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ON A REDUCTION METHOD USING MAX-PLUS ALGEBRA FOR A

INITIAL VALUE PROBLEM IN CLASSIC ALGEBRA AND THE

SOLUTION OF THE PROBLEM

ZELIHA AYDOĞMUŞ AND AHMET ÏPEK

Abstract. In this paper, we first will develop a reduction method in max-plus algebra

for the initial value problem given by
x(t + n) = max {an−1(t) + x(t + n− 1), · · · , a1(t) + x(t + 1),

a0(t) + x(t), f(t)}
x (t0) = c1, x (t0 + 1) = c2, · · · , x (t0 + n− 1) = cn.

and then we obtain the solutions to the this equation.

1. Introduction

Max-plus algebra Rmax = R ∪ {−∞} is an analogue of linear algebra and has many
analogies for linear algebra (see [1], [3] and [7]). Max-plus algebra Rmax = R ∪ {−∞} is
equipped with the operations: addition a⊕b = max(a, b) and multiplication a⊗b = a+b.
In max-plus algebra, ε = −∞ is a neutral element for ⊕ and e = 0 is a neutral element for
⊗. The fact that (Rmax,⊕,⊗, ε, e) algebraic structure is known as idempotent semiring.

If A = (aij) , B = (bij) are matrices with elements from Rmax of compatible sizes, then
the max-plus addition, product and scalar multiples of matrices are defined by

(A⊕B)ij = aij ⊕ bij ,

(A⊗B)ij =

⊕∑
k

aik ⊗ bkj = max
k

(aik + bkj)

and

(λ⊗A)ij = λ⊗ aij
for λ ∈ Rmax respectively.

Max-plus algebra is widely used in system theory and optimal control [8], scheduling
of energy flows [6], speech recognition [5] and control of an electroplating [9]. For a large
survey on max-plus algebra theory, we refer to books [1], [2] and [4].

In this paper, we first consider the initial value problem given by

x(t+ n) = max {an−1(t) + x(t+ n− 1), · · · , a1(t) + x(t+ 1),
a0(t) + x(t), f(t)}

x (t0) = c1, x (t0 + 1) = c2, · · · , x (t0 + n− 1) = cn.

 (1)

in classic algebra. Eq. (1) is an nth order difference equation for x(t), where a0(t), a1(t), . . . , an(t)
and f(t) are assumed known. Then, before seeking solutions to the difference equations
in (1) in Section 3, we will first develop techniques for reducing these equations to fun-
damental form in Section 2.
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2. Method of reduction

A method of reduction, particularly useful for difference equations defined by system
(1), is the following:
Step 1. Rewrite (1) in max-plus algebra: x(t+ n) = an−1(t)⊗ x(t+ n− 1)⊕ · · · ⊕ a1(t)⊗ x(t+ 1)

⊕a0(t)⊗ x(t)⊕ f(t)
x (t0) = c1, x (t0 + 1) = c2, · · · , x (t0 + n− 1) = cn.

(2)

Step 2. Define n new variables, x1(t), x2(t), . . . , xn(t) by the equations:

x1(t) = x(t)

x2(t) = x1(t + 1)

x3(t) = x2(t + 1)

... (3)

xn−1(t) = xn−2(t + 1)

xn(t) = xn−1(t + 1).

Step 3. It is immediate from system (3) that we also have the following relationships
between x1, x2, . . . , xn and the unknown x(t) :

x1(t) = x(t)

x2(t) = x(t+ 1)

x3(t) = x(t+ 2)

... (4)

xn−1(t) = x(t+ n− 2)

xn(t) = x(t+ n− 1)

and

xn(t + 1) = x(t+ n). (5)

Step 4. Rewrite x(t+ n) in (2) in terms of the new variables x1, x2, . . . , xn. Substituting
(4) and (5) into the equation (2), we obtain

xn(t + 1) =an−1(t)⊗ xn(t)⊕ · · · ⊕ a1(t)⊗ x2(t)

⊕ a0(t)⊗ x1(t)⊕ f(t).
(6)

Step 5. Form a system for x1, x2, . . . , xn. Using (4), (5) and (6), we obtain the system:

x1(t + 1) = x2(t)

x2(t + 1) = x3(t)

x3(t + 1) = x2(t)

... (7)

xn−2(t + 1) = xn−1(t)

xn−1(t + 1) = xn(t)

xn(t + 1) = a0(t)⊗ x1(t)⊕ a1(t)⊗ x2(t)

⊕ · · · ⊕ an−1(t)⊗ xn(t)⊕ f(t).
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Step 6. Put (7) into matrix form. Define

X(t) =



x1(t)
x2(t)
x3(t)

...
xn−1(t)
xn(t)


, X(t+ 1) =



x1(t+ 1)
x2(t+ 1)
x3(t+ 1)

...
xn−1(t+ 1)
xn(t+ 1)


, F (t) =



ε
ε
ε
...
ε
f(t)


and

A(t) =



ε 0 ε · · · ε ε
ε ε 0 · · · ε ε
ε ε ε · · · ε ε
...

...
...

...
...

...
ε ε ε · · · ε 0

a0(t) a1(t) a2(t) · · · an−2(t) an−1(t)


.

Then (7) can be written as:

X(t+ 1) = A(t)⊗X(t)⊕ F (t). (8)

Step 7. Rewrite the initial conditions in matrix form:

X (t0) =



x1 (t0)
x2 (t0)
x3 (t0)

...
xn−1 (t0)
xn (t0)


=



x (t0)
x (t0 + 1)
x (t0 + 2)

...
x (t0 + n− 2)
x (t0 + n− 1)


=



c1
c2
c3
...

cn−1

cn


.

Thus, if we define

C =



c1
c2
c3
...

cn−1

cn


the initial conditions can be put into matrix form

X (t0) = C. (9)

Consequently, Eqs. (8) and (9) together represent the fundamental form for (1):

X(t+ 1) = A(t)⊗X(t)⊕ F (t) (10)

X (t0) = C.

3. Solutions of matrix difference equations in max-plus algebra

In this section, firstly, if one has a homogeneous initial value problem (F (t) = 0) when
one reduces the initial value problem given by 1 to fundamental form, then we seek the
solution to the initial value problem in the fundamental form

X(t+ 1) = A(t)⊗X(t), t ≥ t0 (11)

X (t0) = C,
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where it is assumed that A(t) 6= 0 and A(t) are real-valued matrix function defined for
t ≥ t0 ≥ 0.
One may obtain the solution of 11 by a simple iteration:

X (t0 + 1) = A (t0)⊗X (t0) = A (t0)⊗ C
X (t0 + 2) = A (t0 + 1)⊗X (t0 + 1) = A (t0 + 1)⊗A (t0)⊗ C
X (t0 + 3) = A (t0 + 2)⊗X (t0 + 2) = A (t0 + 2)⊗A (t0 + 1)⊗A (t0)⊗ C.

Therefore, inductively, we obtain the solution of 11 that

X(t) = X (t0 + t− t0)

= A(t− 1)⊗A(t− 2)⊗ · · · ⊗A (t0)⊗X0

= A(t− 1)⊗A(t− 2)⊗ · · · ⊗A (t0)⊗ C

=

[
t−1⊗
i=t0

A(i)

]
⊗ C.

In this section, finally, if one has a nonhomogeneous initial value problem (F (t) 6= 0) when
one reduces the initial value problem given by 1 to fundamental form, then we seek the
solution to the initial value problem in the fundamental form

X(t+ 1) = A(t)⊗X(t)⊕ F (t), t ≥ t0 (12)

X (t0) = C,

where it is assumed that A(t) and F (t) are real-valued matrix functions defined for t ≥
t0 ≥ 0 and A(t) 6= 0.
The solution of the nonhomogeneous 12 may be found as follows. One may obtain the
solution of 12 by a simple iteration:

X (t0 + 1) = A (t0)⊗X0 ⊕ F (t0)

= A (t0)⊗ C ⊕ F (t0)

X (t0 + 2) = A (t0 + 1)⊗X (t0 + 1)⊕ F (t0 + 1)

= A (t0 + 1)⊗ [A (t0)⊗ C ⊕ F (t0)]⊕ F (t0 + 1)

= A (t0 + 1)⊗A (t0)⊗ C ⊕A (t0 + 1)⊗ F (t0)⊕ F (t0 + 1) .

We now use mathematical induction to show that, for all t ∈ Z+,

X(t) =

[
t−1⊗
i=t0

A(i)

]
⊗ C ⊕

t−1⊕
r=t0

[
t−1⊗

i=r+1

A(i)

]
⊗ F (r) (13)

To establish this, assume that formula 13 holds for t = k. Notice that we have adopted

the notation
k
⊗

i=k+1
A(i) = 1 and

k
⊕

i=k+1
A(i) = 0. Then from 12,

X(t+ 1) = A(t)⊗X(t)⊕ F (t),
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which by formula 13 yields

X(t+ 1) = A(k)⊗X(k)⊕ F (k)

= A (k)⊗
{[

k−1
⊗

i=t0
A(i)

]
⊗ C

⊕
k−1
⊕

r=t0

[
k−1
⊗

i=r+1
A(i)

]
⊗ F (r)

}
⊕ F (k)

=

{
A(k)⊗

[
k−1
⊗

i=t0
A(i)

]
⊗ C

}
⊕
{

k−1
⊕

r=t0

[
A(k)⊗

k−1
⊗

i=r+1
A(i)

]
⊗ F (r)

}
⊕ F (k)

=

{[
k
⊗

i=t0
A(i)

]
⊗ C

}
⊕
{

k−1
⊕

r=t0

(
k
⊗

i=r+1
A(i)

)
⊗ F (r)

}
⊕
{(

k
⊗

i=k+1
A(i)

)
⊗ F (k)

}
=

{[
k
⊗

i=t0
A(i)

]
⊗ C

}
⊕
{

k
⊕

r=t0

(
k
⊗

i=r+1
A(i)

)
⊗ F (r)

}
Hence formula 13 holds for all t ∈ Z+.
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