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ANALYTIC PARAMETRIZATION OF THE ALGEBRAIC

POINTS OF GIVEN DEGREE ON THE CURVE

OF AFFINE EQUATION y2 = 157(x2 − 2)(x2 + x)(x2 + 1)

MOHAMADOU MOR DIOGOU DIALLO

Abstract. We give an explicit parametrization of the set of algebraic points of given

degree on Q over the affine equation curve : y2 = 157(x2 − 2)(x2 + x)(x2 + 1).
This note treat aspecial case of the curves described by Anna ARNTH-JENSEN and

Victor FLYNN in [1], where the generators of the Mordell-Weil group explained.

1. Introduction

Let C be a projective algebraic curve of definite over Q. For any field of numbers K,

C(K) is the set of points on C with coordinates in K and
⋃

[K:Q]6l

C(K) the set points on C a

coordinates in K of degree at most l on Q. The degree of a point R is the degree of its
defining field on Q, that is deg(R) = [Q(R) : Q]. We denote by J the Jacobian of C and
by j(P ) the class [P − P∞] of P − P∞, that is j is the Jacobian fold:

j : C −→ J (Q),
P 7−→ [P − P∞]

where J (Q) represents the Mordell-Weil group of rational points of the Jacobian of C (see
[7]); this group is finite (see [1, page 10], Lemma 2.).
Our curve C of affine equation y2 = 157(x2 − 2)(x2 + x)(x2 + 1) is a special case of the
curve family

C : y2 = q(x2 − 2)(x2 + x)(x2 + 1) with q ≡ 13[24]

is a prime, sttudy in [1, page 4], where the mordell-Weill group was explained.
In this note we define the set :⋃

[K:Q]6l

C(K) with l ≥ 5

2. Main results

Our main result is as follows:

Theorem 1. The set of algebraic points of degree at most l ≥ 5 over Q on the curve C
of affine equation y2 = 157(x2 − 2)(x2 + x)(x2 + 1) is given by⋃

[K:Q] 6 l

C(K) =M1

⋃
M2

⋃
M3

⋃
M4,
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with:

M1 =



x, −
l
2∑

i=0

bix
i + ax

5
2

l−7
2∑

j=0

cjx
2j+1

2



∣∣∣∣∣∣∣∣∣∣∣∣

(b0
∧
c0) 6= 0, b l

2
6= 0 if l is even ,

c l−7
2
6= 0 if l is odd and x is a solution

of the equation : l
2∑

i=0

bix
i + ax

5
2

2

= 157

 l−7
2∑

j=0

cjx
2j+1

2

2

(x2 − 2)(x2 + x)(x2 + 1)



M2 =



x, −
a
(
x

5
2 − ρ 5

2

)
+

l+2
2∑

i=2

bi
(
xi − ρi

)
l−5
2∑

j=0

cix
2j+1

2



∣∣∣∣∣∣∣∣∣∣
b l+2

2
6= 0 if l is even, c l−5

2
6= 0

if l is odd and x is a solution

of the equation :a(x 5
2 − ρ 5

2

x

)
+

l+2
2∑

i=2

bi

(
xi − ρi

x

)2

= 157

 l−5
2∑

j=0

cix
2j−1

2

2

(x2 − 2)(x2 + x)(x2 + 1)

with ρ = −1



M3 =



x, −
a
(
x

5
2 + η

)
+

l+2
2∑

i=1

bi
(
xi + ςi

)
l−5
2∑

j=0

cix
2j+1

2



∣∣∣∣∣∣∣∣∣∣∣∣

b l+4
2
6= 0 if l is even, c l−3

2
6= 0

if l is odd and x is a solution

of the equation :a(x 5
2 + η

x

)
+

l+2
2∑

i=1

bi

(
xi + ςi

x

)2

= 157

 l−5
2∑

j=0

cix
2j−1

2

2

(x2 − 2)(x2 + x)(x2 + 1)

with η = −1

2

((√
2
) 5

2 +
(
−
√

2
) 5

2

)
and ςi = −1

2

((√
2
)i

+
(
−
√

2
)i)



M4 =



x, −
a
(
x

5
2 + µ

)
+

l+2
2∑

i=1

bi
(
xi + νi

)
l−5
2∑

j=0

cix
2j+1

2



∣∣∣∣∣∣∣∣∣∣∣∣

b l+2
2
6= 0 if l is even, c l−5

2
6= 0

if l is odd and x is a solution

of the equation :a(x 5
2 + µ

x

)
+

l+2
2∑

i=1

bi

(
xi + νi

x

)2

= 157

 l−5
2∑

j=0

cix
2j−1

2

2

(x2 − 2)(x2 + x)(x2 + 1)

with µ =
1

3

(
(ı)

5
2 + (−ı)

5
2

)
and νi =

1

3

(
(ı)

i
+ (−ı)i

)


3. Auxiliary results

The text of the following environments should be in italics. For a divisor D on C, let
L(D) denote the Q-vector space of rational functions f of definite over Q such that f = 0
or div(f) ≥ −D ; l(D) denotes the Q-dimension of L(D) (see [4]).
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Lemma 1. We have : J (Q) ∼= Z/2Z× Z/2Z

Proof. For the proof see [1, page 8]. �

The projective form of the equation of the curve :

C : Z4Y 2 = 157(X2 − 2Z2)(X2 +XZ)(X2 + Z2),

we note P0, P1, P2, P3, P4, P5 and P∞ the points of C, defined by: P0 = [0 : 0 : 1],

P1 = [−1 : 0 : 1], P2 = [
√

2 : 0 : 1], P3 = [−
√

2 : 0 : 1], P4 = [ı : 0 : 1], P5 = [−ı : 0 : 1] and
P∞ = [1 : 0 : 0] with ı2 = −1.

Corollary 1. For the curve C : y2 = 157(x2 − 2)(x2 + x)(x2 + 1), we have :
(i): div(x) = 2P0 − 2P∞,
(vii): div(y) = P0 + P1 + P2 + P3 + P4 + P5 − 6P∞.

Proof. We define by x, y the affine coordinates of the curve C in the following way :
x = X

Z and y = Y
Z .

(i) div(x) = div

(
X

Z

)
= (X = 0) · C − (Z = 0) · C.

•: For X = 0, imply that: Y 2 = 0 or Z4 = 0.
We thus obtain the points : P0 = [0 : 0 : 1] and P∞ = [0 : 1 : 0] with an
order multiplicity of 2 and 4 respectively. Hence

(X = 0) · C = 2P0 + 4P∞ (1)
•: The same for Z = 0, this implies : X6 = 0.

We therefore obtain the point P∞ = [0 : 1 : 0] with an equal order of
multiplicity 6. Hence

(Z = 0) · C = 6P∞. (2)
From relations (1) and (2), we can infer that : div(x) = 2P0 − 2P∞.

(ii) div(y) = div

(
Y

Z

)
= (Y = 0) · C − (Z = 0) · C.

•: For Y = 0, equivalent to :
X(X + Z)(X −

√
2Z)(X +

√
2Z)(X − ıZ)(X + ıZ) = 0.

Thus, we obtain the points : P0 = [0 : 0 : 1], P1 = [−1 : 0 : 1],

P2 = [
√

2 : 0 : 1], P3 = [−
√

2 : 0 : 1], P4 = [ı : 0 : 1] and P5 = [−ı : 0 : 1] with
a multiplicative order equal to 1 for each point. Hence

(Y = 0) · C = P0 + P1 + P2 + P3 + P4 + P5. (3)

•: For Z = 0,his is equivalent to obtaining the relation (0.2).
Thus the relations (2) and (4), we deduce that :

div(y) = P0 + P1 + P2 + P3 + P4 + P5 − 6P∞.

�

Corollary 2. The following results are the consequences of Lemma 2.

a): j(P0) + j(P1) + j(P2) + j(P3) + j(P4) + j(P5) = 0,
b): 2j(P0) = 0

Lemma 2. We have :

J (Q) = 〈[P0 + P1 − 2P∞] , [P2 + P3 − 2P∞]〉

Proof. see [1, page 10], Lemma 3.3. �

Lemma 3. A Q-base of L(dP∞) is given by :

Bm =
{
xi, 0 ≤ i ≤ m

2

} ⋃ {
yx

2j+1
2 , 0 ≤ j ≤ m− 7

2

} ⋃ {
x

5
2

}
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Proof. It is easy to show that Bd is a free family, it then remains to show that
#Bd = dimL(dP∞). We know that the genus of C is g = 2 (see [1, page 174]).
Since the curve has genus 2, according to the Riemann-Roch theorem, we have
dimL(mP∞) = d− g + 1 = m− 1 since m ≥ 2g − 1 = 3. Two cases are possible:

First case : suppose that m is even, then m = 2h, we obtain :
i ≤ m

2 ⇔ i ≤ 2h
2 = h the same j ≤ m−7

2 ⇔ j ≤ 2h−7
2 ⇔ j ≤ h − 7

2

=⇒ j < h− 6
2 = h− 3 =⇒ j 6 h− 4. It follows that :

Bm =
{
x

5
2

}⋃{
1, x, . . . , xh

}⋃{
yx

1
2 , . . . , yx

2h−7
2

}
.

So we have :

#Bm = 1 + h+ 1 + h− 7

2
− 1

2
+ 1 = 2h− 1 = m− 1 = dimL(mP∞).

Second case : suppose that m is odd, then m = 2h+ 1, we get:
i ≤ m

2 ⇔ i ≤ 2h+1
2 ⇔ i ≤ h + 1

2 =⇒ i < h + 1 =⇒ i 6 h the same j ≤ m−7
2 ⇔

j ≤ 2h−6
2 = h− 3. Thus we have :

Bm =
{
x

5
2

}⋃{
1, x, . . . , xh

}⋃{
yx

1
2 , . . . , yxh−

5
2

}
.

It follows that :

#Bm = 1 + h+ 1 + h− 5

2
− 1

2
+ 1 = 2h = m− 1 = dimL(mP∞).

�

4. Proof of the Theorem

The proof of Theorem 1 being the theorem is given as follows:

Proof. Let R ∈ C(Q) of degree [Q(R) : Q] = l with l ≥ 5. Consider R1, . . . . . . , Rl the
Galois conjugates of R and let t = [R1 + . . .+Rl − lP∞] ∈ J (Q) where
J (Q) = {αj(P0) + αj(P1) + βj(P2) + βj(P3), with α, β ∈ {0 , 1}} from Lemma 2, so
t = αj(P0) + αj(P1) + βj(P2) + βj(P3), with α, β ∈ {0, 1}, which gives the following
formula :

[R1 + . . . . . .+Rl − lP∞] = [αP0 + αP1 + βP2 + βP3 − (2α+ 2β)P∞],

according to the Abel-Jacobi theorem ([4, page 156]), there exists a rational function of
definite on Q such that :

div(f) = R1 + . . .+Rl − αP0 + αP1 + βP2 + βP3 − (2α+ 2β + l)P∞ (?)

We study the following cases :

1st Case : α = β = 0.
The formula (?) becomes : div(f) = R1 + . . . + Rl − lP∞, so f ∈ L(lP∞). By

the Lemma 3, we have : f = ax
5
2 +

l
2∑

i=0

bix
i +

l−7
2∑

j=0

cjyx
2j+1

2 with a0, b0 and

c0 not simultaneously zero which we denote by b0
∧
c0 6= 0 ( otherwise of the

Ri’s should be at P4, which would be absurd), a l
2
6= 0 ( otherwise one of the

Ri’s should be at P∞, which would be absurd ) and b l−7
2
6= 0 ( otherwise one

of the Ri’s should be at P∞, which would be absurd ). At points Ri, we have:
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ax
5
2 +

l
2∑

i=0

bix
i +

l−7
2∑

j=0

cjyx
2j+1

2 = 0, implicating thus, y = −

l
2∑

i=0

bix
i + ax

5
2

l−7
2∑

j=0

cjx
2j+1

2

. By

replacing the expression for y in y2 = 157(x2 − 2)(x2 + x)(x2 + 1), we obtain the
equation : l

2∑
i=0

bix
i + ax

5
2

2

= 157

 l−7
2∑

j=0

cjx
2j+1

2

2

(x2 − 2)(x2 + x)(x2 + 1) (4)

The expression (4) is an equation of degree at mos l. Indeed, whether l is even

or odd, the first member of the equation (4) is of degree 2 ×
(
l

2

)
= l and the

second member is of degree 2×
(
l − 5

2

)
+ 5 = l.

This gives a degree point family l:

M1 =



x, −
l
2∑

i=0

bix
i + ax

5
2

l−7
2∑

j=0

cjx
2j+1

2



∣∣∣∣∣∣∣∣∣∣∣∣

(b0
∧
c0) 6= 0, b l

2
6= 0 if l is even ,

c l−7
2
6= 0 if l is odd and x is a solution

of the equation : l
2∑

i=0

bix
i + ax

5
2

2

= 157

 l−7
2∑

j=0

cjx
2j+1

2

2

(x2 − 2)(x2 + x)(x2 + 1)


2nd Case : α = 1 and β = 0.

The formula (?) becomes : div(f) = R1 + . . .+Rl + P0 + P1 − (l + 2)P∞, then
f ∈ L((l + 2)P∞), according to Lemma 3, we have :

f = ax
5
2 +

l+4
2∑

i=0

bix
i +

l−5
2∑

j=0

ciyx
2j+1

2 and since ordP0
f = ordP1

f = 1, thus implied

that b0 = 0 and b1 = −
(
a (−1)

5
2

)
−

 l+2
2∑

i=2

bi (−1)
i

. The expression of b1

can be put in the form b1 = a
(
ρ

5
2

)
+

l+2
2∑

i=2

bi
(
ρi
)

with ρ = −1, implying that

f = a
(
x

5
2 − ρ 5

2

)
+

l+2
2∑

i=2

bi
(
xi − ρi

)
+

l−5
2∑

j=0

ciyx
2j+1

2 with b l+2
2
6= 0 if l is even

(otherwise one of the Ri’s should be at P∞, which would be absurd) and c l−5
2
6= 0

if l is odd (otherwise one of the Ri’s should be at P∞, which would be absurd).
At point Ri, we have:

a
(
x

5
2 − ρ 5

2

)
+

l+2
2∑

i=2

bi
(
xi − ρi

)
+

l−5
2∑

j=0

ciyx
2j+1

2 = 0,
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implying so, y = −
a
(
x

5
2 − ρ 5

2

)
+

l+2
2∑

i=2

bi
(
xi − ρi

)
l−5
2∑

j=0

cix
2j+1

2

. By replacing the expression

for y in y2 = 157(x2 − 2)(x2 + x)(x2 + 1), we obtain the following equation :

a(x 5
2 − ρ 5

2

)
+

l+2
2∑

i=2

bi
(
xi − ρi

)2

= 157

 l−5
2∑

j=0

cix
2j+1

2

2

(x2 − 2)(x2 + x)(x2 + 1)

This equation can be noted as follows :a(x 5
2 − ρ 5

2

x

)
+

l+2
2∑

i=2

bi

(
xi − ρi

x

)2

= 157

 l−5
2∑

j=0

cix
2j−1

2

2

(x2 − 2)(x2 + x)(x2 + 1) (5)

The expression (5) is an equation of degree at mos l. Indeed, whether l, the first

member of equation (5) is of degree 2

(
l + 2

2
− 1

)
= l and the second member is

of degree 2

(
2× ( l−5

2 )− 1

2

)
+ 6 = l.

This gives a degree point family l:

M2 =



x, −
a
(
x

5
2 − ρ 5

2

)
+

l+2
2∑

i=2

bi
(
xi − ρi

)
l−5
2∑

j=0

cix
2j+1

2



∣∣∣∣∣∣∣∣∣∣
b l+2

2
6= 0 if l is even, c l−5

2
6= 0

if l is odd and x is a solution

of the equation :a(x 5
2 − ρ 5

2

x

)
+

l+2
2∑

i=2

bi

(
xi − ρi

x

)2

= 157

 l−5
2∑

j=0

cix
2j−1

2

2

(x2 − 2)(x2 + x)(x2 + 1)

with ρ = −1


3rd Case : α = 0 and β = 1.

The formula (?) becomes : div(f) = R1 + . . .+Rl + P2 + P3 − (l + 2)P∞, then
f ∈ L((l + 2)P∞), according to Lemma 3, we have:

f = ax
5
2 +

l+4
2∑

i=0

bix
i +

l−3
2∑

j=0

ciyx
2j+1

2 and since ordP2
f = ordP3

f = 1, thus implied

that b0 = −1

2
a

((√
2
) 5

2

+
(
−
√

2
) 5

2

)
− 1

2

l+2
2∑

i=1

bi

((√
2
)i

+
(
−
√

2
)i)

this writing

cam be put the form b0 = aη +

l+2
2∑

i=1

biς
i; with η = −1

2

((√
2
) 5

2 +
(
−
√

2
) 5

2

)
and

ςi = −1

2

((√
2
)i

+
(
−
√

2
)i)

, implying that
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f = a
(
x

5
2 + η

)
+

l+2
2∑

i=1

bi
(
xi + ςi

)
+

l−5
2∑

j=0

ciyx
2j+1

2 with b l+2
2
6= 0 if l is even (otherwise

one of the Ri’s should be at P∞, which would be absurd) and c l−5
2
6= 0 if l is odd

(otherwise one of the Ri’s should be at P∞, which would be absurd). At point
Ri, we have :

a
(
x

5
2 + η

)
+

l+2
2∑

i=1

bi
(
xi + ςi

)
+

l−5
2∑

j=0

ciyx
2j+1

2 = 0,

implying so, y = −
a
(
x

5
2 + η

)
+

l+2
2∑

i=1

bi
(
xi + ςi

)
l−5
2∑

j=0

cix
2j+1

2

. By replacing the expression for

y in y2 = 157(x2 − 2)(x2 + x)(x2 + 1), we obtain the following equation :a(x 5
2 + η

)
+

l+2
2∑

i=1

bi
(
xi + ςi

)2

= 157

 l−5
2∑

j=0

cix
2j+1

2

2

(x2 − 2)(x2 + x)(x2 + 1)

This equation can be noted as follows :a(x 5
2 + η

x

)
+

l+2
2∑

i=1

bi

(
xi + ςi

x

)2

= 157

 l−5
2∑

j=0

cix
2j−1

2

2

(x2 − 2)(x2 + x)(x2 + 1) (6)

The expression (6) is an equation of degree at mos l. Indeed, whether l, the first

member of equation (6) is of degree 2

(
l + 2

2
− 1

)
= l and the second member is

of degree 2

(
2× ( l−5

2 )− 1

2

)
+ 6 = l.

This gives a degree point family l:

M3 =



x, −
a
(
x

5
2 + η

)
+

l+2
2∑

i=1

bi
(
xi + ςi

)
l−5
2∑

j=0

cix
2j+1

2



∣∣∣∣∣∣∣∣∣∣∣∣

b l+4
2
6= 0 if l is even, c l−3

2
6= 0

if l is odd and x is a solution

of the equation :a(x 5
2 + η

x

)
+

l+2
2∑

i=1

bi

(
xi + ςi

x

)2

= 157

 l−5
2∑

j=0

cix
2j−1

2

2

(x2 − 2)(x2 + x)(x2 + 1)

with η = −1

2

((√
2
) 5

2 +
(
−
√

2
) 5

2

)
and ςi = −1

2

((√
2
)i

+
(
−
√

2
)i)


4th Case : : α = 1 and β = 1.

The formula (?) becomes : div(f) = R1 + . . .+Rl + P0 + P1 + P2 + P3 − (l + 4)P∞,
from Corollary 1 we have hence : div(f) = R1 + . . .+Rl + P4 + P5 − (l + 2)P∞,
then f ∈ L((l + 2)P∞), according to Lemma 3, we have:
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f = ax
5
2 +

l+2
2∑

i=0

bix
i +

l−5
2∑

j=0

ciyx
2j+1

2 and since ordP4f = ordP5f = 1, thus implied

that b0 = −1

2

(
a
(

(ı)
5
2 + (−ı)

5
2

))
+

1

2

 l+2
2∑

i=1

bi

(
(ı)

i
+ (−ı)i

) this writing cam

be put the form b0 = a
(
x

5
2 + µ

)
+

l+2
2∑

i=1

bi
(
xi + νi

)
with µ = −1

2

(
(ı)

5
2 + (−ı)

5
2

)
and νi = −1

2

(
(ı)

i
+ (−ı)i

)
, implying that

f = a
(
x

5
2 + µ

)
+

l+2
2∑

i=1

bi
(
xi + νi

)
+

l−5
2∑

j=0

ciyx
2j+1

2 with b l+2
2
6= 0 if l is even (oth-

erwise one of the Ri’s should be at P∞, which would be absurd) and c l−5
2
6= 0

if l is odd (otherwise one of the Ri’s should be at P∞, which would be absurd).

At point Ri, we have : a
(
x

5
2 + µ

)
+

l+2
2∑

i=1

bi
(
xi + νi

)
+

l−5
2∑

j=0

ciyx
2j+1

2 = 0, imply-

ing so, y = −
a
(
x

5
2 + µ

)
+

l+2
2∑

i=1

bi
(
xi + νi

)
l−5
2∑

j=0

cix
2j+1

2

. By replacing the expression for y in

y2 = 157(x2 − 2)(x2 + x)(x2 + 1), we obtain the following equation :

a(x 5
2 + µ

)
+

l+2
2∑

i=1

bi
(
xi + νi

)2

= 157

 l−5
2∑

j=0

cix
2j+1

2

2

(x2 − 2)(x2 + x)(x2 + 1)

This equation can be noted as follows :

a(x 5
2 + µ

x

)
+

l+2
2∑

i=1

bi

(
xi + νi

x

)2

= 157

 l−5
2∑

j=0

cix
2j−1

2

2

(x2 − 2)(x2 + x)(x2 + 1) (7)

The expression (7) is an equation of degree at mos l. Indeed, whether l, the first

member of equation (7) is of degree 2

(
l + 2

2
− 1

)
= l and the second member is

of degree 2

(
2× ( l−5

2 )− 1

2

)
+ 6 = l.
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This gives a degree point family l:

M4 =



x, −
a
(
x

5
2 + µ

)
+

l+2
2∑

i=1

bi
(
xi + νi

)
l−5
2∑

j=0

cix
2j+1

2



∣∣∣∣∣∣∣∣∣∣∣∣

b l+2
2
6= 0 if l is even, c l−5

2
6= 0

if l is odd and x is a solution

of the equation :a(x 5
2 + µ

x

)
+

l+2
2∑

i=1

bi

(
xi + νi

x

)2

= 157

 l−5
2∑

j=0

cix
2j−1

2

2

(x2 − 2)(x2 + x)(x2 + 1)

with µ =
1

3

(
(ı)

5
2 + (−ı)

5
2

)
and νi =

1

3

(
(ı)

i
+ (−ı)i

)


�

Conclusion : The set of algebraic points of degree at most l ≥ 5 on Q on the curve
C is given by: ⋃

[K:Q] 6 l

C(K) =M1

⋃
M2

⋃
M3

⋃
M4
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