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ON PHYSICAL AND MATHEMATICAL WAVE FRONTS IN

TEMPERATURE WAVES

NASSAR H.S. HAIDAR

Abstract. A rather ”tenuous” existence of mathematical wavefronts in parabolic

temperature waves is revealed to accompany a certain hyperbolicity dormant in these

waves. The revelation is based on a proof that temperature waves do satisfying a
certain new telegrapher’s equation, equivalent to Fourier’s heat conduction equation.

This parabolic-equivalent hyperbolic heat equation happens to be similar to the fa-

mous Cattaneo-Vernotte non-Fourier heat conduction equation. A basic result of this
work is that temperature waves can mathematically support proper wavefronts of

infinite span. Physically, however they can support wavefronts only in ”shortened”

form. The paper reports also on an associated shrinkage of a triangle for detectable
wavefronts of such waves, and on an unknown frequency dependence of the inclina-

tion of wavefronts in classical (parabolic) temperature waves. This, added to the
strong spatial damping and significant dispersion of these waves, has been forming a

pathological obstacle in the experimental verification of their support to conventional

wavefronts.

1. Introduction and problem formulation

The term temperature wave in the title implies that this quantity possesses oscillatory,
or discontinuous, behavior, with characteristics such as the wavefront (WF) and ray,
[1-3], its reflection and refraction at boundaries, and some kind of polarization, [4] when
orthogonal to other similar waves. Temperature waves (TWs) have been widely in use, [5-
7], during the 20-th century for the determination of thermophysical properties of solids,
especially at low temperatures. Afterwards, their additional applications have been found
in areas like nondestructive testing, [8], medicare, [9], and tomography, [10].

Like diffusional neutron density waves, which are transverse, [11], TWs experience
strong spatial attenuation and significant dispersion (frequency dependence of speed)
during propagation, [11-13]. In the next section we shall explain how a 1-D temperature
wave can physically have only a shortened wavefront (SWF), which is localized on the z−t
plane, and not an infinite line. What is unknown, moreover, and reported as Remark 2 in
this work, is the frequency dependence of the positioning slope of the SWF for these
waves. These facts, combined, make the experimental detection or verification of physical
WFs in them quite a difficult task. This situation has led many physicists to question the
proper wave nature of these temperature oscillations, which propagate without energy
transfer. Some of them have went further, using rather unsharpened arguments, even to
claim the nonexistence of physical WFs in them, [12-14]. Accordingly, it is a purpose of
this work to settle all such arguments, by providing a sharp mathematical-physics proof
of the existence of WFs in TWs.
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Classical (Fourier) heat conduction, [5-7], in a one dimensional semi-infinite medium,
< = [0,∞), is normally characterized by a temperature distribution

T (z, t) = Ts + θ(z, t) (1)

around a steady-state, Ts, reference temperature. T (z, t) is a solution to the following sin-
gular boundary value problem (BVP), with one additional Neumann boundary condition
(BC), (34), encompassing the heat flux I(z, t).

Solve:
1

α
∇tT −4zT = 0, (2)

subject to:

(i)− (ii) : T (z, t) <∞, ∀z, t ∈ [0,∞), (3)

where α is the thermal diffusivity.
The general solution of the underlying parabolic heat conduction equation (PHE), (13),

is well known not to support, [1], oscillatory forms. However, the presence of a periodic
heat source, or boundary heat flux,

I(0, t) = J(t) = Re

[
J0
2

(1 + eiωt)

]
, (4)

with an amplitude of J02 and frequency ω of time modulation, can generate travelling-wave
particular solutions that had conventionally been named around 1921, [5], as temperature
(or heat) waves. Unfortunately the strong spatial damping of these waves, which makes
them almost periodic in space (though still periodic in time), together with their signif-
icant dispersion, complicates any experimental verification of their proper wave nature,
[12], in the form of physical WFs or rays.

Revealing the existence, at least theoretically, of such rather tenuous physical WFs
calls for a re-evaluation of the physics foundations for TWs. In actual fact, Fourier’s law
∇zT = − 1

k I, satisfies the second law of thermodynamics, [2]. Also when substituted in
the first law of thermodynamics, it yields the PHE (2). Of major relevance here is the
concept of relaxation time γ between ∇zT and I, [15, 16], expressible via

I(z, t+ γ) = −k∇zT (z, t). (5)

Taylor series expansion of this leads to the non-Fourier heat conduction Markovian,
[15-17], law

γ∇tI + I = −k∇zT. (6)

This γ characterizes the transition to a diffusion mechanism for heat propagation and can
refer also to a certain relaxation time, [18-21].

Obviously, the parabolic HE is characterized by γ = 0 in (6), which leads to an infinite

heat disturbance propagation speed ς =
√

α
γ . Moreover, BVPs based on it can generate

T (z, t) that travel with a phase speed Vp =
√

2αω which can unrelativistically reach ∞
when ω →∞. Therefore Fourier’s law is incompatible with special relativity. To eliminate
this defect, a hyperbolic heat conduction equation (HHE), of the telegrapher’s type, with
finite heat disturbance propagation speed ς (γ 6= 0), was proposed by Cattaneo, [15], and
Vernotte, [16], in 1958. BVPs similar to (2)-(3), based on the hyperbolic HE of Cattaneo
and Vernotte (C-VHHE) turned out to generate a similar TW that travels with a phase
speed Vp that tends to ς, i.e. to become independent of modulation as ω increases, [12,
21-23].
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As to be demonstrated later, the expression for the hyperbolic TW, which supports
physical parabolic WFs, turns out to be qualitatively identical, and quantitatively quite
similar, to that for the parabolic TW. This should not be a surprise since in all common
materials, at ambient temperatures, γ is quite short (of the order of 10−14 − 10−10 sec),
[21-22], i.e. ≈ 0. Such a satisfactory performance of the parabolic HE happens also to
hold for almost all heat engineering applications. These and other facts motivate the need
for new methods for revealing the tenuously existing physical WFs in parabolic TWs.

At this point, it should be emphasized that for any periodic (or almost periodic)
solution, on a t−z plane, to a partial differential equation (PDE), one needs to distinguish
between two loosely related WFs. These are namely, the physical and mathematical
wavefronts (PWFs and MWFs), defined as follows.

Definition 1. A physical wavefront is a locus of points, F , on the z − t plane, that sta-
tionarize the phase of a periodic (or almost periodic) wave. A corresponding mathematical
wavefront, ℵ, is the locus of points of singular behavior of this wave, when conceived as a
general solution to a partial differential equation. The ℵ is the well-known PDE charac-
teristic, [1-2].

For an illustration of this definition, consider a wave PDE

1

c2
4t u−4zu = 0, (7)

which is known to have the characteristic(
∂u

∂t

)2

− c2
(
∂u

∂z

)2

= 0. (8)

This is equivalent to

c2(dt)2 − (dz)2 = 0, (9)

that yields the mathematical WF:

z ± ct = G $ ℵ. (10)

Furthermore, the particular solution u = cos(z ± ct) to this PDE stationarizes its phase
(z ± ct) via the physical WF:

z ± ct = Q $ F . (11)

Here G and Q are abitrary constants, and ℵ = F . However, this should not be true
for all boundary value problems, and the inter-relationship between F and ℵ is strongly
influenced by the hyperbolicity of the PDE, as shall be demonstrated in subsection 3.2.

The paper is organized as follows. A new concept of physically shortend WF is heuristi-
cally developed for the TW in Section 2. Section 3 reviews the derivation of the expression
for parabolic TWs and identifies their basic unique features, such as their energy non-
transfer and reducibility to a universal form. Section 4 studies the associated hyperbolic
TW based on the C-V hyperbolic heat equation with an analysis of their associated WFs
and their possible transformation as γ → 0. The main result of this paper is reported in
Section 5, which contains a constructive advance of a telegrapher’s equation, equivalent
to the parabolic heat equation, and similar (but different) from the non-Fourier C-V hy-
perbolic heat equation. In this section, we also provide a rigorous proof of the existence of
mathematical WFs in parabolic TWs, with a frequency dependence of their inclination.
The paper reports here on an associated shrinkage of a triangle for detectable wavefronts
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of all temperature waves. Then Section 6 reports on a possibility for an experimental ver-
ification of the existence of physically shortened WFs in TWs. The paper in concluded
in Section 7.

2. Heuristic analysis of physical wavefronts

In the absence of a universal definition for a physical wavefront (PWF) that may cover
temperature waves, we shall investigate in what follows this problem and the possibility
for its resolution.

Let R = (−∞,∞) be the real line or a 1-D Euclidean space and R+ = [0,∞) to

consider (r, t) as a 3-D position vector r = (x, y, z) ∈ R3 at time t ∈ R+. In 1-D, r , z,
where z is a point with a propagation following a trajectory (z, t) ∈ a curve L ⊂ R∪R+.

In 2-D, r , a curve following a trajectory (r, t) ∈ a surface ⊂ R2∪R+; whereas in in 3-D,

r , a surface with a trajectory (r, t) ∈ a solid body ⊂ R3 ∪ R+.

2.1. Nonharmonic undamped wave. Consider a 1-D progressive wave

u(z, t) = f

(
z

µ
− ωt+

π

4

)
. (12)

where 1
µ and ω are respectively spatial and temporal scaling factors, as in (36), with f (ξ)

as an arbitrary nonharmonic function.
The physical WF, F , for u(z, t) is defined as the set of (z, t) points satisfying

z

µ
− ωt+

π

4
= C, a constant. (13)

Assumption of ωµ = υ in (13) transforms it to

z − υt =
(
C − π

4

)
µ , L. (14)

The sketch of u(z, t) in Figure 1, over an R ∪ R+ plane, illustrates that the WF is an
infinite straight line L representing the locus of all (z, t) points of equal phase C, i.e.

z0
µ

+
π

4
=
z1
µ
− ωt1 +

π

4
=
zi
µ
− ωti +

π

4
= C, ∀i = 1, 2, 3, ..., (15)

where all the corresponding u(zi, ti) are identical, for example, crests i.e.

u(z0, 0) = f

(
z0
µ

+
π

4

)
= u(z1, t1) = f

(
z1
µ
− ωt1 +

π

4

)
= · · ·

· · · = u(zi, ti) = f

(
zi
µ
− ωti +

π

4

)
= f(C), ∀i. (16)

Let ψ be the angle between L and the t-axis. Since tan ψ = υ, then υ = tan−1ψ
determines the slope of L with the t-axis. Moreover t0 = −

(
C − π

4

)
1
ω and z0 =

(
C − π

4

)
µ

are the t and z intercepts of L. Therefore, a 1-D WF represents a point z0 on the z-axis
that moves in time, along this axis, according to the trajectory L.
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2.2. Temperature wave. Consider now a planar temperature wave, [11-12] (see (36))

θ(z, t) = Qe−
z
µ cos

(
z

µ
− ωt+

π

4

)
, (17)

in which Q is the amplitude and µ = µ(ω, α) =
√

2α
ω . Its temporal frequency and period

are ω = 2π
T and T = 2π

ω , respectively u(z, t) also has a spatial frequency 1
µ with a spatial

period d = 2πµ = 2π
√

2α
ω . The T and d are minimal time and space intervals for which

the following constraints

θ(z, t)− θ(z, t+ T ) = 0, (18)

θ(z, t)− θ(z + d, t) = 0, (19)

are satisfied, ∀ t, z.
The WF for this θ(z, t) wave can also be defined by means of (13). Taking into

consideration then that

ωµ = υ =
√

2αω and T =
d2

4πα
, (20)

in (13) leads to

z − υt =

(
C

2π
− 1

8

)
υT =

1

4πα

(
C

2π
− 1

8

)
υd2 , L. (21)

As in the case of nonharmonic f(ξ) , here also υ = tan−1ψ determines the slope of
L with the t-axis. Distinctively, however, the t and z intercepts of L are determined by
both C and d2,

t0 = − 1

4πα

(
C

2π
− 1

8

)
d2 and z0 =

1

4πα

(
C

2π
− 1

8

)
υd2. (22)

The arguments of the exponential and cosinusoidal functions in (17) are obviously dif-
ferent. Accordingly, the concept of (z, t) points of equal phase is rather meaningless or
inapplicable, when conceived globally over the entire domain for z (or effectively C) and
t. This justifies questioning the global existence of a PWF F for such a wave, [23], but
leaves the door open for its existence locally over some subdomain of the z − t plane
(Figure 1).

In this regard, we may heuristically advance the following localized analysis of the
problem of points of equal phase for (17). The physical WF F can approximately similarly
be defined via (13) where

z

µ
= C + ωt− π

4
, (23)

with υ and d2 playing the same role, as in (21), for L, but in an unusual form for which

θ(z, t) = Q e−(C+ωt−π4 )cos C , (24)

is a nonconstant, though Figure 1 illustrates also θ(z, t) of (17) as a wave form oscillating
in space and propagating in time.

This θ(z, t) can also be sketched, alternatively, as oscillating in time and propagating
in space. The infinite line L, representing the locus of all (z, t) points of (15) of equal
phase C is also exhibited in this figure, where

θ(z0, 0) = Q e−(C−π4 )cos C 6= θ(z1, t1) = Q e−(C+ωt1−π4 )cos C 6= · · ·

· · · 6= θ(zi, ti) = Q e−(C+ωti−π4 )cos C, ∀i. (25)



144 NASSAR H.S. HAIDAR

Figure 1. Sketch to illustrate the physical wafefront L for a nonhar-
monic undamped 1-D wave u(z, t), the physical wavefront F for a tem-
perature wave θ(z, t) and its associated shortened wavefront %

This means that F = L is not a locus of (z, t) points over which θ(z, t) is a constant.
Hence, generally speaking, this L does not represent a physical WF for the rather patho-
logical temperature wave. In a localized sense, however, it is possible to investigate the
following three distinct subdomains of the t− C plane.

i) If

ωti <<
(
C − π

4

)
, ∀i, (26)

then
θ(z0, 0) ≈ θ(z1, t1) ≈ · · · ≈ θ(zi, ti) ≈ Q e−(C−π4 )cos C, ∀i, (27)

to indicate that F ≈ % approximately exists as a locus % of (z, t) points of the same

Q e−(C−π4 )cos C temperature.
The rather uncertain size of % can obviously be increased by lowering ω and/or t or by

increasing C.
ii) For (

C − π

4

)
<< ωti , ∀i ≥ k, (28)

over some time interval (tk,∞) ⊂ R+. Here as ti becomes > tk,

θ(zk, tk) ≈ θ(zk+1, tk+1) = · · · = θ(z∞, t∞) = 0. (29)

This relation means that F ≈ %∗ exists locally over a time interval (tk,∞),∀C, as a
locus %∗ of (z, t) points of exclusively null temperatures.

iii) In the intermediate subdomain(
C − π

4

)
<< ωti << ωtk , (30)

the situation is seemingly more complex than for the subdomains of (i) or (ii). Here
one can conjecture that υ plays the same role for L as in the case of an undamped
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harmonic wave Qcosξ. Moreover, consistency with the reality of almost periodicity of the
TW suggests, however, that the role played by d2 in defining L should be played by an
intrinsic almost period d2ε, in the sense of Besicovitch, [1,3], defined via satisfaction of

‖θ(z, t)− θ(z + dε, t)‖ ≤ ε , (31)

which is a weak form of the (19) constraint.
The difference between dε and d should invoke a smooth change in the t and z intercepts

of L. This change can cause a bending of L with a gradual decay in temperature θ(z, t)
towards a ”WF” exclusively through the null values of θ(z, t). Such a remarkable bending,
towards the z-axis when dε > d, appears to be essential for preserving continuity of F when
connecting the two subdomains (i) and (ii) that have distinct temperatures. Furthermore,
the approximate nature of (31), the possibility of existence of more than one dε for it,
and its dependence on the magnitude of the rather uncertain ε ∈ (0, 1) can be a reason
for blurring of the bending F . Accordingly, the physical WF, F ≈ L, for the pathological
TW behaves, over the previous three subdomains of the t − C plane, more like a finite
”bird feather” than an infinite straight line L, as sketched in Figure 1.

Definition 2. The physical wavefront F of 1-D temperature wave exists in the form of
a finite line segment % ⊂ L, only when ωt <<

(
C − π

4

)
. This % ⊂ F , which resembles a

calamous in a finite ”bird feather”, is to be called a shortened wavefront (SWF).

3. PARABOLIC TEMPERATURE WAVES

Since the wave-like nature of T (z, t) is solely represented by its θ(z, t) component, then
this can be termed as a TW, resulting from the solution of an associated with (1)-(4)
similarly singular BVP:

1

α
∇tθ −4zθ = 0, (32)

subject to :

(i)− (ii) : θ(z, t) <∞, ∀z, t ∈ [0,∞), (33)

(iii) : −k∇zθ|z−0 = I(0, t) = g(t) = J(t)− J0
2

= Re

[
J0
2
eiωt

]
. (34)

Here k is the thermal conductivity of <.
A separated variables solution, θ(z, t) = X(z)eiωt, to (32), subjected to satisfaction of

(33)-(34), when

µ = µ(ω;α) =

√
2α

ω
and ε =

k√
α
, (35)

leads, see e.g. [7], [11-12], to the conventional parabolic TW,

θ(z, t) =
J0

2ε
√
ω
e−

z
µ cos

(
z

µ
− ωt+

π

4

)
. (36)

It should be noted here that in some specific applications, [7], only normalized parabolic
TWs

ϑ(z, t) =
T (z, t)− Ts
J0/2ε

√
ω

= e−
z
µ cos

(
z

µ
− ωt+

π

4

)
, (37)

with a unitary amplitude, are of practical interest.
As expected, nonetheless, both θ(z, t) and ϑ(z, t) travel with the same phase speed
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Vp = ωµ =
√

2αω, (38)

or the same group speed Vg =
{
∂
∂ω

(
1
µ

)}−1
= 2Vp = 2

√
2αω which may tend to ∞,

when ω → ∞, in a way contradicting special relativity. Also both θ(z, t) and ϑ(z, t) are
periodic in t, but only almost-periodic in z.

3.1. Fuzziness of wavefronts. A basic feature of any proper wave motion in space-
time is its associated physical WF. In one spatial dimension, a physical parabolic WF
is a curve, on the z − t space, of constant phase. Although physical WFs depend on
the geometry of the wave source, they are invariably spaced by T , and propagate at the
same Vp speed of the wave. Their nature is defined by the characteristics of the related
PDE. In this respect, the parabolic HE has the characteristic equation (CE), see e.g. [2]:

α
(
∂θ
∂t

)2
= 0, i.e.

(dt)2 = 0, (39)

with the unique characteristic

ℵ , t = C (constant), ∀z. (40)

The independence of z in (40) implies that the general solution of the parabolic HE
cannot support physical WFs. However, the parabolic TW, of (16), is a solution to a
special BVP, employing the parabolic HE, and not a general solution for it. Incidentally,
the physical WF is defined here by (16) as z

µ − ωt+ π
4 = C, which is equivalent to

F ≈ % , z − Vpt = C, (41)

a clear indication that F 6= ℵ for a parabolic temperature wave.
On another note, for any oscillatory function of two variables to be a proper wave (i.e.

supporting physical WFs), it is sufficient (but not necessary) that the function is periodic
in both variables. The sufficiency-only nature of this assertion is due to its applicability
also to the, similar to (36), hyperbolic TW, of (52), which is better qualified to support
physical WFs. In actual fact TWs of all kinds are spatially damped and therefore periodic
only in one variable and almost-periodic in the other.

3.2. Unique features of the parabolic temperature wave. The wave-like solution
θ(z, t) of the BVP (32)-(34) has additionally the following three unique features, that
deserve downlisting.

a) The π
4 phase in (36) for θ(z, t) indicates that it is a spatially damped superposition

of two space-time oscillations, namely cos
(
z
µ − ωt

)
and

[
− sin

(
z
µ − ωt

)]
.

b) The analytical form of (36) suggests two generic mechanisms for frequency ”multi-
resolution” of parabolic TWs. The first mechanism is one of spatial scaling ∼

√
ω,

κ = κ(z;ω, α) =
z

µ
=

√
ω

2α
z. (42)

The second is of temporal dilation ∼ 1
ω ,

ν = ν(z;ω) = t− π

4ω
. (43)

As in wavelet analysis, [24], such a reversed multi-resolution in the z − t space, brings
(16) back to a universal parabolic TW (UPTW)

θ(κ, ν) =
J0

2ε
√
ω
e−κcos (κ − ων) , (44)
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that travels with a unit Vp in the κ − ν space, with a 1√
ω

-dependent amplitude. A fact

to be exploited, in Section 5, for introducing (in (83)) a new hyperbolic HE, equivalent
to the parabolic HE.

c) It is worthwhile to mention that the heat flux associated with θ(z, t) of (36) happens
to satisfy

I(z, t) = −k ∇z θ =
J0
2
e−

z
µ cos

(
ωt− z

µ

)
. (45)

Moreover, the possibility for energy, Eω, temporal transfer by such a wave over a period
P , at any point z = zo, is a crucial property for it. In this regard, it is remarkable that
for the parabolic TW,

Eω ∼ ‖I‖L1 =
1

2
e−

z0
µ

∫ b+P

b

cos(ωt− z0
µ

)dt = 0, ∀b ∈ [0,∞). (46)

This means that parabolic TWs do not transfer energy while propagating in time. This
fact happens, luckily, not to contradict special relativity, even when Vp does.

Overlooking any of these features can naturally lead to, not uncommon, misconceptions
of the nature of TWs. It should be underlined, moreover, that both the hyperbolic heat
flux, I(z, t) of (56), and parabolic I(z, t) of (45) are asymptotically vanishing quantities.
Hence any contemplated hyperbolicity of I(z, t) appears to be irrelevant to revealing the
wavefronts of TWs.

4. HYPERBOLIC TEMPERATURE WAVES

The BVP generating the hyperbolic TW employs the Cattaneo-Vernotte, [14-17], hy-
perbolic heat conduction equation (C-VHHE):

1

ς2
4t θ +

1

α
∇tθ = 4zθ, (47)

subject to :
(i)− (ii) : θ(z, t) <∞, ∀z, t ∈ [0,∞), (48)

(iii) : (γ∇tI + I)z=0 = −k∇zθ |z=0 , non− Fourier law, (49)

with I(0, t) = g(t) of (34).
Compared with the parabolic HE, (47) is a telegrapher’s PDE, which contains an

additional second-order term 1
ς2 4t θ, with ”viscous damping” coefficient ς2

α = 1
γ and

zero ”restoration” coefficient. All coefficients of (47) are independent of ω, but critically
depend on γ and α. Clearly, in the limit of γ → 0, ς →∞, and the entire BVP (47)-(49)
reverts back to the parabolic BVP (32)-(34).
θ(z, t) is obtained here, as in [12], also via separation of variables: θ(z, t) = Y (z) eiωt.

In application to (47), this leads to the Helmholtz equation

Y ′′ − æ2Y = 0,

with

æ =

√
γ

α
ω

√
1

γω
i− 1 = ± (A+ iB), (50)

where (A
B
)

=
1

µ

√(√
γ2ω2 + 1 ∓ γω

)
. (51)

θ(z, t) is then subjected to satisfaction of (48) to yield the hyperbolic TW

θ(z, t) =
(
J0
/

2k(A2 + B2)
)
e−Az [(γωB +A)cos(Bz − ωt) + (γωA− B)sin (Bz − ωt)] .

(52)



148 NASSAR H.S. HAIDAR

For low ω, when γω << 1, it may be shown that

(γωB +A) = −(γωA− B) ≈ 1

µ
, (53)

and (52) reduces to the form

θ(z, t) =
J0

2ε
√
ω

1√
γ2ω2 + 1

e−Azcos
(
Bz − ωt+

π

4

)
, (54)

which tends to the parabolic TW (36) when γ → 0.
Moreover, at high frequencies, when γω >> 1, it may be shown that

A =
1

2γς
=

1

2
√
αγ
≈ 0,

B =
ω

ς
,

and relation (52) becomes

θ(z, t) =
J0
√
γ

2ε
e
− 1

2
√
αγ zcos

(
ω

ς
z − ωt

)
. (55)

Here the HTW and PTW clearly differ, as the hyperbolic TW will propagate nearly

undamped at the finite speed ς =
√

α
γ .

4.1. The heat flux. According to the non-Fourier law (49), the heat flux I(z, t) should
satisfy, when γω << 1, for which A = B ≈ 1

µ , the initial value problem (IVP):

γ∇tI + I =
J0
2

1√
γ2ω2 + 1

e−Az cos (ωt− Bz) .

Subject to:

I(0, 0) = g(0) =
J0
2
.

Straightforwardly, the solution to this IVP is

I(z, t) =
J0
2γ

1√
γ2ω2 + 1

e−
t
γ

∫ t

0

e−(Az−
τ
γ ) cos (ωτ − Bz) dτ +

J0
2
e−

t
γ , (56)

which yields I(0, t) = g(t) = Re
[
J0
2 e

iωt
]
.

The temporal energy transfer, Eω, by the associated θ(z, t), over a period P , at z = 0,
for example, is

Eω ∼ ‖I‖L1 =

∫ b+P

b

I(0, t)dt = 0, ∀b ∈ [0,∞). (57)

Hence, like the parabolic TW, the hyperbolic TW also does not transfer energy, when
γω << 1, while propagating in time. It can be shown, moreover, that the same energy
nontransfer happens to hold when γω >> 1.
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Figure 2. Sketch to illustrate wafefronts and the characteristic triangle
for temperature waves

4.2. Wavefronts. As in (7)-(8) the Cattaneo-Vernotte hyperbolic heat equation C-VHHE
(32) has a characteristic equation(

∂θ

∂t

)2

− ς2
(
∂θ

∂z

)2

= 0,

which is equivalent to

ς2(dt)2 − (dz)2 = 0. (58)

Obviously, the solution characteristics, of the Cattaneo-Vernotte hyperbolic heat equation
C-VHHE, are

z − ςt = C1

z + ςt = C2

}
, ℵ. (59)

These represent two physical WFs, [1-2], inclined by Ω, where tan Ω = ± 1
ς = ±

√
γ
α , freely

of ω, as illustrated in Figure 2.
Incidentally, the mathematical WF is defined , when γω >> 1, by (40) as ω

ς z−ωt = C,
which is equivalent to

ℵ , z − ςt = C, (60)

a clear indication that % = ℵ for a hyperbolic TW.
Moreover, the solution characteristic passing through any point (zo, to) in an initial-

value problem (IVP) (Cauchy problem, [2]): Solve a PDE (47), subject to θ(z, 0) = θ0(z)
and ∇tθ |t=0 = θ1(z)) is

ς2(t− to)2 − (z − zo)2 = 0,

where the set {θ0(z), θ1(z)} represents the data of the Cauchy problem.
This relation defines the Cauchy problem solvability boundaries

Γ+ , ς(t− to) > |z − zo| , future cone

Γ− , − ς(t− to) > |z − zo| , past cone

}
, (61)
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with the ± 1
ς positioning slopes which define the characteristic triangle N ⊂ < for the

Cattaneo-Vernotte hyperbolic heat equation C-VHHE. The base segment of N:

D = {z | (zo − ςto) ≤ z ≤ (zo + ςto)} (62)

which is cut out of the initial t = 0 line by the cone Γ− issuing from (zo, to), is called the
domain of dependence of the solution of the Cauchy problem, i.e. the domain for its data
set. This solution is uniquely determined in the whole interior < of N by the Cauchy data
on D. Furthermore, relations (61) guarantee causality for the pertaining TW, since any
disturbance at (zo, to) can affect only those points z at future time t inside Γ+.

Remark 1. A corner stone of the present analysis is that under the limiting γ = 0
condition (leading to the PTW) ς → ∞ and Ω = ± tan−1 1

ς → 0. Consequently, the

domain D → ∅ (null set), and N converts rotationally ”degenerates” to a horizontal
straight line,

t = 0, ∀z, (63)

which remarkably agrees with the non-WF characteristic (40), weakly related to the para-
bolic TW.

4.3. Cauchy problem for the Cattaneo-Vernotte hyperbolic heat equation C-
VHHE. Consider now the map

φ(z, t) = e
ς2

2α tθ(z, t), (64)

to transform the posing Cattaneo-Vernotte hyperbolic heat equation C-VHHE Cauchy
problem to the equivalent IVP:

4zφ−
1

ς2
4t φ+

ς2

4α2
φ = 0, (65)

φ0(z) = φ(z, 0) = θ0(z), (66)

φ1(z) = ∇tφ(z, 0) =
ς2

2α
θ0(z) + θ1(z). (67)

Without loss of generality, for the special case of (37), when γω << 1, and A ≈ B ≈ 1
µ ,

relation (39) takes the form

θ(z, t) = Q e−Azcos
(
Bz − ωt+

π

4

)
, (68)

in which

Q =
J0

2ε
√
ω
· 1√

γ2ω2 + 1
. (69)

Accordingly,

θ0(z) = Q e−Azcos
(
Bz +

π

4

)
,

θ1(z) = ωQ e−Az sin
(
Bz +

π

4

)
. (70)

The hyperbolic TW (55) solution to the BVP (47)-(49) for the C-VHHE can also be
generated as a solution to an equivalent Cauchy problem, with explicit dependence on
the WFs, according to a result that follows.

Theorem 1. Unlike the shortened physical wave front % ⊂ F , the mathematical wavefront
ℵ of the hyperbolic temperature wave is everywhere active.
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Proof. Since the vertex (x0, t0) of the characteristic triangle N is arbitrary, so is its surface
<. Let us integrate then both sides of (65) over < to write∫∫

<

(
4tφ− ς2 4z φ

)
d< =

ς4

2α2

∫∫
<
φd<, (71)

where d< = dx dt = dξ dτ .
Application of Green’s theorem, [1], and the Duhamel principle, [25], to both sides of

(71) can be shown to yield for φ(z, t) a rather novel decomposition,

φ(z, t) = U(z ± ςt) + V [φ(z, t)], (72)

in which

U(z ± ςt) =
1

2

[
φ0(z − ςt) + φ0(z + ςt)

]
+

1

2ς

∫ z+ςt

z−ςt
φ1(s)ds

=
1

2

[
θ0(z − ςt) + θ0(z + ςt)

]
+

1

2ς

∫ z+ςt

z−ςt

[
ς2

2α
θ0(s) + θ1(s)

]
ds, (73)

is the familiar d’Alembert solution, and the integral

V [φ(z, t)] =
ς3

8α2

∫ t

0

∫ z+ς(t−τ)

z−ς(t−τ)
φ(ξ, τ)dξdτ. (74)

The claimed novelty of (72)-(74) consists in revealing that the effect of the ingredients
z ∓ ςt of ℵ is most pronounced in the first term of U(z ± ςt), while it is smoothed by
single integration in its second term. Moreover, this effect is apparently least pronounced
in V [φ(z, t)], due to its enhanced smoothing by iterated double integration. Substitute
then (64) in (72)-(74) to obtain the nonhomogeneous second-kind linear Volterra integral
equation

θ(z, t) = e−
ς2
2α tU(z ± ςt) +

ς3

8α2
e−

ς2

2α t

∫ t

0

e
ς2
2α τ

∫ z+ς(t−τ)

z−ς(t−τ)
θ(ξ, τ)dξdτ, (75)

which is equivalent to the BVP (47)-(49).
Consideration of relations (69)-(70) for θ0(z) and θ1(z) illustrates that the negative

exponential factor in e−
ς2

2α tU(z ± ςt) is compensated, for all t, by a reflexive positive ex-
ponential factor inside U(z±ςt). Furthermore, being a well-posed, [26], integral equation,
(75) is solvable iteratively

<n>θ(z, t) = e−
ς2

2α tU(z ± ςt) +
ς3

8α2
e−

ς2

2α t

∫ t

0

e
ς2

2α τ

∫ z+ς(t−τ)

z−ς(t−τ)

<n−1>θ(ξ, τ)dξdτ, (76)

with n = 1, 2, 3, ... and for any <0>θ(z, t) 6= 0. Also convergence of this iterative process,
i.e. lim

n→∞
<n>θ(z, t)→ θ(z, t) of (68), should not be questionable.

Clearly, (47) and (65) happen to have the same characteristics. However, unlike the
previous situation with ℵ, the ingredients z ∓ ςt of F are inactive on θ(z, t) when (C −
π
4 ) << ωti, ∀i ≥ k, i.e. over the subdomain (iii) of the z − t plane, defined by (29). Here
the proof completes. �

4.4. Shrinkage of the triangle for detectable wavefronts. Let us revisit the D
domain of dependence, (37), of the solution to the Cauchy problem of Theorem 1. For
any z0 ∈ D, there exists a pair of parameters t% and D% that are associated with the
length l% of the calamous % of F . These are namely,

t% = l%/
√

1 + ς2 (77)
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Figure 3. Sketch to illustrate the shrinked triangle for detectable tem-
perature wavefronts

and

D% = {z | (zo − ςt%) ≤ z ≤ (zo + ςt%)}. (78)

Figure 3 illustrates how these parameters happen to define a shrinked triangle N% with
a surface <% ⊂ <, and a vertex (z0, t%) opposite to D%.

Proposition 1. For any z0 ∈ D, the physical wavefront F is detectable at any t0 ∈ [0, t%].
Outside this interval, i.e. at t0 > t%, F is either blurred or undetectable.

Proof. By assuming the validity of arguments for dividing the t− z plane into the three
subdomains of (26)-(30). �

It should be noted here that while above N there might be a futur cone, (61), it is
certain, however, that above N% there is no such cone.

5. MAIN RESULT

The previous analysis demonstrates the asymptotic γω >> 1 discrepancy between the
behavior of a hyperbolic and parabolic temperature waves. Also the independence of
relation (62) for the hyperbolic TW, of f = ω

2π , as of about fL = 1
γ , is unique to this

wave. Apart from that, the next facts motivate us to derive a mathematical physics result,
that follows, on WFs in the parabolic TW.

i) The structural similarity between the travelling wave expressions (36) and (54 or 55)
for the respective parabolic TW and hyperbolic TW.

ii) Both TWs do not transfer energy.
iii) The correct γ = 0 limiting transition, of Remark 1, by the WF for the diverging

hyperbolic TW to an anticipated non-WF characteristic (63) or (40).
iv) Partial universalization, of the form (44), for all TWs by a dilating mapping of the

z − t space to a z − ν space.
Let us revisit the parabolic TW (36) and temporally dilate it according to (43), t =

ν + π
4ω , to convert it to

θ(z, ν) = Q e−
z
µ cos

(
z

µ
− ων

)
, Q =

J0
2ε
√
ω
.
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Define then the auxiliary wave

φ(z, ν) = eωνθ(z, ν) = Qe−(
z
µ−ων)cos

(
z

µ
− ων

)
, (79)

for which

φ(z, t) = Qe−(
z
µ−ωt+

π
4 )cos

(
z

µ
− ωt+

π

4

)
= e(ωt−

π
4 )θ(z, t) (80)

to state below a basic result of this paper.

Lemma 1. The auxiliary wave φ(z, t) of (80) has the same wave fronts as the θ(z, t) TW
of (36).

Proof. It is straightforward to demonstrate that φ(z, ν) satisfies

2αω4z φ−4νφ = 0. (81)

This happens to be the same as saying φ(z, t) of (80) satisfies the wave equation

2αω4z φ−4tφ = 0. (82)

Substitution of (80) in (82) leads to

2αω4z θ − ω2θ − 2ω∇tθ −4tθ = 0.

This is also the same as saying that θ(z, t) of (80) turns out to satisfy the remarkable
telegrapher’s partial differential equation

1

2αω
4t θ +

1

α
∇tθ +

ω

2α
θ = 4zθ, (83)

subject to satisfaction of the initial conditions

θ(z, 0) = θ0(z) = Qe−
z
µ cos

(
z

µ
+
π

4

)
, (84)

θ1(z) = ∇tθ(z, 0) = ωQe−
z
µ sin

(
z

µ
+
π

4

)
. (85)

Since both PDEs, (82) and (83), have the same CE

2αω(dt)2 − (dz)2 = 0.

i.e. the same characteristics, then they have the same WFs for their respective φ(z, t)
and θ(z, t) waves. Here the proof ends. �

Definition 3. The constructively introduced parabolic-equivalent hyperbolic heat equation
(P-EHHE), (83), is a unique Telegrapher’s-type PDE with a Cauchy problem solution
identical to the TW solution (36) of the BVP (32)-(34) for the parabolic heat equation.

A distinguishing composition of this parabolic-equivalent hyperbolic heat equation P-
EHHE includes its 1

2αω 4t θ term, in which 2αω = V 2
p . It has a 2ω ”viscous damping”

coefficient and a ”restoration” coefficient of ω2. Both the P-EHHE and the entirely
different Cattaneo-Vernotte hyperbolic heat equation C-VHHE are invariant under the
time-dilation transformation (49). The IVP (83)-(85) is obviously the Cauchy problem
for the parabolic-equivalent hyperbolic heat equation P-EHHE.

Theorem 2. A parabolic TW has the same wave fronts as a hyperbolic TW of the
parabolic-equivalent hyperbolic heat equation P-EHHE, but for ς replaced by Vp, ∀ς ∈
[0,∞).
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Proof. By invoking Lemma 1 and realizing that the parabolic-equivalent hyperbolic heat
equation P-EHHE (83) and the Cattaneo-Vernotte hyperbolic heat equation C-VHHE
(47) have the same respective CEs,

2αω(dt)2 − (dz)2 = 0, (86)

ς2(dt)2 − (dz)2 = 0, (87)

which both turn out to produce the same characteristics (i.e. same WFs) when ς2 and
2αω = V 2

p are interchanged. �

5.1. The parabolic temperature wave tenuous wavefronts. By relations (86) and
(87) of Theorem 2, the solution characteristics of the P-E hyperbolic heat equation are

z − Vpt = C1

z + Vpt = C2

}
, ℵ, (88)

which obviously coincide with ℵ, and are two WFs, inclined by

Ω = ± tan−1
1

Vp
= ± tan−1

1√
2αω

. (89)

Remark 2. A distinctive feature of the tenuous WFs of the parabolic TW from the
WFs of the hyperbolic TW is the frequency dependence in (89) for Ω in the first WFs.
Furthermore, any practical refraction of the parabolic TW can possibly cause a blurring of
the WF edges. This is perhaps a major reason for the experimental fuzziness of parabolic
WFs, in comparison to hyperbolic WFs.

As for Cauchy problems related to parabolic WFs, passing through a point (zo, to), the
parabolic WFs should satisfy

V 2
p (t− to)2 − (z − zo)2 = 0,

with the Cauchy problem solvability boundaries

Γ+ ,
√

2αω(t− to) > |z − zo| , future cone

Γ− , −
√

2αω(t− to) > |z − zo| , past cone

}
,

that are also explicitly frequency dependent.
Theorem 2 is clearly a sharp proof of the fact that: the parabolic heat equation-for

parabolic TWs- cannot support mathematical WFs in its general solution, should not
mean that the parabolic temperature waves also cannot have them (as is sometimes
wrongly reported in the literature). The reason is simply because parabolic TWs are
particular solutions to the parabolic HE, that are periodically constrained in an associated
BVP, and are not general solutions to it. In addition to this theorem, one cannot overlook
that the parabolic TW is, in general, a good approximation to the solution of the C-V
hyperbolic BVP (47)-(49), which unquestionably supports WFs. The proved possibility
for the parabolic TW to be a general solution to the parabolic-equivalent hyperbolic heat
equation P-EHHE of (83) makes the existence of WFs in it also unquestionable.

Theorem 3. The solution of the Cauchy problem for the parabolic-equivalent hyperbolic
heat equation P-EHHE (83), with the data set {θ0(z), θ1(z)} of (84)-(85) is

θ(z, t) = e−ωt+
π
4

{
1

2

[
θ0(z − Vpt) + θ0(z + Vpt)

]
+

1

2Vp

∫ z+Vpt

z−Vpt

[
θ1(s) + ωθ0(s)

]
ds

}

=
J0

2ε
√
ω
e−

z
µ cos(

z

µ
− ωt+

π

4
) (90)

and admits the wave fronts, ℵ, of (88).
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Proof. Consider the map (79) to transform (83) with its Cauchy data to the equivalent
IVP:

4zφ−
1

2αω
4t φ = 0, (91)

φ0(z) = φ(z, 0) = θ0(z)e−
π
4 =

J0
2ε
√
ω
e−(

z
µ+

π
4 )cos

(
z

µ
+
π

4

)
, (92)

φ1(z) = ∇tφ(z, 0) = [θ1(z) + ωθ0(z)]e−(
z
µ+

π
4 )

= ω
J0

2ε
√
ω
e−(

z
µ+

π
4 )

[
cos

(
z

µ
+
π

4

)
+ sin

(
z

µ
+
π

4

)]
. (93)

The result (90) is the well-known d’Alembert’s solution of (91)-(93) when subjected
to reversed mapping via (79) with V 2

p = 2αω. In distinction from the situation of the

hyperbolic IVP of Theorem 1, the e−ωt+
π
4 factor in (90) shall be compensated in some

of its terms by e
Vp
µ −

π
4 = eωt−

π
4 that emerge from (92) and (93). Moreover, (83) and (92)

happen to have the same characteristics. Clearly, as in Theorem 1, the ingredients z±Vpt
of ℵ can impact θ(z, t) for any t. Here the proof completes. �

Remark 3. Theorem 2 and Theorem 3 are effective illustrations that for temperature
waves although the mathematical ℵ is of infinite span, the physical F is in shortened, %,
form.

Remark 4. The close similarity between the C-VHHE (47) and the P-EHHE (83) should
not lead to covering up the structural differences between their IVP solutions. On one
hand, the C-VHHE IVP (65)-(67) is solvable only as a Volterra integral equation (75)
with a d’Alembertian nonhomogeneous term. On the other hand, the P-EHHE IVP
(83)-(85) closed form solution (90) is entirely d’Alembertian.

Finally, the situation on the mathematical side of WFs appears therefore to be equally
fine for the parabolic TW and the hyperbolic TW. Conversely, the experimental side
of wavefronts, remains , however, to be difficult, and calls perhaps for more-refined,
frequency-filtered, temperature and temperature gradient measurement instrumentation.

6. EXPERIMENTAL VERIFICATION OF TEMPERATURE WAVEFRONTS

Relation (89) on the Ω ∼ 1√
ω

dependence can cause a blur in wavefronts of temperature

waves. This situation, when added to the shortened nature of wavefronts (SWF), % ⊂ F ,
happens to be consistent with the seemingly reflectionless-refractionless nature, [23], of
these waves. Indeed, specific simulations, [23, 27, 28], show that reflections and Snell’s
law can be adequate approximations only under near-normal incidence conditions.

As a way out of such difficult experiments, and as a proposal for a possible inroad
to physically sense the existence of SWFs, %, consider, for ωt << (C − π

4 ), near t = 0,
i.e. t < t% of (77), a compactly supported initial temperature distribution θ(z, 0) with
a support only on an interval D = [a, b] of the z-axis. |D| = b − a, when b > a, on a
one-dimensional heat conducting wedge of heat diffusivity α. This can be represented as

θ(z, 0) = θ0(z) = f(z) [u(z − a)− u(z − b)] , (94)

where u(z) is Heaviside’s unit step function. Clearly then,

θ0(z) =

{
f(z) = Qe−

z
µ cos( zµ + π

4 ), z ∈ [a, b]

0, z /∈ [a, b]
(95)
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Similarly

∇tφ(z, 0) = θ1(z) = ωf̃(z)[u(z − a)− u(z − b)], (96)

with

θ1(z) =

{
ωf̃(z) = ωQe−

z
µ cos( zµ −

π
4 ), z ∈ [a, b]

0, z /∈ [a, b]
(97)

θ0(z) = f(z)[u(z− a)− u(z− b)] can be generated on [a, b] at t = 0 by a set of heating
lasers. Simultaneously at the same moment t = 0 one can use a set of pulsed laser heating
beams, with power proportional to ω, over a short period δt to generate a temperature
increment δθ distribution

δθ = ωf̃(z)[u(z − a)− u(z − b)] δt. (98)

The experiment comprises the following two steps.
i)On a wedge supporting TWs of frequency ω, we have |D%| = 2Vpt% = 2

√
2αω t%.

Therefore at a time t0 ≤ t% we take two simultaneous measurements, θ̂(z0, t0), θ̂(z∗, t0),
of the corresponding instantaneous temperatures, respectively at z0 ∈ D% and z∗ /∈ D%.
Such a z∗ means that (z∗, t0) lies outside the detectable domain of determinacy of D%.

ii) If

θ̂(z0, t0) = Qe−
z0
µ cos(

z0
µ
− ωt0 +

π

4
), (99)

and

θ̂(z∗, t0) = 0, (100)

then the existence of WFs in TWs is asserted in a necessary (but not sufficient) sense.
Indeed, violation of (99) and/or (100), outside the scale of experimental and systematic

error of θ̂, δθ and δt measurements, indicates a possibility for nonexistence of %, given by
(90).

7. CONCLUSION

The basic result of this paper has been a revelation of a tenuous nature of mathematical
wavefronts ℵ in parabolic temperature waves and a shortened %-nature of their physical
wavefronts F . It is developed along the landmarks that follow.

(i) Introduction, in Definition 1, of the concept of a shortened wavefront (% ⊂ L) ≈ F ,
when ωt <<

(
C − π

4

)
, exclusively.

(ii) Remark 1, on the rotational conversion (63) of wavefronts for the C-V hyperbolic
heat equation.

(iii) Constructive derivation of the parabolic-equivalent hyperbolic heat equation P-
EHHE in the proof of Lemma 1.

(iv) Remark 2, on the frequency dependence of the inclination of wavefronts for the
parabolic temperature wave.

(v) Proposition 1, on shrinkage of the triangle for detectable wavefronts.
(vi) Theorem 3, on the travelling wave solution to the Cauchy problem for the parabolic-

equivalent hyperbolic heat equation P-EHHE.
(vii) Remark 3, on shrinkage of physical F , while the mathematical ℵ is of infinite

span.
(viii) Remark 4, on the difference between the IVPs of the C-VHHE and the P-EHHE.

(ix) The experiment, proposed in Section 6, for verifying the existence of temperature
physical wavefronts.
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The reported analysis, which reviewed some unique features for parabolic TWs in
subsection 3.2, calls for intensifying efforts towards an experimental detection and iden-
tification of physical wavefronts in both parabolic TWs and hyperbolic TWs. Despite
the insignificant difference between these, there are specific heat conduction applications
where the hyperbolic TW is expected to perform better than the parabolic temperature
wave. This should particularly be true at low temperatures when γ can be significant,
[29-30], and in periodic heat fluxes of laser heating, [31-32], or other phenomena on the
nanoscale.
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