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CONVERGENCE RESULTS FOR SEQUENTIAL HENSTOCK

STIELTJES INTEGRAL IN REAL VALUED SPACE

ILUEBE V.O. AND MOGBADEMU A.A.

Abstract. In this paper, we prove the convergence theorems for the Sequential Hen-

stock Stieltjes integral of the real valued functions and give an example to show its

applicability.

1. Introduction

In the early twentieth century, Mathematician sought to refine the rigorous foundation
of integration theory. Researchers like Denjoy, Perron, Henstock, Kursweil and Lebesgues
have made great achievements towards this end, with the recent one being the Henstock
integral, developed independently by R. Henstock and J. Kurzweil in 1955 and 1957 re-
spectively (see [1]-[11]). It is a kind of non-absolute integral which includes the Riemann,
Improper Riemann, Newton and Lebesgue integral. Paxton [11] examined a theory for a
specific definition of Henstock integral that was defined and called the Sequential Hen-
stock integral. The relevance of developing the theory of Sequential Henstock is to expand
the overall theory of integrals into more abstract mathematical settings involving the use
of generalised sequences. It is well known that the Henstock integral is equivalent to
the Denjoy integral, Perron integral and Denjoy-Perron integral. The equivalence of the
Henstock integral and Sequential Henstock integral has been discussed in Paxton [11].
The authors [7] have studied dominated and bounded convergence results of Sequential
Henstock Stieltjes Integral in real valued space. The aim of this paper is to prove a con-
vergence theorem of Sequential Henstock Stieltjes Integral in real valued space and give
an example to show its applicability.

Throughout this paper, we use R and N as set of real and natural numbers, {δn(x)}∞n=1 as
sequence of gauge functions of x ∈ [a, b] and Pn as sequence of partitions of subintervals
of a compact interval [a, b] for n = 1,2,3,...

Firstly, we recall the following definitions due to Paxton [11].

Definition 1. A gauge on [a, b] is a positive real-valued function δ : [a, b] → R+. This
gauge is δ-fine if [ui−1, ui] ⊂ [ti − δ(ti), ti + δ(ti)].

Definition 2. A sequence of tagged partition Pn of [a,b] is a finite collection of ordered
pairs Pn = {(u(i−1)n uin), tin}

mn
i=1 where [ui−1, ui] ∈ [a, b], u(i−1)n ≤ tin ≤ uin and a =

u0 < ui1 < ... < umn = b.
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Definition 3. (Henstock integral). A function f : [a, b] → R is Henstock integrable if
there exists a number α ∈ R such that for any ε > 0 there exists a positive gauge function
δ(x) > 0 such that

|
n∑
i=1

f(ti)(ui − ui−1)− α| < ε,

whenever P = {(u(i−1), ui), ti}ni=1 is a δn(x)−fine tagged partition on [a, b]. We say that

α is Henstock integral of f on [a, b] i.e α = (H)
∫ b
a
f . We use H[a, b] to denote the set of

all Henstock integrable functions on [a, b].

Definition 4. (Sequential Henstock integral). A function f : [a, b] → R is Sequential
Henstock integrable if there exists a number α ∈ R such that for any ε > 0 there exists a
sequence of positive gauge functions {δn(x)}∞n=1 such that

|
mn∑
i=1

f(tin)(uin − u(i−1)n)− α| < ε,

whenever Pn = {(u(i−1)n , uin), tin}
mn
i=1 is a δn(x)−fine tagged partition on [a, b]. We say

that α is Sequential Henstock integral of f on [a, b] i.e α = (SH)
∫ b
a
f . We use SH[a, b]

to denote the set of all Sequential Henstock integrable functions on [a, b].

Remark 1. If δn = δ where n = 1 in Definition 4, we have our definition for the Henstock
integral..

Definition 5. (Henstock Stieltjes Integral). Let g : [a, b]→ R be an increasing function.
A real valued function f : [a, b] → R is Henstock Stieltjes integrable with respect to g on
[a, b] if there exists a number α ∈ R such that for any ε > 0 there exists a positive gauge
functions δ(x) > 0 such that

|
n∑
i=1

f(ti)[g(ui)− g(ui−1)]− α| < ε,

whenever P = {(ui−1, ui), ti} is a δ − fine partition on [a, b]. We say that α is Henstock

Stieltjes integral of f on [a, b] i.e α = (HS)
∫ b
a
fdg. We use HS[a, b] to denote the set of

all Henstock Stieltjes integrable functions on [a, b].

We define newly the following:

Definition 6. (Sequential Henstock Stieltjes Integral). Let g : [a, b]→ R be an increasing
function. A function f : [a, b]→ R is Sequential Henstock Stieltjes integrable with respect
to g on [a, b] if there exists a number α ∈ R such that for any ε > 0 there exists a sequence
of positive gauge functions {δn(x)}∞n=1 such that

|
mn∑
i=1

f(tin)[g(uin − g(u(i−1)n))]− α| < ε,

whenever Pn = {(u(i−1)n , uin), tin}
mn
i=1 is a δn(x)−fine tagged partition on [a, b]. We say

that α is Sequential Henstock Stieltjes integral of f on [a, b] i.e α = (SHS)
∫ b
a
fdg. We

use SHS[a, b] to denote the set of all Sequential Henstock Stieltjes integrable functions on
[a, b].
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Definition 7. [11] Let fn : [a, b]→ R be a sequence of function for n ∈ N and a function
g : [a, b]→ R. Then fn is uniformly integrable with respect to g on [a, b] if

(i) The integral
∫ b
a
fndg exists for each n ∈ N.

(ii) for ε > 0 there exists a sequence of gauges δµ(x) = supn∈N{δn(x)}∞n=1 on [a, b] such
that the inequality

|
∫ b

a

fndg − U(fn, dg, Pn)| < ε,

holds for each δn(x)-fine partition Pn of [a, b] and for every n ∈ N

Next, we state the theorems on the basic properties of the Sequential Henstock Stieltjes
integral for real valued function.

Theorem 1. Let f1, f2 : [a, b]→ R be Sequential Henstock Steiltjes integrable with respect
to an increasing function g : [a, b]→ R and c ∈ R be a constant. Then

(i) If f1 ∈ SH(g, [a, b]) ≥ 0 and f2 ∈ SH(g, [a, b]) ≥ 0, then
∫
[a,b]

f1dg ≥ 0

and
∫
[a,b]

f
2
dg ≥ 0;

(ii) If cf1 ∈ SH(g, [a, b]) then
∫
[a,b]

cf1dg = c
∫
[a,b]

f1dg;

(iii) If (f1 + f2) ∈ SH(g, [a, b]), then
∫
[a,b]

(f1 + f2)dg =
∫
[a,b]

f1dg +
∫
[a,b]

f2dg;

(iv) If (f1, g)(x) ≤ (f2, g)(x) for all x ∈ [a, b], then
∫
[a,b]

f1dg ≤
∫
[a,b]

f
2
dg;

(v) If |f1, g| ∈ SH(g, [a, b]) , then |
∫
[a,b]

f1dg| =
∫
[a,b]
|f1dg|;

(vi) If |(f1, g(x))| ≤ k for all x ∈ [a, b], k ∈ R, then |
∫
[a,b]

f1dg| = k(b− a).

Proof. The proof of (i)-(vi) results follows easily from the Definition 6 and so the details
are omitted. �

Lemma 1. Let f, g : [a, b] → R be such that the integral
∫ b
a
fdg exists. Then, for any

ε > 0, there exists a sequence of gauges {δn(x)}∞n=1 on [a, b] such that for all δn(x)−fine
tagged partitions Pn = {([u(i−1)n , uin ], tin)} where [u(i−1)n , uin ] ∈ [a, b] and u(i−1)n ≤
tin ≤ uin we have

|U(f, dg, Pn)−
∫ b

a

fdg| < ε.

If {([u(i−1)n , uin ], tin)} : i = 1, 2, ..., n is an arbitrary system satisfying

a ≤ u0 ≤ tin ≤ u1n ≤ u2n ≤ ... ≤ u(i−1)n ≤ tin ≤ uin ≤ b, (1)

with

[u(i−1)n , uin ] ⊂ (tin − δn(tin), tin + δn(tin)),

then

|
n∑
i=1

(f(tin)(g(uin)− g(u(i−1)n))−
∫ b

a

fdg| < ε.

Proof. Assume the system {([u(i−1)n , uin)], tin : i ∈ 1, 2, ..., n} satisfies the (1). We set
u(i−1)n = a and uin = b. Now, let βn = 0 and i ∈ {0, 1, ..., n} be given. Assume
that uin > u(i−1)n , then if the sequence of gauges δn, δ0 are such that δ0 < δn on [a, b],
then every δ0 − fine partition of [a, b] is also δn − fine, so there are sequence of gauges
{δiµ(x)}∞n=1, µ ∈ R. So for every δiµ − fine partitions on [u(i−1)n , uin ] and δiµ − fine
partitions Pin = {([u(i−1)n , uin ], tin)} where u(i−1)n ≤ tin ≤ uin of [u(i−1)n , uin ] such that
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δin(x) ≤ δn(x) for x ∈ [u(i−1)n , uin ] and

|U(f, g, Pn)−
∫ b

a

fdg| < βn
n+ 1

,∀n ∈ N. (2)

Now, we form δn(x) − fine tagged partitions Qin = {([u(i−1)n , uin)], tin} of the interval
[a, b],such that

U(Q, g, Pn) =

n∑
i=1

f(tin)[g(uin)− g(u(i−1)n)] +

n∑
i=0

U(f, g, Pn).

If uin > u(i−1)n and we set U(f, g, Pn) = 0, then

|
n∑
i=1

(f(tin)[g(uin)− g(u(i−1)n)] +

n∑
i=0

U(f, g, Pn)−
n∑
i=0

U(f, g, Pn)−
∫ b

a

fdg|

= |U(Q, g, Pn)−
∫ b

a

fdg| < ε.

This together with (2) yields

|
n∑
i=1

(f(tin)[g(uin)− g(u(i−1)n)]−
∫ b

a

fdg|

≤ |U(Q, g, Pn)−
∫ b

a

fdg|+ |
n∑
i=0

U(f, g, Pn)−
∫ b

a

fdg|

< ε+ βn.

Since βn > 0 was arbitrary, (3) follows. This completes the proof.
The Saks’ Lemma plays a very important role in the proof of some of the theorems on
convergence.

�

2. Main results

Theorem 2. Let fn : [a, b]→ R be integrable with respect to a function g : [a, b]→ R
and suppose that lim

n→∞
fn(x) = f(x) for all x ∈ [a, b]. Then, there exists both integrals∫ b

a
fdg and lim

n→∞

∫ b

a

fn(x) and

∫ b

a

fdg = lim
n→∞

∫ b

a

fn(x)dg. (3)

Moreover,

lim
n→∞

fn(x)[ sup
tin∈[a,b]

|
∫ t

a

fndg −
∫ t

a

fdg|] = 0,

holds whenever g is bounded on [a, b].
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Proof. Let ε > 0, then for every δn(x)−fine tagged partitions Pn = {([u(i−1)n , uin ], tin)}
on [a, b],

U(f, dg, Pn) = limn→∞U(fn, dg, Pn).

Let n0 ∈ N such that

|U(fm, dg, Pn)− U(fn, dg, Pn)| < ε,

holds for all m,n ≥ n0; where

U(fm, dg, Pn) = |
n∑
i=1

(fm(tin)[g(uin)− g(u(i−1)n))]|.

By definition of uniform integrability, we have

|
∫ b

a

fmdg −
∫ b

a

fndg| = |
∫ b

a

fmdg −
n∑
i=1

fm(tin)[g(uin)− g(u(i−1)n)]

+

n∑
i=1

fm(tin)[g(uin)− g(u(i−1)n)]

−
n∑
i=1

fn(tin)[g(uin)− g(u(i−1)n)]

+

n∑
i=1

fn(tin)[g(uin)− g(u(i−1)n)]−
∫ b

a

fndg|

≤ |
∫ b

a

fmdg −
n∑
i=1

fm(tin)[g(uin)− g(u(i−1)n)]|

+|
n∑
i=1

fm(tin)[g(uin)− g(u(i−1)n)]

−
n∑
i=1

fn(tin)[g(uin)− g(u(i−1)n)]|

+|
n∑
i=1

fn(tin)[g(uin)− g(u(i−1)n)]−
∫ b

a

fndg|

< ε+ ε+ ε = 3ε,

for all m,n ≥ n0. In fact,
∫ b
a
fndg is a Cauchy Sequence and thus it has a finite limit, say

lim
n→∞

∫ b

a

fndg = α ∈ R.

Now, let Pn = {([u(i−1)n , uin ], tin)} be an arbitrary δn(x)- fine partitions of [a, b]. Choose
an ni ∈ N for i = 1, ..., r ∈ N such that

|U(fni , dg, Pn)− U(f, dg, Pn)| < ε

and

|
∫ b

a

fnidg − α| < ε.
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Then

|U(f, dg, Pn)− α| = |
n∑
i=1

f(tin)[g(uin)− g(u(i−1)n)]−
n∑
i=1

fni(tin)[g(uin)− g(u(i−1)n)]

+

n∑
i=1

fni(tin)[g(uin)− g(u(i−1)n)]−
∫ b

a

fnidg +

∫ b

a

fnidg − α|

≤ |
n∑
i=1

f(tin)[g(uin)− g(u(i−1)n)]−
n∑
i=1

fni(tin)[g(uin)− g(u(i−1)n)]|

+|
n∑
i=1

fni(tin)[g(uin)− g(u(i−1)n)]−
∫ b

a

fnidg|+ |
∫ b

a

fndg − α|

< 3ε.

It follows that ∫ b

a

fdg = α.

Let hn(x) = fn(x) − f(x), for n ∈ N and x ∈ [a, b]. Assume g is bounded on [a, b] and
suppose ε > 0, there exists a {δn(x)}∞n=1 such that for all δn(x)− fine tagged partitions
Pn = {([u(i−1)n , uin ], tin)} on [a, b] we have

|
∫ b

a

hndg − U(hn, dg, Pn)| < ε.

Since hn(x) → 0 for x ∈ [a, b] and g is bounded, there exists an n0 ∈ N such that

|hn(tin)|‖g‖ < ε

2n
for all n ≥ n0 and i ∈ {1, 2, ...n}.

Let x ∈ [a, b] be arbitrary and n ∈ N ∩ [n0,∞] be given and let i ∈ 1, ..., n be such that
x ∈ [u(i−1)n , uin ]. Then

|
∫ b

a

hndg| = |
∫ x

a

hndg −
mn∑
i=1

hn(tin)[g(uin)− g(u(i−1)n)) +

mn∑
i=1

hn(tin)[g(uin)− g(u(i−1)n))

−
∫ x

a

hndg +

mn∑
i=1

hn(tin)[g(uin)− g(u(i−1)n))−
mn∑
i=1

hn(tin)[g(x)− g(u(i−1)n))

+

mn∑
i=1

hn(tin)[g(x)− g(u(i−1)n))−
∫ b

x

hndg|

≤ |
∫ x

a

hndg −
mn∑
i=1

hn(tin)[g(uin)− g(u(i−1)n))|

+|
∫ b

x

hndg −
mn∈N∑
i=1

hn(tin)[g(uin)− g(u(i−1)n))|

+|
mn∑
i=1

|hn||g(uin)− g(u(i−1)n))| −
mn∑
i=1

|hn(tin)||g(x)− g(u(i−1)n)|

≤ |
∫ x

a

hndg −
mn∑
i=1

hn(tin)[g(uin)− g(u(i−1)n))|
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+|
∫ b

x

hndg −
mn∑
i=1

hn(tin)[g(uin)− g(u(i−1)n))|

+|
mn∑
i=1

|hn(tin)||g(uin)− g(u(i−1)n))− |hn(tin)|g(x)− g(u(i−1)n)|

= |
∫ x

a

hndg − hn(tin)[g(uin)− g(u(i−1)n))|,+|
∫ b

x

hndg − hn(tin)[g(uin)− g(u(i−1)n))|

≤ 2ε.

To summarise, we have shown that

|
∫ b

a

hndg| ≤ 2ε,

for all n ≥ n0 and x ∈ [a, b]. �

The following example shows that the boundedness of the integral and is essential to
ensure the uniform convergence of the definite integrals of the Sequential Henstock in (3).

Example 1. Let fn(x) =
1

n+ 1
, for x ∈ [a, b] and let g : [a, b] → R be arbitrary

with g(a) = 0, then {fn} tends pointwise on [a, b] to zero function. Furthermore, as

U(fn, dg, Pn) = (
1

n+ 1
), g(b) for each n ∈ N and sequence partitions Pn of [a, b] , we see

that
∫ b
a
fndg = (

1

n+ 1
)g(b), for each n ∈ N and the sequence {fn} is Sequential Henstock

Stieltjes uniformly integrable with respect to g. Suppose g is unbounded on the other hand,
then for any ε > 0 and for each n ∈ N, there is a x ∈ [a, b] such that

fn(x) = (
1

n+ 1
)g(x) > ε.

That is fn does not converge uniformly to the zero function.

3. Discussion and Conclusion

Convergence theorem connotes that the integrability of a sequence of functions is pre-
served by taking limits. In other words, suppose a sequence of integrable functions(fn)∞n=1

has a limit function f , then one can conclude that f is also integrable as well as the equal-
ity ∫

f = limn→∞

∫
fn.

The analysis of the dynamics of integrability of a sequence of function often produce
results that involve looking for sequence of functions (fn)∞n=1 that is approximants for
f or construct an integrable function, approximants and examine the existence of the
limit using the ε − δ definition. In this paper, we studied the convergence theorem of
Sequential Henstock Stieltjes integral in real space by introducing and applying new con-
cepts like Sequential Sak’s lemma to prove the convergence properties. and proving the
theorems on the Sequential Henstock Stieltjes integral. The results obtained show that
the integrability of the Sequential Henstock Stieltjes holds for convergence theorem for
sequence of function. equivalence between these family of Henstock integrals. To this
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end, an example to show the applicability of the result is also given.
Up until this research work, however, the convergence theory of Sequential Henstock
Stieltjes integral did not include definitions and theorems based on sequence and it is
in our viewpoint that the Sequential Henstock Steiltjes integral can be used to renew
the interest of integration theorists and researchers on convergence theory of Henstock
integral. In line with this, the results of this research can now be extended to studies in
more abstract spaces and applications arising from this as well as to the conclusion of
Sequential Henstock Stieltjes integral in introductory Calculus can be assessed for pos-
sible pedagogical benefits. In conclusion, can convergence result of Sequential Henstock
Stieltjes integral hold for classes of functions, such as step functions, measurable func-
tions, absolutely integrable functions? It is of the view of the authors that these problems
could be considered for further research.
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