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REDUCED-ORDER MODELLING BASED ON KOOPMAN

OPERATOR THEORY

DIANA A. BISTRIAN, GABRIEL DIMITRIU, IONEL M. NAVON

Abstract. The present study focuses on a subject of significant interest in fluid

dynamics: the identification of a model with decreased computational complexity from

numerical code output using Koopman operator theory. A reduced-order modelling
method that incorporates a novel strategy for identifying the most impactful Koopman

modes was used to numerically approximate the Koopman composition operator.

1. Introduction

Despite the fact that complex nonlinear dynamical systems can appear challenging to
understand, the existence of similar flow characteristics indicates that a number of differ-
ent dynamic phenomena are likely governed by the same fundamental processes. Using
the modal decomposition method [1, 2, 3] is an effective strategy to find a helpful low-
dimensional reference frame for capturing prominent dynamical processes. Model order
reduction approaches based on modal decomposition have made significant improvements
in the recent decade [4, 5, 6, 7, 8].

The choice of an appropriate reduced order basis to describe the system dynamics in
relation to the system order reduction is the main topic of this study. The Koopman
operator theory [9] provides the mathematical foundation for determining the reduced-
order model of a complex nonlinear dynamical system.

There are various advantages to transposing the nonlinear dynamics into a reduced-
order model, which is a linear model by construction. These include the ability to identify
the dominant frequencies, the production of a mathematical reduced-order model with
higher fidelity, and a notable increase in computing speed.

The authors have made a substantial contribution to the advancement of modal de-
composition techniques [10, 11, 12] and the introduction of new numerical algorithms
for the modeling of nonlinear dynamical systems with lower computational complexity
[13, 14, 15, 16] in the past years.

The present work contains a presentation of the mathematical aspects of modal de-
composition technique based on Koopman operator theory [9], with application to the
Saint-Venant nonlinear dynamical system model.

The remainder of the article is organized as follows. Section 2 discusses the mathemat-
ical considerations on the Koopman operator theory. Section 3 presents the numerical
method developed for reduced-order modelling. Section 4 presents the test problem,
consisting in nonlinear Saint-Venant equations dynamical model. A qualitative study of
the reduced-order model is conducted in the case of two experiments. A summary and
conclusions are given in Section 5.
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2. Mathematical considerations on the Koopman operator

Let Ω ⊂ Rn be a compact and non-empty space. Let

L2 (Ω) =

{
ψ : Ω→ R

∣∣∣∣ ∫
Ω

|ψ|
2

dΩ <∞

}
(1)

be a Hilbert space of square integrable functions on Ω, endowed with the inner product
〈ψi, ψj〉 =

∫
Ω
ψiψjdΩ and the norm ‖ψ‖ =

√
〈ψ,ψ〉 for ψ ∈ L2 (Ω).

Let us consider a nonautonomous continuous-time dynamical system on domain Ω ⊂
Rn governed by the nonlinear ordinary differential equation{

dy
dt (x, t) = f (y, u, t) , t ∈ R≥0

y (x, t0) = y0 (x)
(2)

where the map f is locally Lipschitz continuous, x ∈ Rn is the Cartesian coordinate
vector, u ∈ Rm is the input vector, with n � m. Forward invariance of the set Ω ⊂ Rn
w.r.t. system dynamics (2) is assumed, i.e. any solution y (x, t) ∈ Ω, t ≥ 0 holds for all
y0.

Definition 1. Dimensionality reduction in reduced-order modelling. The prin-
ciple of modal reduction aims to finding an approximation solution of the form y (x, t) ≈

p∑
j=1

aj (t)ψj (x), t ∈ R≥0

daj(t)
dt = g (t) , aj (t0) = a0

j

(3)

expecting that this approximation becomes exact as p → ∞, assuring preservation of dy-
namic stability, computational stability, and a small global approximation error compared
to the true solution of (2).

Let us consider a scalar observable function ϕ : Ω→ C, u = ϕ (y), y ∈ Ω, t ∈ R≥0 with
a smooth and Lipschitz continuous flow F t : Ω→ Ω:

F t (y0) = y0 +

∫ t0+t

t0

f (y (τ)) dτ, (4)

which is forward-complete, i.e. the flow F t (y) has a unique solution on R≥0 from any
initial condition y0.

The system class that fits the aforementioned assumption is quite vast and encompasses
a wide range of physical systems, including whirling flows, shallow water flows, convection-
diffusion processes, and so on.

The Koopman operator describes the propagation of state space observables over time.
An observable might be any sort of system measurement or the dynamical reaction of the
system. The recurrence of a fixed time-t flow map, i.e. sequential compositions of the
map with itself, is assumed to describe the dynamical development.

Definition 2. Koopman operator. For dynamical systems of type (2), the semigroup
of Koopman operators {Kt}t∈R≥0

: Ω→ Ω acts on scalar observable functions ϕ : Ω→ C
by composition with the flow semigroup {F t}t∈R≥0

of the vector field f :

Ktϕ = ϕ
(
F t
)
. (5)

The Koopman operator is also known as the composition operator.
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Proposition 1. Linearity of the Koopman operator. Consider the Koopman op-
erator Kt and two observables ϕ1, ϕ2 ∈ Ω and the scalar α ∈ R. Using (5) it follows
that:

Kt (αϕ1 + βϕ2) = (αϕ1 + βϕ2)
(
F t
)

= αϕ1

(
F t
)

+ βϕ2

(
F t
)

= αKtϕ1 + βKtϕ2. (6)

Definition 3. Infinitesimal generator. Let us assume that there is a generator GK :
F → Ω, F being the domain of the generator and Ω the Banach space of observables.
The operator GK stands as the infinitesimal generator of the time-t indexed semigroup of
Koopman operators {Kt}t∈R≥0

, i.e.

GKϕ = lim
t↘0

Ktϕ− ϕ
t

=
dϕ

dt
. (7)

Definition 4. Koopman eigenfunction. An observable φ ∈ Ω is called a Koopman
eigenfunction if it satisfies the relation:

GKφ (y) =
dφ

dt
(y) = sφ (y) , (8)

associated with the complex eigenvalue s ∈ C.

Definition 5. Koopman mode. Let φi ∈ Ω be an eigenfunction for the Koopman
operator, corresponding to eigenvalue λi. For an observable ϕ : Ω → C, the Koopman
mode corresponding to φi is the projection of ϕ onto span {φi}.

Theorem 1. Koopman Spectral Decomposition. Any observable ϕ : Ω→ C admits
a Koopman spectral decomposition of the following form:

ϕ (y) =

∞∑
j=1

aj (ϕ)λtjφj , (9)

where λtj = esjt w.r.t. sj = σj + iωj with eigen-decay/growth σj and eigenfrequencies ωj.

Proof. Since for any semigroup of Koopman operators {Kt}t∈R≥0
, exists an infinitesimal

generator GK, the following relation is satisfied for any λt = est:

Ktφ (y) = φ
(
F t (y)

)
= λtφ (y) . (10)

Let us consider that the space Ω is chosen to be a Banach algebra, i.e. the set of
eigenfunctions forms an Abelian semigroup under product of functions. If φ1, φ2 ∈ Ω
are two eigenfunctions of the composition operator Kt with eigenvalues λ1, λ2, then the
function product φ1φ2 is also an eigenfunction of Kt with the eigenvalue λ1λ2. Thus,
products of eigenfunctions are, again, eigenfunctions. It follows that, for any observable
function written in the following form:

ϕ (y) =

∞∑
j=0

aj (ϕ)φj (y), (11)

the Koopman operator acts as follows:

Ktϕ =

∞∑
j=1

aj (ϕ)
(
Ktφj

)
=

∞∑
j=1

aj (ϕ)λtjφj . (12)

�
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3. Reduced-order modelling based on Koopman operator

Dynamic Mode Decomposition (DMD) [17, 18, 19, 20] , is a data-driven approach
for estimating the modes and eigenvalues of the Koopman operator without numerically
executing a Laplace transform. DMD has emerged as a popular approach for finding
spatial-temporal coherent patterns in high-dimensional data, with a strong connection to
nonlinear dynamical systems via the Koopman mode theory [9, 21]. We present in the
following an improved numerical algorithm based on dynamic mode decomposition.

Let us consider a set of observables in the following form:

ui (x, t) = u (x, ti) , ti = i∆t, i = 0, ..., Nt (13)

at a constant sampling time ∆t, x representing the spatial coordinates, whether Cartesian
or Cylindrical.

A data matrix whose columns represent the individual data samples, called the snap-
shot matrix, is constructed in the following manner:

V =
[
u0 u1 ... uNt

]
∈ RNx×(Nt+1) (14)

Each column ui is a vector with Nx components, representing the numerical measure-
ments.

The Koopman decomposition theory assumes that an infinitesimal operator Kt exists
that maps every vector column onto the next one:{

u0, u1 = Ktu0, u2 = Ktu1 =
(
Kt
)2
u0, . .., uNt = KtuNt−1 =

(
Kt
)Nt

u0

}
. (15)

Our aim is to build the best numerical approximation of the Koopman operator using
the DMD technique. The next step consists in forming two data matrices from the
observables sequence, in the form:

V0 =
[
u0 u1 ... uNt−1

]
∈ RNx×Nt , V1 =

[
u1 u2 ... uNt

]
∈ RNx×Nt . (16)

Assume that over a sufficiently long sequence of snapshots, the latest snapshot may be
expressed as a linear combination of preceding vectors, so that:

uNt = c0u0 + c1u1 + ...+ cNt−1uNt−1 +R, (17)

where ci ∈ R, i = 0, ..., N − 1 and R is the residual vector. The following relations are
true:

{u1, u2, ...uNt
} = Kt {u0, u1, ...uNt−1} = {u1, u2, ..., V0c}+R, (18)

where c =
(
c0 c1 ... cN−1

)T
is the unknown column vector. Eq.(18) is equivalent

to the following relation:

KtV0 = V0S +R, S =


0 ... 0 c0
1 0 c1
...

...
...

...
0 . . . 1 cNt−1

 , (19)

where S is the companion matrix.
The relationship (19) is true when the residual is minimized. It follows that the vector

c must be chosen such that R is orthogonal to span {u0, ..., uNt−1}. The goal of dynamic
mode decomposition is to solve the eigenvalue problem of the companion matrix:

V1 = KtV0 = V0S +R, (20)

where S approximates the eigenvalues of the Koopman operator Kt when ‖R‖2 → 0.
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As a direct result of resolving the minimization problem (20), minimizing the residual
enhances overall convergence, and so the eigenvalues and eigenvectors of S will converge
toward the eigenvalues and eigenvectors of the Koopman operator, respectively.

The advantage of this method is that the Koopman operator has an infinite number of
eigenvalues, whereas its DMD approximation is linear and has a finite number of terms.

Model reduction is highly dependent on the selection of dynamic modes. The super-
position of all Koopman modes, weighted by their amplitudes and complex frequencies,
approximates the whole data sequence, but some modes contribute insignificantly. In
this research, we create a reduced-order model of the data that only includes the most
important modes that make a substantial contribution to the representation of the data,
which we refer to as the leading modes.

The data snapshots at every time step will be represented as a Koopman spectral
decomposition of the form:

uDMD (x, ti) =

NDMD∑
j=1

aj (ti)λ
i−1
j φj (x), i ∈ {1, ..., Nt} , ti ∈ {t1, ..., tNt

} , (21)

where NDMD � Nt represents the number of Koopman leading modes φ (x) involved
in the spectral decomposition of data snapshots, λj are the Koopman eigenvalues, and
aj ∈ C are the modal amplitudes of the Koopman modes, respectively.

The leading modes indicate a subset of Koopman modes that will be chosen from all
computed DMD modes using an original criterion, discussed in the following.

We define the weight of each Koopman mode as follows:

wKj =

tNt∫
∆t

Nt∑
i=1

aj (t)λi−1
j dt, (22)

where λj are the Koopman eigenvalues, and aj ∈ C are the modal amplitudes of the
Koopman modes, respectively.

Let

ErDMD =
‖u (x)− uDMD (x)‖2

‖u (x)‖2
, (23)

be the relative error of the difference between the variables of the full model and approx-
imate DMD solutions over the exact one, where u (x) represents the full solution of the
model and uDMD (x) represents the reduced order solution.

The leading dynamic modes and their related frequencies are chosen in descending
order of the modal entropy, until a minimal relative error of the reduced-order model is
obtained. To produce the reduced-order model amounts to finding the solution to the
following minimisation problem:

Find NDMD ∈ N, w.r.t. uDMD (x, ti) =
NDMD∑
j=1

ajφj (x)λi−1
j ,

i ∈ {1, ..., Nt} , ti ∈ {t1, ..., tNt} ,
Subject to arg min

NDMD

{wK1 > wK2 > ... > wKNDMD
, ErDMD ≤ ε} .

(24)

As a consequence, the modes and frequencies with the highest effect on approxima-
tion accuracy are selected to be included in the model with a reduced computational
complexity.
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4. Reduced-order modelling of Saint-Venant equations model

The test problem used in this paper consists of the nonlinear Saint-Venant equations
(also called the shallow water equations [22]) in a channel on the rotating earth:

∂
(
ũh̃
)

∂t
+
∂
(
ũ2h̃+ gh̃2/2

)
∂x

+
∂
(
ũṽh̃

)
∂y

= h̃

(
fṽ − g ∂H

∂x

)
, (25)

∂
(
ṽh̃
)

∂t
+
∂
(
ũṽh̃

)
∂x

+
∂
(
ṽ2h̃+ gh̃2/2

)
∂y

= h̃

(
−fũ− g ∂H

∂y

)
, (26)

∂h̃

∂t
+
∂
(
ũh̃
)

∂x
+
∂
(
ṽh̃
)

∂y
= 0, (27)

where ũ and ṽ are the velocity components in the x̃ and ỹ axis directions respectively,
h̃ represents the depth of the fluid, H (x, y) is the the orography field, f̃ is the Coriolis
factor and g is the acceleration of gravity.

The reference computational configuration is the rectangular 2D domain Ω = [0, Lmax]×
[0, Dmax]. Subscripts represent the derivatives with respect to time and the streamwise
and spanwise coordinates.

The Coriolis parameter is modelled as varying linearly in the spanwise direction, such
that

f̃ = f0 + β(ỹ −Dmax), (28)

where f0, β are constants, Lmax, Dmax are the dimensions of the rectangular domain of
integration.

The height of the orography is given by the fixed two-dimensional field

H (x, y) = αey
2−x2

. (29)

The model (25)-(27) is associated with periodic boundary conditions in the x̃-direction
and solid wall boundary condition in the ỹ-direction:

ũ
(
0, ỹ, t̃

)
= ũ

(
Lmax, ỹ, t̃

)
, ṽ
(
x̃, 0, t̃

)
= ṽ

(
x̃, Dmax, t̃

)
= 0, (30)

and also with the initial Grammeltvedt type condition [23] as the initial height field, which
propagates the energy in wave number one, in the streamwise direction:

h0 (x̃, ỹ) = H0+H1 tanh

(
10(Dmax/2− ỹ)

Dmax

)
+H2 sin

(
2πx̃

Lmax

)
cosh−2

(
20(Dmax/2− ỹ)

Dmax

)
.

(31)

Using the geostrophic relationship ũ = −h̃ỹ
(
g/f̃

)
, ṽ = h̃x̃

(
g/f̃

)
, the initial velocity

fields are derived as:

u0 (x̃, ỹ) = − g
f̃

10H1

Dmax

(
tanh2

(
5Dmax − 10ỹ

Dmax

)
− 1

)
−

18g

f̃
H2 sinh

(
10Dmax − 20ỹ

Dmax

) sin
(

2πx̃
Lmax

)
Dmaxcosh3

(
10Dmax−20ỹ

Dmax

) , (32)

v0 (x̃, ỹ) = 2πH2
g

f̃Lmax

cos

(
2πx̃

Lmax

)
cosh−2

(
20(Dmax/2− ỹ)

Dmax

)
. (33)

The constants used for the test problem are

f0 = 10−4s−1, α = 4000, β = 1.5× 10−11s−1m−1, g = 9.81ms−1,

Dmax= 60× 103m, Lmax= 265× 103m,
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H0 = 10× 103m, H1 = −700m, H2 = −400m.

The error of the numerical algorithm is set to be less than ε = 10−7. A non-dimensional
analysis was performed to assess the performances of the reduced-order shallow water
model. Reference quantities of the dependent and independent variables in the shallow
water model are considered, i.e. the length scale Lref = Lmax and the reference units
for the height and velocities, respectively, are given by the initial conditions href = h0,
uref = u0. A typical time scale is also considered, assuming the form tref = Lref/uref .

In order to make the system of equations (25)-(27) non-dimensional, the non-dimensional
variables

(t, x, y) =
(
t̃/tref , x̃/Lref , ỹ/Lref

)
, (h, u, v) =

(
h̃/href , ũ/uref , ṽ/uref

)
(34)

are introduced.
The numerical results are obtained employing a Lax-Wendroff finite difference dis-

cretization scheme [24] and used in further numerical experiments in dimensionless form.
The training data comprises a number of 289 unsteady solutions of the two-dimensional
shallow water equations model (25)-(27), at regularly spaced time intervals of ∆t = 1800s
for each solution variable.

The numerical results of two tests illustrating the computing performance of the ap-
proach are presented below. In the first experiment, the threshold is set to be ε = 10−3

for solving the optimization problem (24). In the second experiment, the threshold is set
at ε = 10−4 for solving the optimization problem (24).

Figures 1–3 present the spectrum of Koopman decomposition eigenvalues, of geopo-
tential height field h, streamwise field u and spanwise field v, respectively, in the case of
two experiments, and the leading Koopman modes selected by resolving the optimization
problem (24). In the second experiment, extra modes are selected (darker colored dots)
to improve the reduced-order model precision.

a.
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1

r

Koopman eigenvalues

b.

-1 -0.5 0 0.5 1

i

-1

-0.5

0

0.5

1

r
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Figure 1. The spectrum of Koopman decomposition of height field h: a)
in the first experiment

(
ε = 10−3

)
, 21 leading modes are selected (darker

colored dots); b) in the second experiment
(
ε = 10−4

)
, 67 leading modes

are selected (darker colored dots)

The representation of the height field compared to its reduced-order model is displayed
in Figures 4–5, in the case of both experiments.

The vorticity field compared to its reduced-order model is illustrated in Figures 6–7,
in the case of both experiments, at different time instances.

Table 1 presents the percentage reduction of the computational complexity of the
reduced-order model, in the two experiments performed.
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Figure 2. The spectrum of Koopman decomposition of streamwise field
u: a) in the first experiment

(
ε = 10−3

)
, 116 leading modes are selected

(darker colored dots); b) in the second experiment
(
ε = 10−4

)
, 199 lead-

ing modes are selected (darker colored dots)
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Figure 3. The spectrum of Koopman decomposition of spanwise field
v: a) in the first experiment

(
ε = 10−3

)
, 151 leading modes are selected

(darker colored dots); b) in the second experiment
(
ε = 10−4

)
, 212 lead-

ing modes are selected (darker colored dots)

Table 1. The percentage reduction of the computational complexity of
the reduced-order model

Full model Full model First test: Second test:
components rank Reduced-order rank, Reduced-order rank,

Percentage reduction Percentage reduction
Height field h 288 21, 92.70% 67, 76.73%

Streamwise field u 288 116, 59.72% 199, 30.90%
Spanwise field v 288 151, 47.56% 212, 26.38%

5. Conclusions

The current study concentrated on a topic of significant interest in fluid dynamics:
the identification of a model of reduced computational complexity from numerical code
output, based on Koopman operator Theory. The full model consisted in the Saint-
Venent equations model, that have been computed using a Lax-Wendroff finite difference



REDUCED-ORDER MODELLING BASED ON KOOPMAN OPERATOR THEORY 25

Full solution of geopotential height  field after T=50h
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Figure 4. Full solution of height field u after T = 50h, compared to
its reduced-order model, in the case of the first experiment, the relative
error is of order O

(
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Full solution of geopotential height  field after T=50h
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Reduced-order model of geopotential height field after T=50h
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Figure 5. Full solution of height field u after T = 50h, compared to its
reduced-order model, in the case of the second experiment, the relative
error is of order O

(
10−4

)
discretization scheme. The Koopman composition operator have been numerically ap-
proximated with the algorithm of reduced-order modelling, endowed with a novel crite-
rion of selection of the most influential Koopman modes, based on the modes weights.
It automatically selects the most representative Koopman modes, even if they exhibit
rapid development with lower amplitudes or are composed of high amplitude fast damped
modes.

Two tests were carried out in order to evaluate the algorithm’s computing efficiency in
order to enhance the reduced-order model precision. It was demonstrated that the model
rank may be decreased by up to 92% without compromising model accuracy.

This approach is a useful tool for creating reduced-order models of complex flow fields
characterized by non-linear models.
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Vorticity of the flow model after T=50  hours
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Vorticity of the reduced-order model after T=50  hours
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Figure 6. Vorticity field after T = 50h, compared to its reduced-order
model, in the case of the first experiment, the relative error is of order
O
(
10−3
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Vorticity of the flow model after T=90  hours
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Vorticity of the reduced-order model after T=90  hours
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Figure 7. Vorticity field after T = 90h, compared to its reduced-order
model, in the case of the second experiment, the relative error is of order
O
(
10−4

)
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