
TJMM
14 (2022), No. 2, 159-168

IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

INVOLVING THE CAPUTO-HADAMARD FRACTIONAL

DERIVATIVE IN A BANACH SPACE

AMOURIA HAMMOU AND SAMIRA HAMANI

Abstract. In this paper we establish existence results for a class of initial value prob-

lems for impulsive fractional differential equations involving the Caputo-Hadamard
fractional derivative of order 1 < r ≤ 2.

1. Introduction

This paper deals with the existence of solutions to the initial value problem (IVP ) for
fractional order differential equations

CHDry(t) = f(t, y(t)), (1)

for a.e. t ∈ J = [a, T ], a > 0, t 6= tk, k = 1, ...,m, 1 < r ≤ 2,

∆y|t=tk = Ik(y(t−k )), k = 1, ...,m, (2)

∆y′|t=tk = Ik(y(t−k )), k = 1, ...,m, (3)

y(a) = y1, y
′(a) = y2 (4)

where CHDr is the Caputo-Hadamard fractional derivative, f : J ×E → E is a function,
Ik and overline Ik : E → E, k = 1, ...,m are functions, a = t0 < t1 < ... < tm < tm+1 = T
∆y|t=tk = y(t+k ) − y(t−k ), ∆y′|t=tk = y′(t+k ) − y′(t−k ), y(t+k ) = lim

ε→0+
y(tk + ε) and y(t−k ) =

lim
ε→0−

y(tk + ε) represent the right and left limits of y at t = tk, k = 1, ...,m and E is

a Banach space. Differential equations of fractional order have recently proved valuable
tools in the modeling of many phenomena in various fields of science and engineering.
Indeed, we can find numerous applications in viscoelasticity, electrochemistry, control,
porous media, electromagnetic, etc. There has been a significant development in theory
of fractional calculus and fractional ordinary and partial differential equations in recent
years; see e.g. The monographs of Hilfer [26], Kilbas et al. [29], Podlubny [35], Momani
et al. [33], and the papers by Agarwal et al. [2] and Benchohra et al. [12]. Applied
problems require the definitions of fractional derivatives allowing the utilization of phys-
ically interpretable initial data, that contain y(0), y′(0), and so on. Caputo’s fractional
derivative satisfies these demands. For more details concerning geometric and physical
interpretation of fractional derivatives of Riemann-Liouville type and Caputo type, see
[35]. However, the literature on Hadamard-type fractional differential equations has not
undergone as much development; see [4, 38]. The fractional derivative that Hadamard
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[22] introduced in 1892, differs from the aforementioned derivatives in the sense that the
kernel of the integral in the definition of Hadamard derivative contains a logarithmic
function of arbitrary exponent. Detailed descriptions of the Hadamard fractional deriv-
ative and integral can be found in [17, 18, 19]. Recently, Hadamard fractional calculus
is getting attention which is an important part of theory of fractional calculus ; see [29]
and [4, 17, 18, 19, 28, 30, 38]. A Caputo-type modification of the Hadamard fractional
derivative which is called the Caputo-Hadamard fractional derivative was given in [27],
and its fundamental theorems were proved in [20, 1].
The web site http://people.tuke.sk/igor.podlubny/, authored by Igor Podlubny contains
more information on fractional calculus and its applications, and hence it is very useful for
those that are interested in this field. The impulsive differential equations (for r ∈ N) have
become important in recent years as mathematical models of phenomena in both physical
and social sciences. There has been a significant development in impulsive theory, espe-
cially in the area of impulsive differential equations with fixed moments; see for instance
the monographs by Bainov and Simeonov [7], Benchohra et al [12], Lakshmikantham et
al. [31], Samoilenko and Perestyuk [37], and the references therein. In [16], Benchohra
and Slimani have initiated the study of fractional differential equations with impulses. To
the best knowledge of the authors, no papers exist in the literature devoted to differential
inclusions with Caputo-Hadamard fractional derivatives and impulses. Thus, the results
of the present paper initiate this study.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that are used
in the remainder of this paper.

Let J := [a, T ], let C([a, T ], E) be the Banach space of continuous functions y : [a, T ]→
E with the norm,

‖y‖ = sup{||y(t)||E : a ≤ t ≤ T},
and we denote by L1([a, T ], E) the Banach space of functions y : [a, T ] → E that are

Bohner integrable with norm

‖y‖L1 =
∫ T
a
||y(t)||Edt.

AC([a, T ], E) ix the space of functions y : [a, T ]→ E, which are absolutely continuous.
Let AC1([a, T ], E) the space of functions y : [a, T ] → E, that are absolutely continuous
and whose first derivative, y′, is absolutely continuous.
Let

V (t) = {v(t) : v ∈ V }, t ∈ J,
V (J) = {v(t) : v ∈ V, t ∈ J}.

Definition 1. ([29]). The Hadamard fractional integral of order r for a function h :
[1,+∞)→ R is defined as

Irh(t) =
1

Γ(r)

∫ t

1

(
log

t

s

)r−1
h(s)

s
ds, r > 0,

provided the integral exists.

Definition 2. ([29]). For a function h given on the interval [1,+∞), the r Hadamard
fractional-order derivative of his defined by

(HDrh)(t) =
1

Γ(n− r)

(
t
d

dt

)n ∫ t

1

(
log

t

s

)n−r−1
h(s)

s
ds,
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n− 1 < r ≤ n, n = [r] + 1, where [r] denotes the integer part of r and log(·) = loge(·).

Definition 3. ([27]). Let ACnδ [a, b] = {g : [a, b] → C, {δn−1g ∈ AC[a, b]} where δ = t ddt
0 < a < b < ∞ and let α ∈ C such that Re(α) ≥ 0. For a function g ∈ ACnδ [a, b], the
Caputo type Hadamard derivative of fractional order α is defined as follows

(i): If α ∈ N, then (CHDα
a g)(t) = 1

γ(n−α) (t ddt )
n
∫ t
a
(log t

s )n−α−1δng(s)dss ,

n− 1 < α < n, n = [Re(α)] + 1
(ii): If α = n ∈ N, then (CHDα

a g)(t) = δng(t),

where [Re(α)] denotes the integer part of the real number Re(α).

Lemma 1. Let y ∈ ACnδ [a, b] or Cnδ [a, b] and α ∈ C. Then

Iαa (CHDα
a y)(t) = y(t)−

n−1∑
k=0

δky(a)

k!

(
log

t

a

)k
. (5)

For convenience, we first recall the definition of the Kuratowski measure of noncom-
pactness, and summarize the main properties of this measure.

Definition 4. ([6, 8]) Let E be a Banach space and let ΩE be the family of bounded
subsets of E. The Kuratowski measure of noncompactness is the map α : ΩE → [0,∞)
defined by

α(B) = inf{ε > 0 : B ⊂
m⋃
j=1

Bj and diam(Bj) ≤ ε}, for B ∈ ΩE .

Properties: The Kuratowski measure of noncompactness satisfies the following prop-
erties (for details, see [8],[6]).

(1) α(B) = 0⇔ B is compact (B is relatively compact).
(2) α(B) = α(B).
(3) A ⊂ B ⇒ α(A) ≤ α(B).
(4) α(A+B) ≤ α(A) + α(B).
(5) α(cB) = |c|α(B), c ∈ R.
(6) α(conB) = α(B).

Here B and conB denote the closure and the convex hull of the bounded set B, respec-
tively.

Definition 5. A multivalued map F : J × E → E is said to be Carathéodory if

(1) t→ F (t, u) is measurable for each u ∈ E.
(2) u→ F (t, u) is upper semicontinuous for almost all t ∈ J .

Let us now recall the Mönch’s fixed point theorem and an important lemma.

Theorem 1. ([34],[3]) Let D be a bounded, closed and convex subset of a Banach space E
such that 0 ∈ D, and let N be a continuous mapping of D into itself. If the implications

V = coN(V ) or V = N(V ) ∪ {0} =⇒ α(V ) = 0, (6)

hold for every subset V of D, then N has a fixed point.

Lemma 2. ([21]) If V ⊂ C(J,E) is a bounded and equicontinuous set, then

(1) The function t→ α(V (t)) is continuous on J .
(2)

α

({∫
J

x(t)dt, x ∈ V
})
≤
∫
J

α(v(t))dt.
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3. Main results

Consider the set of functions

PC(J,E) =

{
y : J → E, y ∈ C2((tk, tk+1], E), k = 1, . . . ,m, and there exist
y(t+k ) and y(t−k ), k = 1, . . . ,m, with y(t−k ) = y(tk).

}
This set is a Banach space with the norm

‖y‖PC = sup{||y(t)||E : a ≤ t ≤ T},
also,

PC ′(J, E) =

{
y : J → E, y ∈ AC2

δ ((tk, tk+1], E), k = 1, . . . ,m, and there exist
y(t+k ) and y(t−k ), k = 1, . . . ,m, with, y(t−k ) = y(tk).

}
This set is a Banach space with the norm

‖y‖PC′ = sup{||y(t)||E : a ≤ t ≤ T}
Set

J ′ := J \ {t1, ..., tm}.

Definition 6. A function y2 ∈ PC(J,E) e PC ′(J,E) on J ′ is said to be a solution of
(1)-(4) if y satisfies the differential equation CHDry(t) = f(t, y(t)) on J ′, and satisfies
conditions (2)-(4).

To prove the existence of a solution to (1)-(4), we need the following auxiliary lemma.

Lemma 3. Let 1 < r ≤ 2 and let ρ ∈ AC(J ′,R). A function y is a solution of the
fractional integral equation

y(t) =



y1 + ay2 log
(
t
a

)
+ 1

Γ(r)

∫ t
a

(
log t

s

)r−1
ρ(s)dss , if t ∈ [a, t1]

y1 + ay2 log
(
t
a

)
+
∑m
k=1

log
(
t
tk

)
tkΓ(r−1)

∫ tk
tk−1

(
log tk

s

)r−2
ρ(s)dss

+ 1
Γ(r)

∫ t
tk

(
log t

s

)r−1
ρ(s)dss +

∑m
k=1 Ik(y(t−k ))

+
∑m
k=1 tk log

(
t
tk

)
Ik(y(t−k )), if t ∈ (tk, tk+1], k = 1, ...,m,

(7)

if and only if y is a solution of the fractional IVP

CHDr
ay(t) = ρ(t), for each, t ∈ J

′
, (8)

∆y|t=tk = Ik(y(t−k )), k = 1, ...,m, (9)

∆′y|t=tk = Ik(y(t−k )), k = 1, ...,m, (10)

y(a) = y1, y
′(a) = y2. (11)

Proof Let y be a solution of (8)-(11). Applying the Hadamard fractional integral of
order r to both sides of (8), using conditions (9)-(11) and Lemma 1 we get,
For t ∈ [a, t1],

y(t) = c1 + c2 log

(
t

a

)
+

1

Γ(r)

∫ t

a

(
log

t

s

)r−1

ρ(s)
ds

s
.

Hence, c1 = y(a) = y1 and c2 = y′(a) = y2, and so

y(t) = y1 + ay2 log

(
t

a

)
+

1

Γ(r)

∫ t

a

(
log

t

s

)r−1

ρ(s)
ds

s
.

If t ∈ (t1, t2],

y(t) = c1 + c2 log

(
t

a

)
+

1

Γ(r)

∫ t

t1

(
log

t

s

)r−1

ρ(s)
ds

s
. (12)
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We have

∆y|t=t1 = y(t+1 )− y(t−1 ),

and
I1(y(t−1 )) = c1 + c2 log

(
t1
a

)
−

(
y1 + ay2 log

(
t1
a

)
+ 1

Γ(r)

∫ t1
a

(
log t1

s

)r−1
ρ(s)dss

)
.

Hence,

c1 + c2 log

(
t1
a

)
= y1 + ay2 log

(
t1
a

)
+

1

Γ(r)

∫ t1

a

(
log

t1
s

)r−1

ρ(s)
ds

s
+ I1(y(t−1 ).

We have

∆y′|t=t1 = y′(t+1 )− y′(t−1 ),

and

I1(y(t−1 )) = c2
t1
−
(
a
t1

)
y2 + 1

t1Γ(r−1)

∫ t1
a

(
log t1

s

)r−2
ρ(s)dss .

Hence,

c2 = ay2 +
1

t1Γ(r − 1)

∫ t1

a

(
log

t1
s

)r−2

ρ(s)
ds

s
+ I1(y(t−1 )), (13)

and

c1 = y1 −
log( t1a )
t1Γ(r−1)

∫ t1
a

(
log t1

s

)r−2
ρ(s)dss

+ 1
Γ(r)

∫ t1
a

(
log t1

s

)r−1
ρ(s)dss + I1(y(t−1 ))− t1 log

(
t1
a

)
I1(y(t−1 ).

(14)

Then by (13)-(14) and (12), we have

y(t) = y1 + ay2 log
(
t
a

)
+

log
(
t
t1

)
t1Γ(r−1)

∫ t1
a

(
log t1

s

)r−2
ρ(s)dss

+ 1
Γ(r)

∫ t
t1

(
log t

s

)r−1
ρ(s)dss + I1(y(t−1 )) + t1 log

(
t
t1

)
I1(y(t−1 ).

If t ∈ (tk, tk+1], then again from Lemma 1, we obtain (7). Conversely, assume that y satis-
fies the impulsive fractional integral equation (7). If t ∈ [a, t1], then y(a) = y1, y

′(a) = y2,
and using that CHDr

a is the left inverse of Ira , we get

CHDr
ay(t) = ρ(t), for all t ∈ [a, t1].

Let t ∈ (tk, tk+1], k = 1, ...,m. We have CHDr
aC = 0, for any constant C, so

CHDr
ay(t) = ρ(t), for all t ∈ (tk, tk+1].

Also, we can easily show that

∆y|t=tk = Ik(y(t−k ), k = 1, ...,m,

∆y′|t=tk = Ik(y(t−k )), k = 1, ...,m.

�

Theorem 2. Assume the following hypotheses hold.

(H1) The function f : J × E → E satisfies Carathéodory conditions.
(H2) There exists p ∈ L1(J, R+) such that

‖f(t, y)‖ ≤ p(t)‖y‖ for a.e. t ∈ J and each y ∈ E.
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(H3) There exists a constant k∗ > 0 such that

‖Ik(y)‖ ≤ k∗‖y‖ for each y ∈ E.
(H4) There exists a constant k∗1 > 0 such that

‖Ik(y)‖ ≤ k∗1‖y‖ for each y ∈ E.
(H5) For each bounded set B ⊂ E, we have

α(f(t, B)) ≤ p(t)α(B).

(H6) For each bounded set B ⊂ E, we have

α(Ik(B)) ≤ k∗α(B), k = 1, ...,m.

(H7) For each bounded set B ⊂ E, we have

α(Ik(B)) ≤ k∗1α(B), k = 1, ...,m.

Then the IVP (1)-(4) has at least one solution in C(J,E), provided that

pm(log T )r

Γ(r)
+
p(logT )r

rΓ(r)
+mk∗ +mT log Tk∗1 <

1

2
. (15)

where
p = sup

t∈J
p(t).

Proof: Transform the problem (1)-(4) into a fixed point problem. Consider the oper-
ator

Ny(t) =



y1 + ay2 log
(
t
a

)
+ 1

Γ(r)

∫ t
a

(
log t

s

)r−1
f(s, y(s))dss , if t ∈ [a, t1]

y1 + ay2 log
(
t
a

)
+
∑m
k=1

log
(
t
tk

)
tkΓ(r−1)

∫ tk
tk−1

(
log tk

s

)r−2
f(s, y(s))dss

+ 1
Γ(r)

∫ t
tk

(
log t

s

)r−1
f(s, y(s))dss +

∑m
k=1 Ik(y(t−k ))

+
∑m
k=1 tk log

(
t
tk

)
Ik(y(t−k )), if t ∈ (tk, tk+1], k = 1, ...,m,

(16)

Clearly, from Lemma 3, the fixed points of N are solutions to (1)-(4).
Let R > 0 with |y1|+ |ay2| log T < R

2 and consider the set

DR = {y ∈ C(J,E) : ‖y‖∞ ≤ R}.
We shall show that N satisfies the assumptions of Mönch’s fixed point theorem. The
proof will be given in several steps.

Step 1: N is continuous.

Let {yn} be a sequence such that yn → y in C(J,E). Then, for each t ∈ J,

‖N(yn)(t)−N(y)(t)‖ ≤ 1
Γ(r−1)

∑m
k=1

∣∣∣∣ log
(
t
tk

)
tk

∣∣∣∣ ∫ tktk−1

∣∣(log tk
s

)∣∣r−2

‖f(s, yn(s))− f(s, y(s))‖dss
+ 1

Γ(r)

∫ t
tk

∣∣(log t
s

)∣∣r−1 ‖f(s, yn(s))− f(s, y(s))‖dss
+

∑m
k=1 ‖Ik(yn(t−k ))− Ik(y(t−k ))‖

+
∑m
k=1

∣∣∣tk log
(
t
tk

)∣∣∣ ‖Ik(yn(t−k ))− Ik(y(t−k ))‖.

Let ρ > 0 be such that
‖yn‖∞ ≤ ρ and ‖y‖∞ ≤ ρ.

By (H2)-(H3) we have

‖f(s, yn(s))− f(s, y(s))‖ ≤ 2ρp(s) := σ(s); σ ∈ L1(J,R+).
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Since f , Ik and Ik, k = 1, . . . ,m, are Carathéodory functions, the Lebesgue domi-
nated convergence theorem implies that

‖N(yn)−N(y)‖∞ → 0 as n→∞.

Step 2: N maps DR into itself.
For each y ∈ DR, by (H2),(H3),(H4) and (11), we have for each t ∈ J ,

‖(Ny)(t)‖ ≤ |y1|+ |ay2|
∣∣log

(
t
a

)∣∣+ 1
Γ(r−1)

∑m
k=1

∣∣∣∣ log
(
t
tk

)
tk

∣∣∣∣∫ tk
tk−1

∣∣(log tk
s

)∣∣r−2 ‖f(s, y(s)‖dss
+ 1

Γ(r)

∫ t
tk

∣∣(log t
s

)∣∣r−1 ‖f(s, y(s))‖dss
+
∑m
k=1 ‖Ik(y(t−k ))‖

+
∑m
k=1

∣∣∣tk log
(
t
tk

)∣∣∣ ‖Ik(y(t−k ))‖
≤ |y1|+ |ay2| log T + m log T

Γ(r−1)

∫ tk
tk−1

∣∣(log tk
s

)∣∣r−2
p‖y‖dss

+ 1
Γ(r)

∫ t
tk

∣∣(log t
s

)∣∣r−1
p‖y‖dss +mk∗‖y‖+mT log Tk∗1‖y‖

≤ |y1|+ |ay2| log T + pm(log T )r

Γ(r) ‖y‖+ p(logT )r

rΓ(r) ‖y‖+mk∗‖y‖+mT log Tk∗1‖y‖
≤ R

Step 3: N(DR) is bounded and equicontinuous.

By Step 2, it is obvious that N(DR) ⊂ C(J,E) is bounded. For the equicontinuity of
N(DR), let λ1, λ2 ∈ J, λ1 < λ2, and y ∈ DR. We have

‖(Ny)(λ2)− (Ny)(λ1)‖ =
∣∣∣ay2 log

(
λ2

λ1

)∣∣∣
+ 1

Γ(r−1)

∑
0<tk<(λ2−λ1)

∣∣∣∣ log
(
λ2
tk

)
tk

∣∣∣∣ ∫ tktk−1

∣∣(log tk
s

)∣∣r−2 ‖f(s, y(s)‖dss

+

∣∣∣∣∣ log(λ2λ1 )
s

∣∣∣∣∣
Γ(r−1)

∑
0<tk<λ1

∫ tk
tk−1

∣∣(log tk
s

)∣∣r−2 ‖f(s, y(s)‖dss
+ 1

Γ(r)

∫ t
tk

∣∣(log t
s

)∣∣r−1 ‖f(s, y(s))‖dss
+ 1

Γ(r)

∫ λ1

tk

[(
log λ2

s

)r−1 −
(
log λ1

s

)r−1
]
‖f(s, y(s))‖dss

+ 1
Γ(r)

∫ λ2

λ1

(
log λ2

s

)r−1 ‖f(s, y(s))‖dss
+
∑

0<tk<(λ2−λ1) ‖Ik(y(t−k ))‖
+
∑

0<tk<(λ2−λ1) |tk log
(
λ2

tk

)
|‖Ik(y(t−k ))‖

+ log
(
λ2

λ1

)∑
0<tk<λ1

|tk|‖Ik(y(t−k ))‖

≤
∣∣∣ay2 log

(
λ2

λ1

)∣∣∣
+ 1

Γ(r−1)

∑
0<tk<(λ2−λ1)

∣∣∣∣p log
(
λ2
tk

)
tk

∣∣∣∣ ∫ tktk−1

∣∣(log tk
s

)∣∣r−2 ds
s

+
p

∣∣∣∣∣ log(λ2λ1 )
s

∣∣∣∣∣
Γ(r−1)

∑
0<tk<λ1

∫ tk
tk−1

∣∣(log tk
s

)∣∣r−2 ds
s

+ 1
Γ(r)

∫ t
tk

∣∣p (log t
s

)∣∣r−1 ds
s

+ p
Γ(r)

∫ λ1

tk

[(
log λ2

s

)r−1 −
(
log λ1

s

)r−1
]
ds
s

+ p
Γ(r)

∫ λ2

λ1

(
log λ2

s

)r−1 ds
s
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+
∑

0<tk<(λ2−λ1) ‖Ik(y(t−k ))‖
+
∑

0<tk<(λ2−λ1) |tk log
(
λ2

tk

)
|‖Ik(y(t−k ))‖

+ log
(
λ2

λ1

)∑
0<tk<λ1

|tk|‖Ik(y(t−k ))‖
As λ1 −→ λ2, the right-hand side of the above inequality tends to zero.

Now let V be a subset of DR such that V ⊂ co(N(V ) ∪ {0}). V is bounded and
equicontinuous, and therefore the function t → ϑ(t) := α(V (t)) is continuous on J. By
(H2)-(H4), Lemma 2 , and the properties of the measure α we have for each t ∈ J,

ϑ(t) ≤ α(N(V )(t) ∪ {0})
≤ α(N(V )(t))

≤
∫ t
a
(p(s)m(log T )rα(V (s))ds

Γ(r) + p(s)(log T )rα(V (s))ds
rΓ(r)

+mk∗α(V (t)) +mT log Tk∗1α(V (t)))

≤ ‖ϑ‖∞
[
‖p‖L∞m(log T )r

Γ(r) + ‖p‖L∞ (log T )r

rΓ(r) +mk∗ +mT log Tk∗1

]
.

This means that

‖v‖∞
[
1− (

‖p‖L∞m(log T )r

Γ(r)
+
‖p‖L∞(logT )r

rΓ(r)
+mk∗ +mT log Tk∗1)

]
≤ 0.

By (15) it follows that ‖ϑ‖∞ = 0, that is, ϑ = 0 for each t ∈ J, and so V (t) is relatively
compact in E. In view of the Ascoli-Arzela theorem, V is relatively compact in DR.
Applying Theorem 1, we conclude that N has a fixed point which is a solution of the
problem (1)-(4).

�

4. An Example

Let E = l1 = {(y1, y2, ..., yn, ...)},
∑+∞
i=1 |yi| < +∞, be our Banach space with the norm

‖y‖E =

+∞∑
i=1

|yi|

We apply the main result of the paper Theorem 2 to the following system of fractional
differential equations

CHDry(t) =
2

9 + et
|yn(t)|, (17)

for a.e. t ∈ J = [a, e], a > 0, t 6= tk, k = 1, ...,m, 1 < r ≤ 2,

∆y|t= 3
2

=
1

3 + |yn( 3
2

−
)|
, (18)

∆y′|t= 3
2

=
1

5 + |yn( 3
2

−
)|
, (19)

y(a) = 0, y′(a) = 0, (20)

where
fn(t, x) =

xn
9 + et

(t, x) ∈ J × E,

and

Ik(x) =
1

3 + xn
,

Ik(x) =
1

5 + xn
,

y = (y1, ..., yn, ...).
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Setf = (f1, ..., fn, ...), clearly conditions (H1) and conditions (H2)− (H5) hold with

p(t) =
1

9 + et
,

and where the conditions (H3) − (H5) and (H6) − (H7) hold with k∗ = 1
3 and k∗1 = 1

5 .
We shall that condition (15) is satisfied for some r ∈ (1, 2]. Then by Theorem 2, the
problem (1)-(4) has a solution on [a, e] where (15) is satisfied with T = e and m = 1 .
Indeed

pm(log T )r

Γ(r)
+
p(logT )r

rΓ(r)
+mk∗ +mT log Tk∗1 <

1

2
,

if

Γ(r) >
30(r + 1)

r(9 + ee)(5− 6e)
,

which is satisfied for some r ∈ (1, 2]. Then, by Theorem 2, the problem (17)-(20) has a

solution on [a, e] for values of r satisfying Γ(r) > 30(r+1)
r(9+ee)(5−6e) .
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