ANALYTIC PARAMETRIZATION OF THE ALGEBRAIC POINTS OF GIVEN DEGREE ON THE CURVE OF AFFINE EQUATION $y^{2}=157\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right)$

MOHAMADOU MOR DIOGOU DIALLO

Abstract

We give an explicit parametrization of the set of algebraic points of given degree on \mathbb{Q} over the affine equation curve : $y^{2}=157\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right)$. This note treat aspecial case of the curves described by Anna ARNTH-JENSEN and Victor FLYNN in [1], where the generators of the Mordell-Weil group explained.

1. Introduction

Let \mathcal{C} be a projective algebraic curve of definite over \mathbb{Q}. For any field of numbers \mathbb{K}, $\mathcal{C}(\mathbb{K})$ is the set of points on \mathcal{C} with coordinates in \mathbb{K} and $\bigcup_{[\mathbb{K}: \mathbb{O}] \leqslant l} \mathcal{C}(\mathbb{K})$ the set points on \mathcal{C} a coordinates in \mathbb{K} of degree at most l on \mathbb{Q}. The degree of a point R is the degree of its defining field on \mathbb{Q}, that is $\operatorname{deg}(R)=[\mathbb{Q}(R): \mathbb{Q}]$. We denote by \mathcal{J} the Jacobian of \mathcal{C} and by $j(P)$ the class $\left[P-P_{\infty}\right]$ of $P-P_{\infty}$, that is j is the Jacobian fold:

$$
\begin{array}{llll}
j: & \mathcal{C} & \longrightarrow & \mathcal{J}(\mathbb{Q}), \\
& P & \longmapsto & {\left[P-P_{\infty}\right]}
\end{array}
$$

where $\mathcal{J}(\mathbb{Q})$ represents the Mordell-Weil group of rational points of the Jacobian of \mathcal{C} (see [7]); this group is finite (see [1, page 10], Lemma 2.).
Our curve \mathcal{C} of affine equation $y^{2}=157\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right)$ is a special case of the curve family

$$
\mathcal{C}: y^{2}=q\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right) \text { with } q \equiv 13[24]
$$

is a prime, sttudy in [1, page 4], where the mordell-Weill group was explained.
In this note we define the set :

$$
\bigcup_{[\mathbb{K}: \mathbb{Q}] \leqslant l} \mathcal{C}(\mathbb{K}) \quad \text { with } \quad l \geq 5
$$

2. Main Results

Our main result is as follows:
Theorem 1. The set of algebraic points of degree at most $l \geq 5$ over \mathbb{Q} on the curve \mathcal{C} of affine equation $y^{2}=157\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right)$ is given by

$$
\bigcup_{[\mathbb{K}: \mathbb{Q}] \leqslant l} \mathcal{C}(\mathbb{K})=\mathcal{M}_{1} \bigcup \mathcal{M}_{2} \bigcup \mathcal{M}_{3} \bigcup \mathcal{M}_{4}
$$

[^0]with:
\[

$$
\begin{aligned}
& \mathcal{M}_{1}=\left\{\begin{array}{c}
\binom{\sum_{i=0}^{\frac{l}{2}} b_{i} x^{i}+a x^{\frac{5}{2}}}{x,-\frac{\sum_{i=0}^{2}}{\frac{l-7}{2}} c_{j} x^{\frac{2 j+1}{2}}} \left\lvert\, \begin{array}{c}
\left(b_{0} \Lambda c_{0}\right) \neq 0, b_{\frac{l}{2}} \neq 0 \text { if } l \text { is even }, \\
c_{\frac{l-7}{2}} \neq 0 \text { if } l \text { is odd and } x \text { is a solution }
\end{array}\right. \\
\text { of the equation : } \\
\left(\sum_{i=0}^{\frac{l}{2}} b_{i} x^{i}+a x^{\frac{5}{2}}\right)^{2}=157\left(\sum_{j=0}^{\frac{l-7}{2}} c_{j} x^{\frac{2 j+1}{2}}\right)^{2}\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right)
\end{array}\right\} \\
& \mathcal{M}_{2}=\left\{\begin{array}{c}
\left(\left.\begin{array}{c}
a\left(x^{\frac{5}{2}}-\rho^{\frac{5}{2}}\right)+\sum_{i=2}^{\frac{l+2}{2}} b_{i}\left(x^{i}-\rho^{i}\right) \\
x,-\frac{\sum_{j=0}^{2}}{} c_{i} x^{\frac{2 j+1}{2}}
\end{array} \right\rvert\, \begin{array}{c}
b_{\frac{l+2}{2}} \neq 0 \text { if } l \text { is even, } c_{\frac{l-5}{2}} \neq 0 \\
\text { if } l \text { is odd and } x \text { is a solution }
\end{array}\right. \\
\text { of the equation : } \\
\left.\left(a\left(\frac{x^{\frac{5}{2}}-\rho^{\frac{5}{2}}}{x}\right)+\sum_{i=2}^{\frac{l+2}{2}} b_{i}\left(\frac{x^{i}-\rho^{i}}{x}\right)\right)_{\text {with } \rho=157\left(\sum_{j=0}^{2} c_{i} x^{\frac{2 j-1}{2}}\right)^{2}\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right)}^{(1)}\right\}
\end{array}\right\} \\
& \mathcal{M}_{3}=\left\{\begin{array}{c}
\left.\binom{a\left(x^{\frac{5}{2}}+\eta\right)+\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left(x^{i}+\varsigma^{i}\right)}{x,-\frac{\sum_{j=0}^{\frac{l-5}{2}} c_{i} x^{\frac{2 j+1}{2}}}{}} \right\rvert\, \begin{array}{c}
b_{\frac{l+4}{2}} \neq 0 \text { if } l \text { is even, } c_{\frac{l-3}{2}} \neq 0 \\
\text { if } l \text { is odd and } x \text { is a solution }
\end{array} \\
\text { of the equation : } \\
\left(a\left(\frac{x^{\frac{5}{2}}+\eta}{x}\right)+\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left(\frac{x^{i}+\varsigma^{i}}{x}\right)\right)=157\left(\sum_{j=0}^{\frac{l-5}{2}} c_{i} x^{\frac{2 j-1}{2}}\right)^{2}\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right) \\
\text { with } \eta=-\frac{1}{2}\left((\sqrt{2})^{\frac{5}{2}}+(-\sqrt{2})^{\frac{5}{2}}\right)
\end{array}\right\}
\end{aligned}
$$
\]

3. Auxiliary results

The text of the following environments should be in italics. For a divisor \mathfrak{D} on \mathcal{C}, let $\mathcal{L}(\mathfrak{D})$ denote the \mathbb{Q}-vector space of rational functions f of definite over \mathbb{Q} such that $f=0$ or $\operatorname{div}(f) \geq-\mathfrak{D} ; \mathfrak{l}(\mathfrak{D})$ denotes the \mathbb{Q}-dimension of $\mathcal{L}(\mathfrak{D})$ (see [4]).

Lemma 1. We have : $\mathcal{J}(\mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
Proof. For the proof see [1, page 8$]$.
The projective form of the equation of the curve :

$$
\mathcal{C}: Z^{4} Y^{2}=157\left(X^{2}-2 Z^{2}\right)\left(X^{2}+X Z\right)\left(X^{2}+Z^{2}\right),
$$

we note $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ and P_{∞} the points of \mathcal{C}, defined by: $P_{0}=[0: 0: 1]$, $P_{1}=[-1: 0: 1], P_{2}=[\sqrt{2}: 0: 1], P_{3}=[-\sqrt{2}: 0: 1], P_{4}=[\imath: 0: 1], P_{5}=[-\imath: 0: 1]$ and $P_{\infty}=[1: 0: 0]$ with $\imath^{2}=-1$.

Corollary 1. For the curve $\mathcal{C}: y^{2}=157\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right)$, we have:
(i): $\operatorname{div}(x)=2 P_{0}-2 P_{\infty}$,
(vii): $\operatorname{div}(y)=P_{0}+P_{1}+P_{2}+P_{3}+P_{4}+P_{5}-6 P_{\infty}$.

Proof. We define by x, y the affine coordinates of the curve \mathcal{C} in the following way : $x=\frac{X}{Z}$ and $y=\frac{Y}{Z}$.
(i) $\operatorname{div}(x)=\operatorname{div}\left(\frac{X}{Z}\right)=(X=0) \cdot \mathcal{C}-(Z=0) \cdot \mathcal{C}$.
-: For $X=0$, imply that: $Y^{2}=0$ or $Z^{4}=0$.
We thus obtain the points : $P_{0}=[0: 0: 1]$ and $P_{\infty}=[0: 1: 0]$ with an order multiplicity of 2 and 4 respectively. Hence

$$
\begin{equation*}
(X=0) \cdot \mathcal{C}=2 P_{0}+4 P_{\infty} \tag{1}
\end{equation*}
$$

-: The same for $Z=0$, this implies : $X^{6}=0$.
We therefore obtain the point $P_{\infty}=[0: 1: 0]$ with an equal order of multiplicity 6 . Hence

$$
\begin{align*}
& (Z=0) \cdot \mathcal{C}=6 P_{\infty} . \tag{2}\\
& d(2), \text { we can infer } t
\end{align*}
$$

From relations (1) and (2), we can infer that : $\operatorname{div}(x)=2 P_{0}-2 P_{\infty}$.
(ii) $\operatorname{div}(y)=\operatorname{div}\left(\frac{Y}{Z}\right)=(Y=0) \cdot \mathcal{C}-(Z=0) \cdot \mathcal{C}$.
\bullet : For $Y=0$, equivalent to :

$$
X(X+Z)(X-\sqrt{2} Z)(X+\sqrt{2} Z)(X-\imath Z)(X+\imath Z)=0
$$

Thus, we obtain the points : $P_{0}=[0: 0: 1], P_{1}=[-1: 0: 1]$, $P_{2}=[\sqrt{2}: 0: 1], P_{3}=[-\sqrt{2}: 0: 1], P_{4}=[\imath: 0: 1]$ and $P_{5}=[-\imath: 0: 1]$ with a multiplicative order equal to 1 for each point. Hence

$$
\begin{equation*}
(Y=0) \cdot \mathcal{C}=P_{0}+P_{1}+P_{2}+P_{3}+P_{4}+P_{5} \tag{3}
\end{equation*}
$$

-: For $Z=0$,his is equivalent to obtaining the relation (0.2).
Thus the relations (2) and (4), we deduce that:

$$
\operatorname{div}(y)=P_{0}+P_{1}+P_{2}+P_{3}+P_{4}+P_{5}-6 P_{\infty}
$$

Corollary 2. The following results are the consequences of Lemma 2.
a): $j\left(P_{0}\right)+j\left(P_{1}\right)+j\left(P_{2}\right)+j\left(P_{3}\right)+j\left(P_{4}\right)+j\left(P_{5}\right)=0$,
b): $2 j\left(P_{0}\right)=0$

Lemma 2. We have :

$$
\mathcal{J}(\mathbb{Q})=\left\langle\left[P_{0}+P_{1}-2 P_{\infty}\right],\left[P_{2}+P_{3}-2 P_{\infty}\right]\right\rangle
$$

Proof. see [1, page 10], Lemma 3.3.
Lemma 3. $A \mathbb{Q}$-base of $\mathcal{L}\left(d P_{\infty}\right)$ is given by :

$$
\mathcal{B}_{m}=\left\{x^{i}, 0 \leq i \leq \frac{m}{2}\right\} \bigcup\left\{y x^{\frac{2 j+1}{2}}, 0 \leq j \leq \frac{m-7}{2}\right\} \bigcup\left\{x^{\frac{5}{2}}\right\}
$$

Proof. It is easy to show that \mathcal{B}_{d} is a free family, it then remains to show that $\# \mathcal{B}_{d}=\operatorname{dim} \mathcal{L}\left(d P_{\infty}\right)$. We know that the genus of \mathcal{C} is $g=2$ (see [1, page 174]). Since the curve has genus 2, according to the Riemann-Roch theorem, we have $\operatorname{dim} \mathcal{L}\left(m P_{\infty}\right)=d-g+1=m-1$ since $m \geq 2 g-1=3$. Two cases are possible:

First case : suppose that m is even, then $m=2 h$, we obtain :
$i \leq \frac{m}{2} \Leftrightarrow i \leq \frac{2 h}{2}=h$ the same $j \leq \frac{m-7}{2} \Leftrightarrow j \leq \frac{2 h-7}{2} \Leftrightarrow j \leq h-\frac{7}{2}$
$\Longrightarrow j<h-\frac{6}{2}=h-3 \Longrightarrow j \leqslant h-4$. It follows that:

$$
\mathcal{B}_{m}=\left\{x^{\frac{5}{2}}\right\} \bigcup\left\{1, x, \ldots, x^{h}\right\} \bigcup\left\{y x^{\frac{1}{2}}, \ldots, y x^{\frac{2 h-7}{2}}\right\}
$$

So we have:
$\# \mathcal{B}_{m}=1+h+1+h-\frac{7}{2}-\frac{1}{2}+1=2 h-1=m-1=\operatorname{dim} \mathcal{L}\left(m P_{\infty}\right)$.
Second case : suppose that m is odd, then $m=2 h+1$, we get:
$i \leq \frac{m}{2} \Leftrightarrow i \leq \frac{2 h+1}{2} \Leftrightarrow i \leq h+\frac{1}{2} \Longrightarrow i<h+1 \Longrightarrow i \leqslant h$ the same $j \leq \frac{m-7}{2} \Leftrightarrow$ $j \leq \frac{2 h-6}{2}=h-3$. Thus we have :

$$
\mathcal{B}_{m}=\left\{x^{\frac{5}{2}}\right\} \bigcup\left\{1, x, \ldots, x^{h}\right\} \bigcup\left\{y x^{\frac{1}{2}}, \ldots, y x^{h-\frac{5}{2}}\right\}
$$

It follows that:

$$
\# \mathcal{B}_{m}=1+h+1+h-\frac{5}{2}-\frac{1}{2}+1=2 h=m-1=\operatorname{dim} \mathcal{L}\left(m P_{\infty}\right)
$$

4. Proof of the Theorem

The proof of Theorem 1 being the theorem is given as follows:
Proof. Let $R \in \mathcal{C}(\mathbb{Q})$ of degree $[\mathbb{Q}(R): \mathbb{Q}]=l$ with $l \geq 5$. Consider $R_{1}, \ldots \ldots, R_{l}$ the Galois conjugates of R and let $t=\left[R_{1}+\ldots+R_{l}-l P_{\infty}\right] \in \mathcal{J}(\mathbb{Q})$ where
$\mathcal{J}(\mathbb{Q})=\left\{\alpha j\left(P_{0}\right)+\alpha j\left(P_{1}\right)+\beta j\left(P_{2}\right)+\beta j\left(P_{3}\right)\right.$, with $\left.\alpha, \beta \in\{0,1\}\right\}$ from Lemma 2, so $t=\alpha j\left(P_{0}\right)+\alpha j\left(P_{1}\right)+\beta j\left(P_{2}\right)+\beta j\left(P_{3}\right)$, with $\alpha, \beta \in\{0,1\}$, which gives the following formula :

$$
\left[R_{1}+\ldots \ldots+R_{l}-l P_{\infty}\right]=\left[\alpha P_{0}+\alpha P_{1}+\beta P_{2}+\beta P_{3}-(2 \alpha+2 \beta) P_{\infty}\right]
$$

according to the Abel-Jacobi theorem ([4, page 156]), there exists a rational function of definite on \mathbb{Q} such that:

$$
\operatorname{div}(f)=R_{1}+\ldots+R_{l}-\alpha P_{0}+\alpha P_{1}+\beta P_{2}+\beta P_{3}-(2 \alpha+2 \beta+l) P_{\infty}
$$

We study the following cases :
1st Case : $\alpha=\beta=0$.
The formula (\star) becomes : $\operatorname{div}(f)=R_{1}+\ldots+R_{l}-l P_{\infty}$, so $f \in \mathcal{L}\left(l P_{\infty}\right)$. By the Lemma 3, we have : $f=a x^{\frac{5}{2}}+\sum_{i=0}^{\frac{l}{2}} b_{i} x^{i}+\sum_{j=0}^{\frac{l-7}{2}} c_{j} y x^{\frac{2 j+1}{2}}$ with a_{0}, b_{0} and c_{0} not simultaneously zero which we denote by $b_{0} \bigwedge c_{0} \neq 0$ (otherwise of the R_{i} 's should be at P_{4}, which would be absurd), $a_{\frac{l}{2}} \neq 0$ (otherwise one of the R_{i} 's should be at P_{∞}, which would be absurd) and $b_{\frac{l-7}{2}} \neq 0$ (otherwise one of the R_{i} 's should be at P_{∞}, which would be absurd). At points R_{i}, we have:
$a x^{\frac{5}{2}}+\sum_{i=0}^{\frac{l}{2}} b_{i} x^{i}+\sum_{j=0}^{\frac{l-7}{2}} c_{j} y x^{\frac{2 j+1}{2}}=0$, implicating thus, $y=-\frac{\sum_{i=0}^{\frac{l}{2}} b_{i} x^{i}+a x^{\frac{5}{2}}}{\sum_{j=0}^{\frac{l-7}{2}} c_{j} x^{\frac{2 j+1}{2}}}$. By
replacing the expression for y in $y^{2}=157\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right)$, we obtain the equation :

$$
\begin{equation*}
\left(\sum_{i=0}^{\frac{l}{2}} b_{i} x^{i}+a x^{\frac{5}{2}}\right)^{2}=157\left(\sum_{j=0}^{\frac{l-7}{2}} c_{j} x^{\frac{2 j+1}{2}}\right)^{2}\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right) \tag{4}
\end{equation*}
$$

The expression (4) is an equation of degree at mos l. Indeed, whether l is even or odd, the first member of the equation (4) is of degree $2 \times\left(\frac{l}{2}\right)=l$ and the second member is of degree $2 \times\left(\frac{l-5}{2}\right)+5=l$.
This gives a degree point family l :

2nd Case : $\alpha=1$ and $\beta=0$.
The formula (\star) becomes : $\operatorname{div}(f)=R_{1}+\ldots+R_{l}+P_{0}+P_{1}-(l+2) P_{\infty}$, then $f \in \mathcal{L}\left((l+2) P_{\infty}\right)$, according to Lemma 3, we have :
$f=a x^{\frac{5}{2}}+\sum_{i=0}^{\frac{l+4}{2}} b_{i} x^{i}+\sum_{j=0}^{\frac{l-5}{2}} c_{i} y x^{\frac{2 j+1}{2}}$ and since $\operatorname{ord}_{P_{0}} f=\operatorname{ord}_{P_{1}} f=1$, thus implied that $b_{0}=0$ and $b_{1}=-\left(a(-1)^{\frac{5}{2}}\right)-\left(\sum_{i=2}^{\frac{l+2}{2}} b_{i}(-1)^{i}\right)$. The expression of b_{1} can be put in the form $b_{1}=a\left(\rho^{\frac{5}{2}}\right)+\sum_{i=2}^{\frac{l+2}{2}} b_{i}\left(\rho^{i}\right)$ with $\rho=-1$, implying that $f=a\left(x^{\frac{5}{2}}-\rho^{\frac{5}{2}}\right)+\sum_{i=2}^{\frac{l+2}{2}} b_{i}\left(x^{i}-\rho^{i}\right)+\sum_{j=0}^{\frac{l-5}{2}} c_{i} y x^{\frac{2 j+1}{2}}$ with $b_{\frac{l+2}{2}} \neq 0$ if l is even (otherwise one of the R_{i} 's should be at P_{∞}, which would be absurd) and $c_{\frac{l-5}{2}} \neq 0$ if l is odd (otherwise one of the R_{i} 's should be at P_{∞}, which would be absurd). At point R_{i}, we have:

$$
a\left(x^{\frac{5}{2}}-\rho^{\frac{5}{2}}\right)+\sum_{i=2}^{\frac{l+2}{2}} b_{i}\left(x^{i}-\rho^{i}\right)+\sum_{j=0}^{\frac{l-5}{2}} c_{i} y x^{\frac{2 j+1}{2}}=0
$$

implying so, $y=-\frac{a\left(x^{\frac{5}{2}}-\rho^{\frac{5}{2}}\right)+\sum_{i=2}^{\frac{l+2}{2}} b_{i}\left(x^{i}-\rho^{i}\right)}{\sum_{j=0}^{\frac{l-5}{2}} c_{i} x^{\frac{2 j+1}{2}}}$. By replacing the expression
for y in $y^{2}=157\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right)$, we obtain the following equation :

$$
\left(a\left(x^{\frac{5}{2}}-\rho^{\frac{5}{2}}\right)+\sum_{i=2}^{\frac{l+2}{2}} b_{i}\left(x^{i}-\rho^{i}\right)\right)^{2}=157\left(\sum_{j=0}^{\frac{l-5}{2}} c_{i} x^{\frac{2 j+1}{2}}\right)^{2}\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right)
$$

This equation can be noted as follows:

$$
\begin{equation*}
\left(a\left(\frac{x^{\frac{5}{2}}-\rho^{\frac{5}{2}}}{x}\right)+\sum_{i=2}^{\frac{l+2}{2}} b_{i}\left(\frac{x^{i}-\rho^{i}}{x}\right)\right)^{2}=157\left(\sum_{j=0}^{\frac{l-5}{2}} c_{i} x^{\frac{2 j-1}{2}}\right)^{2}\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right) \tag{5}
\end{equation*}
$$

The expression (5) is an equation of degree at mos l. Indeed, whether l, the first member of equation (5) is of degree $2\left(\frac{l+2}{2}-1\right)=l$ and the second member is of degree $2\left(\frac{2 \times\left(\frac{l-5}{2}\right)-1}{2}\right)+6=l$.
This gives a degree point family l :

$$
\mathcal{M}_{2}=\left\{\begin{array}{c}
\left.\binom{a\left(x^{\frac{5}{2}}-\rho^{\frac{5}{2}}\right)+\sum_{i=2}^{\frac{l+2}{2}} b_{i}\left(x^{i}-\rho^{i}\right)}{x,-\frac{\sum_{j=0}^{2}}{l_{i}} x^{\frac{2 j+1}{2}}} \right\rvert\, \begin{array}{c}
b_{\frac{l+2}{2} \neq 0} \text { if } l \text { is even, } c_{\frac{l-5}{2}} \neq 0 \\
\text { if } l \text { is odd and } x \text { is a solution } \\
\text { of the equation : }
\end{array} \\
\left(a\left(\frac{x^{\frac{5}{2}}-\rho^{\frac{5}{2}}}{x}\right)+\sum_{i=2}^{\frac{l+2}{2}} b_{i}\left(\frac{x^{i}-\rho^{i}}{x}\right)\right)_{\text {with } \rho=-1}^{2}=157\left(\sum_{j=0}^{\frac{l-5}{2}} c_{i} x^{\frac{2 j-1}{2}}\right)^{2}\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right)
\end{array}\right\}
$$

3rd Case : $\alpha=0$ and $\beta=1$.
The formula (\star) becomes : $\operatorname{div}(f)=R_{1}+\ldots+R_{l}+P_{2}+P_{3}-(l+2) P_{\infty}$, then $f \in \mathcal{L}\left((l+2) P_{\infty}\right)$, according to Lemma 3, we have:
$f=a x^{\frac{5}{2}}+\sum_{i=0}^{\frac{l+4}{2}} b_{i} x^{i}+\sum_{j=0}^{\frac{l-3}{2}} c_{i} y x^{\frac{2 j+1}{2}}$ and since $\operatorname{ord}_{P_{2}} f=\operatorname{ord}_{P_{3}} f=1$, thus implied that $b_{0}=-\frac{1}{2} a\left((\sqrt{2})^{\frac{5}{2}}+(-\sqrt{2})^{\frac{5}{2}}\right)-\frac{1}{2} \sum_{i=1}^{\frac{l+2}{2}} b_{i}\left((\sqrt{2})^{i}+(-\sqrt{2})^{i}\right)$ this writing cam be put the form $b_{0}=a \eta+\sum_{i=1}^{\frac{l+2}{2}} b_{i} \varsigma^{i} ;$ with $\eta=-\frac{1}{2}\left((\sqrt{2})^{\frac{5}{2}}+(-\sqrt{2})^{\frac{5}{2}}\right)$ and $\varsigma^{i}=-\frac{1}{2}\left((\sqrt{2})^{i}+(-\sqrt{2})^{i}\right)$, implying that
$f=a\left(x^{\frac{5}{2}}+\eta\right)+\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left(x^{i}+\varsigma^{i}\right)+\sum_{j=0}^{\frac{l-5}{2}} c_{i} y x^{\frac{2 j+1}{2}}$ with $b_{\frac{l+2}{2}} \neq 0$ if l is even (otherwise one of the R_{i} 's should be at P_{∞}, which would be absurd) and $c_{\frac{l-5}{2}} \neq 0$ if l is odd (otherwise one of the R_{i} 's should be at P_{∞}, which would be absurd). At point R_{i}, we have :

$$
\begin{gathered}
a\left(x^{\frac{5}{2}}+\eta\right)+\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left(x^{i}+\varsigma^{i}\right)+\sum_{j=0}^{\frac{l-5}{2}} c_{i} y x^{\frac{2 j+1}{2}}=0 \\
a\left(x^{\frac{5}{2}}+\eta\right)+\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left(x^{i}+\varsigma^{i}\right)
\end{gathered}
$$

implying so, $y=-\frac{\sum_{i=1}^{2}}{\frac{l-5}{2}}$. By replacing the expression for

$$
\sum_{j=0}^{\frac{l-5}{2}} c_{i} x^{\frac{2 j+1}{2}}
$$

y in $y^{2}=157\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right)$, we obtain the following equation :

$$
\left(a\left(x^{\frac{5}{2}}+\eta\right)+\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left(x^{i}+\varsigma^{i}\right)\right)^{2}=157\left(\sum_{j=0}^{\frac{l-5}{2}} c_{i} x^{\frac{2 j+1}{2}}\right)^{2}\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right)
$$

This equation can be noted as follows :

$$
\begin{equation*}
\left(a\left(\frac{x^{\frac{5}{2}}+\eta}{x}\right)+\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left(\frac{x^{i}+\varsigma^{i}}{x}\right)\right)^{2}=157\left(\sum_{j=0}^{\frac{l-5}{2}} c_{i} x^{\frac{2 j-1}{2}}\right)^{2}\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right) \tag{6}
\end{equation*}
$$

The expression (6) is an equation of degree at mos l. Indeed, whether l, the first member of equation (6) is of degree $2\left(\frac{l+2}{2}-1\right)=l$ and the second member is of degree $2\left(\frac{2 \times\left(\frac{l-5}{2}\right)-1}{2}\right)+6=l$.
This gives a degree point family l :
$\mathcal{M}_{3}=\left\{\begin{array}{c}\left.\left.\binom{a\left(x^{\frac{5}{2}}+\eta\right)+\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left(x^{i}+\varsigma^{i}\right)}{x,-\frac{\sum_{j=0}^{\frac{l-5}{2}} c_{i} x^{\frac{2 j+1}{2}}}{}} \left\lvert\, \begin{array}{c}b_{\frac{l+4}{2}} \neq 0 \text { if } l \text { is even, } c_{\frac{l-3}{2}} \neq 0 \\ \text { if } l \text { is odd and } x \text { is a solution } \\ \text { of the equation : } \\ \left(a\left(\frac{x^{\frac{5}{2}}+\eta}{x}\right)+\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left(\frac{x^{i}+\varsigma^{i}}{x}\right)\right)^{2}=157\left(\sum_{j=0}^{\frac{l-5}{2}} c_{i} x^{\frac{2 j-1}{2}}\right)_{1}^{2}\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right) \\ \text { with } \eta=-\frac{1}{2}\left((\sqrt{2})^{\frac{5}{2}}+(-\sqrt{2})^{\frac{5}{2}}\right) \\ \text { and } \varsigma^{i}=-\frac{1}{2}\left((\sqrt{2})^{i}+(-\sqrt{2})^{i}\right)\end{array}\right.\right\}, ~\right\}, ~\end{array}\right\}$
4th Case : : $\alpha=1$ and $\beta=1$.
The formula (\star) becomes : $\operatorname{div}(f)=R_{1}+\ldots+R_{l}+P_{0}+P_{1}+P_{2}+P_{3}-(l+4) P_{\infty}$, from Corollary 1 we have hence : $\operatorname{div}(f)=R_{1}+\ldots+R_{l}+P_{4}+P_{5}-(l+2) P_{\infty}$, then $f \in \mathcal{L}\left((l+2) P_{\infty}\right)$, according to Lemma 3, we have:
$f=a x^{\frac{5}{2}}+\sum_{i=0}^{\frac{l+2}{2}} b_{i} x^{i}+\sum_{j=0}^{\frac{l-5}{2}} c_{i} y x^{\frac{2 j+1}{2}}$ and since ord $_{P_{4}} f=\operatorname{ord}_{P_{5}} f=1$, thus implied that $b_{0}=-\frac{1}{2}\left(a\left((\imath)^{\frac{5}{2}}+(-\imath)^{\frac{5}{2}}\right)\right)+\frac{1}{2}\left(\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left((\imath)^{i}+(-\imath)^{i}\right)\right)$ this writing cam be put the form $b_{0}=a\left(x^{\frac{5}{2}}+\mu\right)+\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left(x^{i}+\nu^{i}\right)$ with $\mu=-\frac{1}{2}\left((\imath)^{\frac{5}{2}}+(-\imath)^{\frac{5}{2}}\right)$ and $\nu^{i}=-\frac{1}{2}\left((\imath)^{i}+(-\imath)^{i}\right)$, implying that
$f=a\left(x^{\frac{5}{2}}+\mu\right)+\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left(x^{i}+\nu^{i}\right)+\sum_{j=0}^{\frac{l-5}{2}} c_{i} y x^{\frac{2 j+1}{2}}$ with $b_{\frac{l+2}{2}} \neq 0$ if l is even (otherwise one of the R_{i} 's should be at P_{∞}, which would be absurd) and $c_{\frac{l-5}{2}} \neq 0$ if l is odd (otherwise one of the R_{i} 's should be at P_{∞}, which would be absurd). At point R_{i}, we have : $a\left(x^{\frac{5}{2}}+\mu\right)+\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left(x^{i}+\nu^{i}\right)+\sum_{j=0}^{\frac{l-5}{2}} c_{i} y x^{\frac{2 j+1}{2}}=0$, implying so, $y=-\frac{a\left(x^{\frac{5}{2}}+\mu\right)+\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left(x^{i}+\nu^{i}\right)}{\sum_{j=0}^{\frac{l-5}{2}} c_{i} x^{\frac{2 j+1}{2}}}$. By replacing the expression for y in $y^{2}=157\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right)$, we obtain the following equation :

$$
\left(a\left(x^{\frac{5}{2}}+\mu\right)+\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left(x^{i}+\nu^{i}\right)\right)^{2}=157\left(\sum_{j=0}^{\frac{l-5}{2}} c_{i} x^{\frac{2 j+1}{2}}\right)^{2}\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right)
$$

This equation can be noted as follows :

$$
\begin{equation*}
\left(a\left(\frac{x^{\frac{5}{2}}+\mu}{x}\right)+\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left(\frac{x^{i}+\nu^{i}}{x}\right)\right)^{2}=157\left(\sum_{j=0}^{\frac{l-5}{2}} c_{i} x^{\frac{2 j-1}{2}}\right)^{2}\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right) \tag{7}
\end{equation*}
$$

The expression (7) is an equation of degree at mos l. Indeed, whether l, the first member of equation (7) is of degree $2\left(\frac{l+2}{2}-1\right)=l$ and the second member is of degree $2\left(\frac{2 \times\left(\frac{l-5}{2}\right)-1}{2}\right)+6=l$.

This gives a degree point family l :

$$
\mathcal{M}_{4}=\left\{\begin{array}{c}
\left.\binom{a\left(x^{\frac{5}{2}}+\mu\right)+\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left(x^{i}+\nu^{i}\right)}{x,-\frac{\sum_{j=0}^{2}}{2} c_{i} x^{\frac{2 j+1}{2}}} \right\rvert\, \begin{array}{c}
b_{\frac{l+2}{2}} \neq 0 \text { if } l \text { is even, } c_{\frac{l-5}{2}} \neq 0 \\
\text { if } l \text { is odd and } x \text { is a solution } \\
\text { of the equation : }
\end{array} \\
\left(a\left(\frac{x^{\frac{5}{2}}+\mu}{x}\right)+\sum_{i=1}^{\frac{l+2}{2}} b_{i}\left(\frac{x^{i}+\nu^{i}}{x}\right)\right)^{2}=157\left(\sum_{j=0}^{\frac{l-5}{2}} c_{i} x^{\frac{2 j-1}{2}}\right)^{2}\left(x^{2}-2\right)\left(x^{2}+x\right)\left(x^{2}+1\right) \\
\text { with } \mu=\frac{1}{3}\left((\imath)^{\frac{5}{2}}+(-\imath)^{\frac{5}{2}}\right) \quad \text { and } \nu^{i}=\frac{1}{3}\left((\imath)^{i}+(-\imath)^{i}\right)
\end{array}\right\}
$$

Conclusion : The set of algebraic points of degree at most $l \geq 5$ on \mathbb{Q} on the curve \mathcal{C} is given by:

References

[1] Anna ARNTH-JENSEN and E. Victor FLYNN : Non-trivial III in the Jacobian of an infinite family of curves of genus 2, Journal de Theory des Nombres de Bordeaux, Tome 21, number 1 (2009), 1-13. < http : //jtnb.cedram.org/item? id = JTBN_2009_21_1_1_0>
[2] D. FADDEEV : on the divisor class groups of some algebraic curves, Dokl. Akad. Nauk SSSR 136 (1961) 296 - 298. English translation : Soviet Math. Dokl. 2 (1)(1961), 67-69.
[3] B. Gross and D. Rohrlich : some results on the Mordell-Weil group of the jacobian of the Fermat curve, Invent. Math. 44 (1978), 201-224.
[4] P.A Griffiths : Introduction to algebric curves, Translation mathematical monograhs volume 76. (1989). American Matematical Society, Providence (1989).
[5] O. Sall : Points algébriques sur certains quotients de courbes de Fermat, C. R. Acad. Sci. Paris Ser. I 336 (2003), 117-120.
[6] E. F. SCHAEFER : computing a Selmer group of Jacobian usin functions on the curve., Math. Ann. 310; (1998), 447-471.
[7] P. TZERMIAS : Mordell-weil groups of the jacobian of the 5-th fermat curve, Proceedings Of The American Mathematical Society, Volume 125, Number 3, March 1997, 663-668.
[8] B. Poonen and E.F. Schaefer : Explicit descent on cyclic covers of the projective line, J. reine angew. Math. 488 (1997), 141-188.

Assane Seck University of Ziguinchor
Mathematics Department
Diabir, BP: 532, Ziguinchor, Senegal
E-mail address: m.diallo1836@zig.univ.sn

[^0]: 2010 Mathematics Subject Classification. 14L40, 14H40, 55M25, 14C20.
 Key words and phrases. Mordell-Weil Group, Jacobian, Degree of algebraic points, Linear system.

