2, i.e. for n = 2, from (11) we obtain∫
R2

cos
(
a‖x‖4

)
dx =

∫
R2

sin
(
a‖x‖4

)
dx =

π

2

√
π

2a
. (29)

In R3, i.e. for n = 3, from (11) we obtain∫
R3

cos
(
a‖x‖6

)
dx =

∫
R3

sin
(
a‖x‖6

)
dx =

2π

3

√
π

2a
. (30)
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3. Representative Dirac sequences generated by Fresnel integrals from
Rn

Definition 2. [1] Let fi : Rn → C, i ∈ N, be a sequence of locally integrable functions.
We say that (fi)i≥1 is a Dirac representative sequence if on the space D′(Rn) we have

limi→∞ fi(x) = δ(x), that is

∀ϕ ∈ D(Rn) ⇒ lim
i→∞

(fi(x), ϕ(x)) = (δ(x), ϕ(x)) = ϕ(0). (31)

Let be the functions F, G : Rn → R having the expressions

F (x) =

n
√

2a Γ

(
n

2

)

π

n+ 1

2

cos
(
a‖x‖2n

)
, (32)

G(x) =

n
√

2a Γ

(
n

2

)

π

n+ 1

2

sin
(
a‖x‖2n

)
. (33)

Taking into account (17), the functions F, G have the properties

F, G ∈ C0(Rn) and

∫
Rn

F (x)dx =

∫
Rn

G(x)dx = 1. (34)

We consider the following family of functions Fε(x), Gε(x), ε > 0, having the expres-
sion

Fε(x) =
1

εn
F

(
x

ε

)
, Gε(x) =

1

εn
G

(
x

ε

)
, (35)

hence

Fε(x) =
n
√

2a

π

n+ 1

2

Γ

(
n

2

)
1

εn
cos

(
a‖x‖2n

ε2n

)
,

Gε(x) =
n
√

2a

π

n+ 1

2

Γ

(
n

2

)
1

εn
sin

(
a‖x‖2n

ε2n

)
.

(36)

Proposition 2. The families of functions (36) are Dirac representative sequences, hence,
we have

lim
ε→+0

Fε(x) = lim
ε→+0

Gε(x) = δ(x). (37)

Proof. For any function ε ∈ D(Rn) we have

(Fε(x), ϕ(x)) =
1

εn

∫
Rn

F

(
x

ε

)
ϕ(x)dx, ε > 0. (38)



76 WILHELM W. KECS

Performing the change of variable x = εu, xk = εuk, k = 1, n the Jacobian of the
transformations is

J(u) =
∂(x1, x2, ..., xn)

∂(u1, u2, ..., un)
=

∣∣∣∣∣∣∣∣∣
∂x1
∂u1

∂x1
∂u2

...
∂x1
∂un

... ... ... ...
∂xn
∂u1

∂xn
∂u2

...
∂xn
∂un

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
ε 0 ... 0 0
0 ε ... 0 0
... ... ... ... ...
0 0 ... ε 0
0 0 ... 0 ε

∣∣∣∣∣∣∣∣∣∣
= εn;

(39)

thus we can write

(Fε(x), ϕ(x)) =

∫
Rn

F (u)ϕ(εu)du =

∫
Rn

F (u) [ϕ(εu)− ϕ(0)] du+ ϕ(0). (40)

On the other hand, because
∫
Rn |F (u)|du = M is finite, we have∣∣∣∣∫

Rn

F (u) [ϕ(εu)− ϕ(0)] du

∣∣∣∣ ≤ sup
Rn

|ϕ(εu)− ϕ(0)|
∫
Rn

|F (u)|du, (41)

hence ∣∣∣∣∫
Rn

F (u) [ϕ(εu)− ϕ(0)] du

∣∣∣∣ ≤M sup
Rn

|ϕ(εu)− ϕ(0)| . (42)

On the basis of the continuity of the function ϕ(εu) ∈ D(Rn), we obtain

lim
ε→+0

∣∣∣∣∫
Rn

F (u) [ϕ(εu)− ϕ(0)] du

∣∣∣∣ ≤M lim
ε→0

sup
Rn

|ϕ(εu)− ϕ(0)| ≤ 0, (43)

hence

lim
ε→+0

∫
Rn

F (u) [ϕ(εu)− ϕ(0)] du = 0. (44)

Consequently, from (40) it results

lim
ε→+0

(Fε(x), ϕ(x)) = ϕ(0) = (δ(x), ϕ(x)) , (45)

thus
lim

ε→+0
Fε(x) = δ(x). (46)

Proceeding analogously, for the family of sequences Gε, ε > 0, we obtain the relations
(37). �

Remark 3. Based on the result of the above proposition, it is shown that the family of
functions

hε(x) =
1

2

n
√

2a

π

n+ 1

2

Γ

(
n

2

)
1

εn

[
cos

(
a‖x‖2n

ε2n

)
+ sin

(
a‖x‖2n

ε2n

)]
, ε > 0, (47)

represents a Dirac representative sequence.

Indeed, from (37) we have

lim
ε→+0

1

2
(Fε(x) +Gε(x)) = δ(x),

lim
ε→+0

(Fε(x)−Gε(x)) = 0,
(48)
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hence

lim
ε→+0

1

2

n
√

2a

π

n+ 1

2

Γ

(
n

2

)
1

εn

[
cos

(
a‖x‖2n

ε2n

)
+ sin

(
a‖x‖2n

ε2n

)]
= δ(x),

lim
ε→+0

n
√

2a

π

n+ 1

2

Γ

(
n

2

)
1

εn

[
cos

(
a‖x‖2n

ε2n

)
− sin

(
a‖x‖2n

ε2n

)]
= 0.

(49)

Thus hε(x), ε > 0 is a representative Dirac sequence.

4. Conclusions

The Fresnel cosine and sine integrals are generalized in the Euclidean space Rn, n ≥ 2.
Two families of functions are associated with them and it is shown the they are Dirac
representative sequences.

Considering a new parameter t > 0, according to the relation ε =
√

4ct, c > 0, relations
(36) become

Fε(x) = ft(x) =
n
√

2a

π

n+ 1

2

Γ

(
n

2

)
1

(4ct)

n

2

cos

(
a‖x‖2n

(4ct)
n

)
,

Gε(x) = gt(x) =
n
√

2a

π

n+ 1

2

Γ

(
n

2

)
1

(4ct)

n

2

sin

(
a‖x‖2n

(4ct)
n

)
.

(50)

Taking into account (37) we obtain

lim
t→0

ft(x) = lim
t→0

gt(x) = δ(x). (51)

From (51) for n = 1, we find the formulas (4), (5) and (6).
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Department of Mathematics and Computer Science
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