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A NEW TYPE RANDOM ITERATION SCHEME FOR RANDOM

COMMON FIXED POINT OF THREE OPERATORS

MUHAMMED EMIN BATUHAN AND ISA YILDIRIM

Abstract. In this paper, we introduce a random iteration scheme for three asymp-

totically nonexpansive random operators defined on a uniformly convex separable

Banach space and prove its convergence to a common fixed point of three random
operators.

1. Introduction

The study of random fixed points is a crucial subject in this paper. Špaček [13] first
proved the random fixed point theorems for random contraction mappings on separable
complete metric spaces in 1955. In his works on the subject that was first initiated by
Špaček, Hans [4, 5] furthered the study of random fixed points in his publications from
1957 and 1961. The random Ishikawa scheme was put forth in [3] to generate iterative
methods for finding fixed points of random operators defined on linear spaces. Recent
research has been devoted to the examination of fixed points of random operators, wherein
various scholars have explored the theoretical underpinnings and practical implications
of this topic (see [1, 3, 6, 7, 11]). After, Beg and Abbas in 2006, the work conducted by
Plubtieng et al. [8] concerned the weak and strong convergence theorems set up for a
modified Noor iterative scheme with errors that three-step asymptotically nonexpansive
mappings in the context of Banach spaces.

2. Preliminaries

Suppose that Θ is a nonempty subset of a Banach space X. Denote by (f,Σ) a
measurable space with Σ a sigma-algebra of subsets of f. For a given mapping f : f→ X,
we say that measurable mapping if f−1(U) ∈ Σ for each open subset U of X. We also
say that a measurable mapping f : f → X is the random fixed point of the random
map E : f × Θ → X if E(`, p(`)) = p(`), for each ` ∈ f. Denote by RF (E) and
Em(`, u0) the set of all random fixed points of a random map E and the m-th iterate
E(`, E(`, E(, . . . , E(`, u0)))) of E, respectively. Moreover, the letter I denotes the random
mapping I : f×Θ→ Θ defined by I(`, u0) = u0 and E0 = I.

Definition 1. Suppose that Θ is a nonempty subset of a separable Banach space X and
E : f×Θ→ Θ is a random map. The map E is said to be

(a) a nonexpansive random operator if arbitrary u0, υ0 ∈ Θ, one has

‖E(`, u0)− E(`, υ0)‖ ≤ ‖u0 − υ0‖ (1)

for each ` ∈ f;
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(b) an asymptotically nonexpansive random operator if there exists a sequence of mea-
surable mappings rm : f→ [0,∞) with limm→∞ µm(`) = 0, for each ` ∈ f, such that for
arbitrary u0, υ0 ∈ Θ

‖Em(`, u0)− Em(`, υ0)‖ ≤ (1 + µm(`)) ‖u0 − υ0‖ (2)

for each ` ∈ f;
(c) a uniformly L-Lipschitzian random operator if arbitrary u0, υ0 ∈ Θ, one has

‖Em(`, u0)− Em(`, υ0)‖ ≤ L‖u0 − υ0‖ (3)

where m = 1, 2, . . ., and L is a positive constant;
(d) a semi-compact random operator if for a sequence of measurable mappings {ξm}

from f to Θ, with limm→∞ ‖ξm(`)− E (`, ξm(`))‖ = 0,
for every ` ∈ f, one has a subsequence {ξmk

} of {ξm} and a measurable mapping
f : f→ Θ such that {ξmk

} converges to f as k →∞;
(e) completely continuous random operator if for every bounded sequence of measurable

mappings {ξm} from f to Θ, there exists a subsequence say {ξmk
} of {ξm} such that the

sequence {E (`, ξmk
(`))} converges to some element of the range of E for every ` ∈ f.

Definition 2. ([2]) Suppose that E : f × Θ → Θ is a random operator, where Θ is a
nonempty convex subset of a separable Banach space X. Suppose that f0 : f → Θ is a
measurable mapping from f to Θ. Moreover, suppose that sequences of functions {%m},
{ςm}, and {ξm} are defined as follows:

%m(ω) = α′′mE
m (ω, ξm(`)) + β′′mξm(`), (4)

ςm(ω) = α′mE
m (ω, %m(`)) + β′mξm(`),

ξm+1(ω) = αmE
m (ω, ςm(`)) + βmξm(`)

for each ` ∈ f, m = 0, 1, 2, . . ., where {αm} , {α′m} , {α′′m} , {βm} , {β′m}, and {β′′m} are
sequences of real numbers in [0, 1]. Obviously {%m}, {ςm}, and {ξm} are sequences of
measurable functions from f to Θ.

Beg and Abbas [2] obtained some fixed point results for weakly contractive and asymp-
totically nonexpansive random operators on arbitrary Banach spaces using the above
iterative process.

After, Plubtieng et al. [9] introduced random the following iterative processes with
errors for three asymptotically nonexpansive random operators and studied the necessary
conditions for the convergence of these processes. Their results extended and improved
the recent ones announced by Beg and Abbas [2].

Definition 3. Let E1, E2, E3 : f × Θ → Θ be three random operators, where Θ is a
nonempty convex subset of a separable Banach space X. Let ξ0 : f→ Θ be a measurable
mapping from f to Θ, let {fm} , {gm} , {hm} be bounded sequences of measurable functions
from f to Θ. Define sequences of functions {%m} , {ςm}, and {ξm}, as given below:

%m(`) = γmE
m
3 ξm(`) + γ′mξm(`) + γ′′mhm(`), (5)

ςm(`) = βmE
m
2 (`, %m(`)) + β′mξm(`) + β′′mgm(`),

ξm+1(`) = αmE
m
1 (`, ςm(`)) + α′mξm(`) + α′′mfm(`),

for each ` ∈ f, m = 0, 1, 2, . . ., where {αm} , {α′m} , {α′′m} , {βm} , {β′m} , {β′′m} , {γm} ,
{γ′m}, and {γ′′m} are sequences of real numbers in [0, 1] with αm +α′m +α′′m = βm +β′m +
β′′m = γm + γ′m + γ′′m = 1. Taking E1 = E2 = E3 ≡ E, and α′′m = β′′m = γ′′m ≡ 0 at the
above iteration, then (5) reduces to (4).
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Remark 1. If we take E : Θ→ Θ is an operator, where Θ is a nonempty convex subset
of a normed space X, then the iteration (4) reduces to Mann iteration (6). Also, taking
E1, E2, E3 : Θ→ Θ are three operators, where Θ is a nonempty convex subset of a normed
space X, then the iteration (5) reduces to Mann iteration with errors as follows:

%m = α′′mE
mξm + β′′mξm, (6)

ςm = α′mE
m%m + β′mξm,

ξm+1 = αmE
mςm + βmξm,

and

%m = γmE
m
3 ξm + γ′mξm + γ′′mhm, (7)

ςm = βmE
m
2 %m + β′mξm + β′′mgm,

ξm+1 = αmE
m
1 ςm + α′mξm + α′′mfm.

Based on the above studies, we define the following iteration, which is more effective
and useful than the above iterations. And, we obtain some convergence results of this
iteration for three asymptotically nonexpansive random operators. Our iteration process
is as follows:

Definition 4. Let E1, E2, E3 : f × Θ → Θ be three random operators, where Θ is a
nonempty convex subset of a separable Banach space X. Let ξ0 : f→ Θ be a measurable
mapping from f to Θ, let {fm} , {gm} , {hm} be bounded sequences of measurable functions
from f to Θ. Define sequences of functions {%m} , {ςm}, and {ξm}, as given below:

%m(`) = γmξm(`) + γ′mE
m
3 (ξm, `) + γ′′mhm(`), (8)

ςm(`) = βmE
m
2 (`, %m(`)) + β′mgm(`),

ξm+1(`) = αmE
m
1 (`, ςm(`)) + α′mfm(`),

for each ` ∈ f, m = 0, 1, 2, . . ., where {αm} , {βm} , {γm} , {α′m} , {β′m} , {γ′m}, and {γ′′m}
are sequences of real numbers in [0, 1] with αm + α′m = βm + β′m = γm + γ′m + γ′′m = 1.

Remark 2. If we take E : Θ→ Θ is an operator, where Θ is a nonempty convex subset
of a normed space X, then the iteration (4) reduces to the following iteration:

%m = γmξm + γ′mE
m
3 ξm + γ′′mhm, (9)

ςm = βmE
m
2 %m + β′mgm,

ξm+1 = αmE
m
1 ςm + α′mfm,

In the sequel, we will need the following lemma.

Lemma 1. ([12]) Let {ξm} , {%m} and {δm} be sequences of nonnegative real numbers
such that

ξm+1 ≤ (1 + δm) ξm + %m.

If
∑
δm <∞ and

∑
%m <∞, then

(i) limm→∞ ξm exists,
(ii) limm→∞ ξm = 0 whenever lim infm→∞ ξm = 0.

Lemma 2. ([10]) Let X be a uniformly convex Banach space with ξm, %m ∈ X, real
numbers r ≥ 0, α, β ∈ (0, 1), and let {αm} be a real sequence of numbers which satisfies

(i) 0 < α ≤ αm ≤ β < 1, for all m ≥ m0 and for some m0 ∈ N;
(ii) lim sup m→∞ ‖ξm‖ ≤ r and lim supm→∞ ‖%m‖ ≤ r;
(iii) limm→∞ ‖αmξm + (1− αm) %m‖ = r.
Then limm→∞ ‖ξm − %m‖ = 0.
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3. Main results

In this section, we will give the following two lemmas to prove our main results.

Lemma 3. Let X be a uniformly convex separable Banach space, let Θ be a nonempty
closed and convex subset of X. Let E1, E2, E3 be asymptotically nonexpansive random op-
erators from f×Θ to Θ with a sequence of measurable mappings µim(`) : f→ [0,∞) sat-

isfying
∑∞

m=1 µim(`) <∞, for each ` ∈ f and for all i = 1, 2, 3, and F =
⋂3

i=1RF (Ei) 6=
∅. Let {ξm(`)} be the sequence as defined by (8) with

∑∞
m=1 α

′
m < ∞,

∑∞
m=1 β

′
m < ∞,

and
∑∞

m=1 γ
′
m < ∞. Then limm→∞ ‖ξm(`)− p(`)‖ exists for all p(`) ∈ F and for each

` ∈ f.

Proof. Assume that p : f → Θ is the random common fixed point of the random opera-
tors E1, E2 and E3. Since {fm} , {gm}, and {hm} are bounded sequences of measurable
functions from f to Θ, there exists a finite number M(`) as follows:

M(`) = sup
m≥1
{‖fm(`)− p(`)‖ , ‖g(`)− p(`)‖ , ‖hm(`)− p(`)‖} . (10)

For all m ≥ 1, we write µm(`) = max{µim(`) | i = 1, 2, 3}. Then, we obtain µm(`) ≥
0, limm→0 µim(`) = 0, and

‖ξm+1(`)− p(`)‖ = ‖αmE
m
1 (`, ςm(`)) + α′mfm(`)− p(`)‖ (11)

≤ αm ‖Em
1 (`, ςm(`))− p(`)‖+ α′m ‖fm(`)− p(`)‖

≤ αm (1 + µm(`)) ‖ςm(`)− p(`) + lm‖
+ α′m ‖fm(`)− p(`)‖
≤ αm (1 + µm(`)M(`)) ‖ςm(`)− p(`)‖
+ αmlm + α′m ‖fm(`)− p(`)‖ .

Similarly, we obtain

‖ςm(`)− p(`)‖ ≤ βm (1 + µm(`)M(`)) ‖%m(`)− p(`)‖ (12)

+βmlm + β′m ‖gm(`)− p(`)‖ ,
and

‖%m(`)− p(`)‖ ≤ γm (1 + γm(`) + µm(`)M(`)) ‖ξm(`)− p(`)‖ (13)

+γ′mlm + γ′′m ‖hm(`)− p(`)‖ .
If we combine (13) in (12), we have

‖ςm(`)− p(`)‖ (14)

≤γmβm (1 + µm(`)M(`)) (1 + γm + µm(`)M(`)) ‖ξm(`)− p(`)‖
+ βm (1 + µm(`)M(`)) γ′mlm + βm (1 + µm(`)M(`)) γ′′m ‖hm(`)− p(`)‖
+ βmlm + β′m ‖gm(`)− p(`)‖

=γm (1− αm − γm) (1 + µm(`)M(`)) (1 + γm + µm(`)M(`)) ‖ξm(`)− p(`)‖
+ βmlm[1 + γ′m(1 + µm(`)M(`))] +mm(`)

≤ (1 + µm(`)M(`)) (1 + γm + µm(`)M(`)) ‖ξm(`)− p(`)‖
+ βmlm[1 + γ′m(1 + µm(`)M(`))] +mm(`)

where

mm(`) = βm (1 + µm(`)M(`)) γ′′m ‖hm(`)− p(`)‖+ β′m ‖gm(`)− p(`)‖ . (15)
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From the conditions in the hypothesis of the theorem, we get that
∑∞

m=1mm(`) <∞.
Substituting (14) in (11), we obtain

‖ξm+1(`)− p(`)‖ ≤αm (µm(`)M(`))
2

(1 + γm + µm(`)M(`)) ‖ξm(`)− p(`)‖ (16)

+ αm (1 + µm(`)M(`))βmlm[1 + γ′m(1 + µm(`)M(`))]

+ αm (1 + µm(`)M(`))mm(`) + αmlm + α′m ‖fm(`)− p(`)‖
≤ (1 + µm(`)) (1 + γm + µm(`)M(`)) ‖ξm(`)− p(`)‖

+ bm(`) + αmlm

where

bm(`) = αm (1 + µm(`)M(`))βmlm[1 + γ′m(1 + µm(`)M(`))] (17)

+αm (1 + µm(`)M(`))mm(`) + α′m ‖fm(`)− p(`)‖ .

This implies that
∑∞

m=1 µm(`) <∞ and
∑∞

m=1 bm(`) <∞. From Lemma 1, we obtain
that limm→∞ ‖ξm+1(`)− p(`)‖ exists for all ` ∈ f. This completes the proof. �

Lemma 4. Let X be a uniformly convex separable Banach space, and let Θ be a nonempty
closed and convex subset of X. Let E1, E2, E3 be asymptotically nonexpansive random
operators from f to Θ with sequence of measurable mappings µm(`) : f→ [0,∞) satisfying∑∞

m=1 µm(`) < ∞, for each ` ∈ f and for all i = 1, 2, 3, and F =
⋂3

i=1RF (Ei) 6= ∅.
Let {ξm(`)} be the sequence defined as in (8) with the following restrictions:

(1) 0 < α ≤ αm, βm, γm ≤ 1− α, for some α ∈ (0, 1), for all m ≥ m0,∃m0 ∈ N,
(2)

∑∞
m=1 α

′ <∞,
∑∞

m=1 β
′
m <∞, and

∑∞
m=1 γ

′′
m <∞.

Then

lim
m→∞

‖Em
1 (`, ςm(`))− ξm(`)‖ = lim

m→∞
‖Em

2 (`, %m(`))− ξm(`)‖ (18)

= lim
m→∞

‖Em
3 (`, ξm(`))− ξm(`)‖ = 0,

for all ` ∈ f.

Proof. Let p(`) ∈ F . From Lemma 3, we know that limm→∞ ‖ξm+1(`)− p(`)‖ exists, for
all ` ∈ f. Let’s say limm→∞ ‖ξm(`)− p(`)‖ = r for some r ≥ 0. For each m ≥ 1, let
µm(`) = max {µim(`) | i = 1, 2, 3}. If we take lim sup of both sides of the inequality (14),
we obtain that

lim sup
m→∞

‖ςm(`)− p(`)‖ ≤ lim sup
m→∞

‖ξm(`)− p(`)‖ = r. (19)

From the definition of the operator E1 and (19), we have

lim sup
m→∞

‖Em
1 (`, ςm(`))− p(`)‖ ≤ lim sup

m→∞
(1 + µm(`)) ‖ςm(`)− p(`)‖ ≤ r. (20)

Now, consider the following inequality

lim sup
m→∞

‖Em
1 (`, ςm(`))− p(`) + α′m (fm(`)− ξm(`))‖ (21)

≤ lim sup
m→∞

‖Em
1 (`, ςm(`))− p(`)‖+ ‖α′m (fm(`)− ξm(`))‖ .

It follows from (20) and (21) that

lim sup
m→∞

‖Em
1 (`, ςm(`))− p(`) + α′m (fm(`)− ξm(`))‖ ≤ r. (22)

Using the triangle inequality, we obtain

lim sup
m→∞

‖ξm(`)− p(`) + α′m (fm(`)− ξm(`))‖ ≤ r. (23)
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From (8) and the definition of the operator E1, we also obtain that

r = lim
m→∞

‖ξm+1(`)− p(`)‖ (24)

= lim
m→∞

‖αmE
m
1 (`, ςm(`)) + α′mfm(`)− p(`)‖

= lim
m→∞

∥∥∥∥ αmE
m
1 (`, ςm(`)) + α′mfm(`)− (1− αm) p(`)− αmp(`)

+αmα
′
mfm(`)− αmα

′
mξm(`)− αmα

′
mfm(`) + αmα

′
mξm(`)

∥∥∥∥
= lim

m→∞
‖αm (Em

1 (`, ςm(`))− p(`) + α′m (fm(`)− ξm(`)))

+ (1− αm) (ξm(`)− p(`) + α′m (fm(`)− ξm(`))) ‖.

Using (22), (23) and Lemma 3, we have that

lim
m→∞

‖Em
1 (`, ςm(`))− ξm(`)‖ = 0. (25)

Now, we will prove that limm→∞ ‖Em
2 (`, %m(`))− ξm(`)‖ = 0. For all m ≥ 1,

‖ξm(`)− p(`)‖ ≤ ‖Em
1 (`, ςm(`))− ξm(`)‖+ ‖Em

1 (`, ςm(`))− p(`)‖ (26)

≤ ‖Em
1 (`, ςm(`))− ξm(`)‖+ (1 + µm(`)) ‖ςm(`)− ξm(`)‖ .

Since limm→∞ µm(`) = limm→∞ ‖Em
1 (`, ςm(`))− ξm(`)‖ = 0, it follows from (19) and

(26) that

r = lim
m→∞

‖ξm(`)− p(`)‖ ≤ lim inf
m→∞

‖ςm(`)− ξm(`)‖ (27)

≤ lim sup
m→∞

‖ςm(`)− ξm(`)‖ ≤ r.

Thus, limm→∞ ‖ςm(`)− p(`)‖ = r.
Taking (8), we get that

‖%m(`)− p(`)‖ ≤ (1 + µm(`)) ‖ξm(`)− p(`)‖
+γ′′m ‖h(`)− p(`)‖ .

Using boundedness of {hm(`)} and limm→∞ µm(`) = 0 = limm→∞ γ′′m, we have

lim sup
m→∞

‖%m(`)− p(`)‖ ≤ lim sup
m→∞

‖ξm(`)− p(`)‖ ≤ r

and

lim sup
m→∞

‖Em
2 (`, %m(`))− p(`)‖

≤ lim sup
m→∞

(1 + µm(`)) ‖(`, %m(`))− p(`)‖ ≤ r.

Next, we consider

‖Em
2 (`, %m(`))− p(`) + β′m (g(`)− ξm(`))‖ (28)

≤ ‖Em
2 (`, %m(`))− p(`)‖+ β′m ‖(gm(`)− ξm(`))‖ .

Taking lim sup in both sides at the above inequality, we get that

lim sup
m→∞

‖Em
2 (`, %m(`))− p(`) + β′m(gm(`)− ξm(`))‖ ≤ r.

From again the triangle inequality, we have

lim sup
m→∞

‖ξm(`)− p(`) + β′m(gm(`)− ξm(`))‖ ≤ r.
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Since limm→∞ ‖ςm(`)− p(`)‖ = r, we obtain

r = lim
m→∞

‖ξm(`)− p(`)‖ = lim
m→∞

‖βmEm
2 (`, %m(`)) + β′mgm(`)− p(`)‖ (29)

= lim
m→∞

∥∥∥∥ βm (Em
2 (`, %m(`))− p(`) + β′m (gm(`)− ξm(`)))

+ (1− βm) (ξm(`)− p(`) + β′m (gm(`)− ξm(`)))

∥∥∥∥ .
By Lemma 1, we get that

lim
m→∞

‖Em
2 (`, %m(`))− ξm(`)‖ = 0.

By using similarly argument as above, we have

lim
m→∞

‖Em
3 (`, ξm(`))− ξm(`)‖ = 0

for all ` ∈ f. This completes the proof. �

Theorem 1. Let Θ be a nonempty closed and convex subset of a uniformly convex sep-
arable Banach space X. Assume that one of E1, E2, E3 : f×Θ→ Θ is either completely
continuous or semi-compact asymptotically nonexpansive random operators with a se-
quence of measurable mappings µim(`) : f→ [0,∞) satisfying

∑∞
m=1 µim(`) <∞, for all

` ∈ f and for all i = 1, 2, 3 and F =
⋂3

i=1RF (Ei) 6= ∅. Moreover, assume that f0 is
a measurable mapping from f to Θ. Define the sequence of functions {ξm} , {ςm}, and
{%m} by (8) with {αm} , {α′m} , {βm} , {β′m} , {γm} , {γ′m} , and {γ′′m} satisfying

(1) 0 < α ≤ αm, α
′
m ≤ 1− α, for some α ∈ (0, 1), for all m ≥ m0,∃m0 ∈ N,

(2)
∑∞

m=1 α
′
m <∞,

∑∞
m=1 β

′
m <∞, and

∑∞
m=1 γ

′′
m <∞.

Then sequences {ξm} , {ςm}, and {%m} converge to a common random fixed point of F .

Proof. Let p : f→ Θ be the common random fixed point in F . From Lemma 4, we have

lim
m→∞

‖Em
1 (`, ξm(`))− ξm(`)‖ = lim

m→∞
‖Em

2 (`, ςm(`))− ξm(`)‖ (30)

= lim
m→∞

‖Em
3 (`, ξm(`))− ξm(`)‖ = 0

for all ` ∈ f. This implies that ‖ξm+1(`)− ξm(`)‖ ≤ αm ‖Em
1 (`, ςm(`))− ξm(`)‖+

α′m ‖fm(`)− ξm(`)‖ → 0, as m → ∞, for all ` ∈ f. Using the triangle inequality, we
get that

‖Em
1 (`, ξm+1(`))− ξm+1(`)‖ ≤ ‖Em

1 (`, ξm+1(`))− Em
1 (`, ξm(`))‖ (31)

+ ‖Em
1 ξm(`)− ξm(`)‖+ ‖ξm(`)− ξm+1(`)‖

≤ (1 + µm(`)) ‖ξm+1(`)− ξm(`)‖+ ‖Em
1 (`, ξm(`))− ξm(`)‖

+ ‖ξm(`)− ξm+1(`)‖ −→ 0, as m −→∞,

for all ` ∈ f. Using (31), we have

‖E1 (`, ξm+1(`))− ξm+1(`)‖ (32)

≤
∥∥E1 (`, ξm+1(`))− Em+1

1 (`, ξm(`))
∥∥+

∥∥Em+1
1 (`, ξm+1(`))− ξm+1(`)

∥∥
≤ (1 + µm(`)) ‖ξm+1(`)− Em

1 ξm+1(`)‖
+
∥∥Em+1

1 (`, ξm+1(`))− ξm+1(`)
∥∥ −→ 0, as m −→∞,

for each ` ∈ f. Then, we have limm→∞ ‖E1 (`, ξm(`))− ξm(`)‖ = 0 for all ` ∈ f.
Similarly, we can show that

lim
m→∞

‖E2 (`, ξm(`))− ξm(`)‖ = lim
m→∞

‖E3 (`, ξm(`))− ξm(`)‖ = 0. (33)

Suppose that E1 is a semicompact continuous random operator and
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limm→∞ ‖E1 (`, ξm(`))− ξm(`)‖ = 0 for all ` ∈ f, then there exist a subsequence
{ξmk

} of {ξm} and a measurable mapping ξ0 : f→ Θ such that ξmk
converges to ξ0. The

mapping ξ0 : f→ Θ, being a limit of measurable mappings {ξmk
}, is measurable. Now,

lim
k→∞

‖ξmk
(`)− E1 (`, ξmk

(`))‖ = ‖ξ0(`)− E1 (`, ξ0(`))‖ = 0 (34)

for all ` ∈ f. Thus, ξ0(`) is a random fixed point of E1. Since the limit limm→∞
‖ξm(`)− ξ0(`)‖ exists, we write limm→∞ ξm(`) = ξ0(`) for all ` ∈ f. That is, using
similarly method, we can show that ξ0(`) is also a random fixed point of E2 and E3. Note
that

‖ςm(`)− ξm(`)‖ ≤ βm‖Em
2 (`, %m(`))− ξm(`) ‖+β′m‖ gm(`)− ξm(`)‖ → 0, (35)

and

‖%m(`)− ξm(`)‖ ≤ γ′m ‖Em
3 (`, ξm(`))− ξm(`)‖+ γ′′m ‖hm(`)− ξm(`)‖ → 0, (36)

as m→∞, for all ` ∈ f. Then, limm→∞ ςm(`) = ξ0(`) and limm→∞ %m(`) = ξ0(`) for
all ` ∈ f. Thus {ξm} , {ςm}, and {%m} converge to a common random fixed point in F .

Now, we suppose that one of E1, E2, E3 : f×Θ→ Θ is completely continuous random
operator, say E1, then there exists a subsequence {E1 (`, ξmk

(`))} of {E1 (`, ξm(`))} such
that E1 (`, ξmk

(`)) → ξ0(`) as k → ∞ which ξ0 : f → Θ is a measurable mapping for
all ` ∈ f. From Lemma 4, we know that limk→∞ ‖ξmk

(`)− E1 (`, ξmk
(`))‖ = 0. Using

the continuity of E1, we get that limk→∞ ξmk
(`) = ξ0(`) for all ` ∈ f. This implies

that E1 (`, ξ0(`)) = ξ0(`) for all ` ∈ f. Thus, ξ0(`) is a random fixed point of E1. From
Lemma 3, we know that limm→∞ ‖ξm(`)− ξ0(`)‖ exists and limk→∞ ‖ξmk

(`)− ξ0(`)‖ = 0
for all ` ∈ f. Therefore, limm→∞ ‖ξm(`)− ξ0(`)‖ = 0, that is limm→∞ ξm(`) = ξ0(`) for
all ` ∈ f. Using the same inequalities 35 and 36, we have limm→∞ ςm(`) = ξ0(`) and
limm→∞ %m(`) = ξ0(`) for all ` ∈ f. This completes the proof. �

If E1 = E2 = E3 := E and α′m = β′m = γ′′m ≡ 0 at 8, then we have the following
iteration process:

%m(`) = γmξm(`) + γ′mE
m
3 (ξm, `), (37)

ςm(`) = βmE
m
2 (`, %m(`)) ,

ξm+1(`) = αmE
m
1 (`, ςm(`)).

Then, we obtain the following result from Theorem 1.

Corollary 1. Let Θ be a nonempty closed bounded and convex subset of a uniformly
convex separable Banach space X. Let E : f × Θ → Θ be either completely continuous
or semi-compact asymptotically nonexpansive random operators with a sequence of mea-
surable mappings µim(`) : f → [0,∞) satisfying

∑∞
m=1 µim(`) < ∞, for all ` ∈ f and

RF (E) 6= ∅. Moreover, assume that f0 is a measurable mapping from f to Θ. Define the
sequence of functions {ξm} , {ςm}, and {%m} by (8) with {αm} , {βm} , {γm} , and {γ′m}
satisfying 0 < α ≤ αm ≤ 1 − α, for some α ∈ (0, 1), for all m ≥ m0,∃m0 ∈ N. Then
sequences {ξm} , {ςm}, and {%m} converge to a random fixed point of F .

4. Conclusions

In the presented paper, we introduce a new type iterative algorithm faster than the
other iterative algorithms in literature and use it for asymptotically nonexpansive random
operators. Moreover, we prove some strong convergence theorems for such mappings
under the appropriate conditions in uniformly convex Banach spaces.
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