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BOUNDS FOR THE NORMALIZED DETERMINANT OF

HADAMARD PRODUCT OF TWO POSITIVE OPERATORS IN

HILBERT SPACES

SILVESTRU SEVER DRAGOMIR1,2

Abstract. For positive invertible operators A on a Hilbert space H and a fixed

unit vector x ∈ H, define the normalized determinant by ∆x(A) := exp 〈lnAx, x〉.
In this paper we obtain upper and lower bounds for the determinant ∆x (A ◦B) of

the Hadamard product of two operators under some natural assumptions such as

0 < m1 ≤ A ≤M1 and 0 < m2 ≤ B ≤M2, where mi,Mi (i = 1, 2) are constants.

1. Introduction

Let B(H) be the space of all bounded linear operators on a Hilbert space H, and I
stands for the identity operator on H. An operator A in B(H) is said to be positive (in
symbol: A ≥ 0) if 〈Ax, x〉 ≥ 0 for all x ∈ H. In particular, A > 0 means that A is positive
and invertible. For a pair A, B of selfadjoint operators the order relation A ≥ B means
as usual that A−B is positive.

In 1998, Fujii et al. [7], [8], introduced the normalized determinant ∆x(A) for positive
invertible operators A on a Hilbert space H and a fixed unit vector x ∈ H, namely
‖x‖ = 1, defined by ∆x(A) := exp 〈lnAx, x〉 and discussed it as a continuous geometric
mean and observed some inequalities around the determinant from this point of view.

Some of the fundamental properties of normalized determinant are as follows, [7].
For each unit vector x ∈ H, see also [12], we have:

(i) continuity : the map A→ ∆x(A) is norm continuous;

(ii) bounds:
〈
A−1x, x

〉−1 ≤ ∆x(A) ≤ 〈Ax, x〉;
(iii) continuous mean: 〈Apx, x〉1/p ↓ ∆x(A) for p ↓ 0 and 〈Apx, x〉1/p ↑ ∆x(A) for

p ↑ 0;
(iv) power equality: ∆x(At) = ∆x(A)t for all t > 0;
(v) homogeneity : ∆x(tA) = t∆x(A) and ∆x(tI) = t for all t > 0;

(vi) monotonicity : 0 < A ≤ B implies ∆x(A) ≤ ∆x(B);
(vii) multiplicativity : ∆x(AB) = ∆x(A)∆x(B) for commuting A and B;

(viii) Ky Fan type inequality : ∆x((1− α)A+ αB) ≥ ∆x(A)1−α∆x(B)α for 0 < α < 1.

We define the logarithmic mean of two positive numbers a, b by

L(a, b) :=

{
b−a

ln b−ln a if b 6= a,

a if b = a.
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In [7] the authors obtained the following additive reverse inequality for the operator A
which satisfy the condition 0 < mI ≤ A ≤MI, where m,M are positive numbers,

0 ≤ 〈Ax, x〉 −∆x(A) ≤ L (m,M)

[
lnL (m,M) +

M lnm−m lnM

M −m
− 1

]
(1)

for all x ∈ H, ‖x‖ = 1.
The famous Young inequality for scalars says that if a, b > 0 and ν ∈ [0, 1], then

a1−νbν ≤ (1− ν) a+ νb (2)

with equality if and only if a = b. The inequality (2) is also called ν-weighted arithmetic-
geometric mean inequality.

We recall that Specht’s ratio is defined by [15]

S (h) :=


h

1
h−1

e ln

(
h

1
h−1

) if h ∈ (0, 1) ∪ (1,∞)

1 if h = 1.

(3)

It is well known that limh→1 S (h) = 1, S (h) = S
(
1
h

)
> 1 for h > 0, h 6= 1. The function

is decreasing on (0, 1) and increasing on (1,∞) .
In [8], the authors obtained the following multiplicative reverse inequality as well

1 ≤ 〈Ax, x〉
∆x(A)

≤ S
(
M

m

)
(4)

for 0 < mI ≤ A ≤MI and x ∈ H, ‖x‖ = 1.
Since 0 < M−1I ≤ A−1 ≤ m−1I, then by (4) for A−1 we get

1 ≤
〈
A−1x, x

〉
∆x(A−1)

≤ S
(
m−1

M−1

)
= S

((m
M

)−1)
= S

(
M

m

)
,

which is equivalent to

1 ≤ ∆x(A)

〈A−1x, x〉−1
≤ S

(
M

m

)
(5)

for x ∈ H, ‖x‖ = 1.
We consider the Kantorovich’s constant defined by

K (h) :=
(h+ 1)

2

4h
, h > 0. (6)

The function K is decreasing on (0, 1) and increasing on [1,∞) , K (h) ≥ 1 for any h > 0
and K (h) = K

(
1
h

)
for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms of
Kantorovich’s constant holds

Kr

(
b

a

)
a1−νbν ≤ (1− ν) a+ νb ≤ KR

(
b

a

)
a1−νbν (7)

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν} and R = max {1− ν, ν} .
The first inequality in (7) was obtained by Zuo et al. in [19] while the second by Liao

et al. [14].
Recall the geometric operator mean for the positive operators A, B > 0

A#tB := A1/2(A−1/2BA−1/2)tA1/2

where t ∈ [0, 1] and

A#B := A1/2(A−1/2BA−1/2)1/2A1/2.
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By the definitions of # and ⊗ we have

A#B = B#A and (A#B)⊗ (B#A) = (A⊗B) # (B ⊗A) .

In 2007, S. Wada [17] obtained the following Callebaut type inequalities for tensorial
product

(A#B)⊗ (A#B) ≤ 1

2
[(A#αB)⊗ (A#1−αB) + (A#1−αB)⊗ (A#αB)] (8)

≤ 1

2
(A⊗B +B ⊗A)

for A, B > 0 and α ∈ [0, 1] .
Recall that the Hadamard product of A and B in B(H) is defined to be the operator

A ◦B ∈ B(H) satisfying

〈(A ◦B) ej , ej〉 = 〈Aej , ej〉 〈Bej , ej〉

for all j ∈ N, where {ej}j∈N is an orthonormal basis for the separable Hilbert space H.

It is known that, see [5], we have the representation

A ◦B = U∗ (A⊗B)U (9)

where U : H → H ⊗H is the isometry defined by Uej = ej ⊗ ej for all j ∈ N.
If f is super-multiplicative (sub-multiplicative) on [0,∞) , then also [11, p. 173]

f (A ◦B) ≥ (≤) f (A) ◦ f (B) for all A, B ≥ 0. (10)

We recall the following elementary inequalities for the Hadamard product

A1/2 ◦B1/2 ≤
(
A+B

2

)
◦ 1 for A, B ≥ 0

and Fiedler inequality

A ◦A−1 ≥ 1 for A > 0. (11)

As extension of Kadison’s Schwarz inequality on the Hadamard product, Ando [1] showed
that

A ◦B ≤
(
A2 ◦ 1

)1/2 (
B2 ◦ 1

)1/2
for A, B ≥ 0

and Aujla and Vasudeva [3] gave an alternative upper bound

A ◦B ≤
(
A2 ◦B2

)1/2
for A, B ≥ 0.

It has been shown in [13] that
(
A2 ◦ 1

)1/2 (
B2 ◦ 1

)1/2
and

(
A2 ◦B2

)1/2
are incomparable

for 2-square positive definite matrices A and B.



120 S. S. DRAGOMIR

Motivated by the above results, we establish in this paper the following upper and
lower bounds for the determinant ∆x (A ◦B)

(m1m2)
M1M2−〈(A◦B)x,x〉

M1M2−m1m2 (M1M2)
〈(A◦B)x,x〉−m1m2

M1M2−m1m2

≤ K
(
M1M2

m1m2

)(
1
2−

1
M1M2−m1m2

〈U∗(|A⊗B−m1m2+M1M2
2 |)Ux,x〉

)

× (m1m2)
M1M2−〈(A◦B)x,x〉

M1M2−m1m2 (M1M2)
〈(A◦B)x,x〉−m1m2

M1M2−m1m2

≤ exp [〈U∗ (ln (A⊗B))Ux, x〉]
≤ ∆x (A ◦B)

≤ K
(
M1M2

m1m2

)(
1
2+

1
M1M2−m1m2

〈|A◦B−m1m2+M1M2
2 |x,x〉

)

× (m1m2)
M1M2−〈(A◦B)x,x〉

M1M2−m1m2 (M1M2)
〈(A◦B)x,x〉−m1m2

M1M2−m1m2

≤ K
(
M1M2

m1m2

)
(m1m2)

M1M2−〈(A◦B)x,x〉
M1M2−m1m2 (M1M2)

〈(A◦B)x,x〉−m1m2
M1M2−m1m2

≤ K
(
M1M2

m1m2

)
exp 〈U∗ (ln (A⊗B))Ux, x〉 ,

provided that 0 < m1 ≤ A ≤M1 and 0 < m2 ≤ B ≤M2.

2. Main Results

We start to the following operator inequalities involved positive operators and positive
linear maps:

Theorem 1. Assume that the selfadjoint operator P satisfies the condition 0 < m ≤ P ≤
M for some constants, m, M and Φ a unital positive linear map from B (H) into B (K) .
Then

lnm
M − Φ (P )

M −m
+ lnM

Φ (P )−m
M −m

(12)

≤ lnK

(
M

m

)(
1

2
− 1

M −m

∣∣∣∣Φ (P )− m+M

2

∣∣∣∣)
+ lnm

M − Φ (P )

M −m
+ lnM

Φ (P )−m
M −m

≤ ln Φ (P )

≤ lnK

(
M

m

)(
1

2
+

1

M −m

∣∣∣∣Φ (P )− m+M

2

∣∣∣∣)
+ lnm

M − Φ (P )

M −m
+ lnM

Φ (P )−m
M −m
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and

lnm
M − Φ (P )

M −m
+ lnM

Φ (P )−m
M −m

(13)

≤ lnK

(
M

m

)(
1

2
− 1

M −m
Φ

(∣∣∣∣P − m+M

2

∣∣∣∣))
+ lnm

M − Φ (P )

M −m
+ lnM

Φ (P )−m
M −m

≤ Φ (lnP )

≤ lnK

(
M

m

)(
1

2
+

1

M −m
Φ

(∣∣∣∣T − m+M

2

∣∣∣∣))
+ lnm

M − Φ (P )

M −m
+ lnM

Φ (P )−m
M −m

.

Proof. Assume that 0 < a < b. If we take ν = t−a
b−a ∈ [0, 1] for t ∈ [a, b] and observe that

r = min

{
t− a
b− a

,
b− t
b− a

}
=

1

2
− 1

b− a

∣∣∣∣t− a+ b

2

∣∣∣∣ ,
R = max

{
t− a
b− a

,
b− t
b− a

}
=

1

2
+

1

b− a

∣∣∣∣t− a+ b

2

∣∣∣∣
and

(1− ν) a+ νb =
b− t
b− a

a+
t− a
b− a

b = t.

By utilizing (7) we get

K
1
2−

1
b−a |t− a+b

2 |
(
b

a

)
a

b−t
b−a b

t−a
b−a ≤ t ≤ K

1
2+

1
b−a |t− a+b

2 |
(
b

a

)
a

b−t
b−a b

t−a
b−a (14)

for all t ∈ [a, b] .
If we take the logarithm in (14), then we get

ln a
b− t
b− a

+ ln b
t− a
b− a

(15)

≤ lnK

(
b

a

)(
1

2
− 1

b− a

∣∣∣∣t− a+ b

2

∣∣∣∣)+ ln a
b− t
b− a

+ ln b
t− a
b− a

≤ ln t

≤ lnK

(
b

a

)(
1

2
+

1

b− a

∣∣∣∣t− a+ b

2

∣∣∣∣)+ ln a
b− t
b− a

+ ln b
t− a
b− a

for all t ∈ [a, b] .
By utilizing the continuous functional calculus for selfadjoint operators T with spectra

limSp (T ) ⊆ [a, b] , we obtain from (15) that

ln a
b− T
b− a

+ ln b
T − a
b− a

(16)

≤ lnK

(
b

a

)(
1

2
− 1

b− a

∣∣∣∣T − a+ b

2

∣∣∣∣)+ ln a
b− T
b− a

+ ln b
T − a
b− a

≤ lnT

≤ lnK

(
b

a

)(
1

2
+

1

b− a

∣∣∣∣T − a+ b

2

∣∣∣∣)+ ln a
b− T
b− a

+ ln b
T − a
b− a

.
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Now if 0 < m ≤ P ≤M , then 0 < m ≤ Φ (P ) ≤M and by (16) we get for T = Φ (P ) ,
a = m and b = M the inequality (12). If we take T = P, a = m and b = M in (16) and
then apply Φ we also obtain (13). �

Corollary 1. With the assumptions of Theorem 1 we have the chain of inequalities

lnm
M − Φ (P )

M −m
+ lnM

Φ (P )−m
M −m

(17)

≤ lnK

(
M

m

)(
1

2
− 1

M −m
Φ

(∣∣∣∣P − m+M

2

∣∣∣∣))
+ lnm

M − Φ (P )

M −m
+ lnM

Φ (P )−m
M −m

≤ Φ (lnP ) ≤ ln Φ (P )

≤ lnK

(
M

m

)(
1

2
+

1

M −m

∣∣∣∣Φ (P )− m+M

2

∣∣∣∣)
+ lnm

M − Φ (P )

M −m
+ lnM

Φ (P )−m
M −m

≤ lnK

(
M

m

)
+ lnm

M − Φ (P )

M −m
+ lnM

Φ (P )−m
M −m

≤ lnK

(
M

m

)
+ Φ (lnP ) .

Proof. Third inequality follows by Jensen’s operator inequality for the operator concave
function ln . The fifth inequality follows by the fact that

∣∣∣∣Φ (P )− m+M

2

∣∣∣∣ ≤ 1

2
(M −m) ,

while the last inequality follows by the fact that

lnm
M − Φ (P )

M −m
+ lnM

Φ (P )−m
M −m

≤ Φ (lnP )

from the first part of (17). �
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Theorem 2. Assume that 0 < m1 ≤ A ≤M1 and 0 < m2 ≤ B ≤M2, then

(m1m2)
M1M2−〈(A◦B)x,x〉

M1M2−m1m2 (M1M2)
〈(A◦B)x,x〉−m1m2

M1M2−m1m2 (18)

≤ K
(
M1M2

m1m2

)(
1
2−

1
M1M2−m1m2

〈U∗(|A⊗B−m1m2+M1M2
2 |)Ux,x〉

)

× (m1m2)
M1M2−〈(A◦B)x,x〉

M1M2−m1m2 (M1M2)
〈(A◦B)x,x〉−m1m2

M1M2−m1m2

≤ exp [〈U∗ (ln (A⊗B))Ux, x〉]
≤ ∆x (A ◦B)

≤ K
(
M1M2

m1m2

)(
1
2+

1
M1M2−m1m2

〈|A◦B−m1m2+M1M2
2 |x,x〉

)

× (m1m2)
M1M2−〈(A◦B)x,x〉

M1M2−m1m2 (M1M2)
〈(A◦B)x,x〉−m1m2

M1M2−m1m2

≤ K
(
M1M2

m1m2

)
(m1m2)

M1M2−〈(A◦B)x,x〉
M1M2−m1m2 (M1M2)

〈(A◦B)x,x〉−m1m2
M1M2−m1m2

≤ K
(
M1M2

m1m2

)
exp 〈U∗ (ln (A⊗B))Ux, x〉 ,

for x ∈ H, ‖x‖ = 1.

Proof. Since 0 < m1 ≤ A ≤M1 and 0 < m2 ≤ B ≤M2, then 0 < m1m2 ≤ P = A⊗B ≤
M1M2. From (17) for m = m1m2, M = M1M2, Φ (P ) = U∗ (A⊗B)U = A ◦B we get

ln (m1m2)
M1M2 −A ◦B
M1M2 −m1m2

+ ln (M1M2)
A ◦B −m1m2

M1M2 −m1m2
(19)

≤ lnK

(
M1M2

m1m2

)
×
(

1

2
− 1

M1M2 −m1m2
U∗
(∣∣∣∣A⊗B − m1m2 +M1M2

2

∣∣∣∣)U)
+ ln (m1m2)

M1M2 −A ◦B
M1M2 −m1m2

+ ln (M1M2)
A ◦B −m1m2

M1M2 −m1m2

≤ U∗ (ln (A⊗B))U ≤ ln (A ◦B)

≤ lnK

(
M1M2

m1m2

)(
1

2
+

1

M1M2 −m1m2

∣∣∣∣A ◦B − m1m2 +M1M2

2

∣∣∣∣)
+ ln (m1m2)

M1M2 −A ◦B
M1M2 −m1m2

+ ln (M1M2)
A ◦B −m1m2

M1M2 −m1m2

≤ lnK

(
M1M2

m1m2

)
+ ln (m1m2)

M1M2 −A ◦B
M1M2 −m1m2

+ ln (M1M2)
A ◦B −m1m2

M1M2 −m1m2

≤ lnK

(
M1M2

m1m2

)
+ U∗ (ln (A⊗B))U .
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If we take the inner product for x ∈ H, ‖x‖ = 1, then we get

ln (m1m2)
M1M2 − 〈(A ◦B)x, x〉

M1M2 −m1m2
+ ln (M1M2)

〈(A ◦B)x, x〉 −m1m2

M1M2 −m1m2

≤ lnK

(
M1M2

m1m2

)
×
(

1

2
− 1

M1M2 −m1m2

〈
U∗
(∣∣∣∣A⊗B − m1m2 +M1M2

2

∣∣∣∣)Ux, x〉)
+ ln (m1m2)

M1M2 −A ◦B
M1M2 −m1m2

+ ln (M1M2)
A ◦B −m1m2

M1M2 −m1m2

≤ 〈U∗ (ln (A⊗B))Ux, x〉 ≤ 〈ln (A ◦B)x, x〉

≤ lnK

(
M1M2

m1m2

)
×
(

1

2
+

1

M1M2 −m1m2

〈∣∣∣∣A ◦B − m1m2 +M1M2

2

∣∣∣∣x, x〉)
+ ln (m1m2)

M1M2 − 〈(A ◦B)x, x〉
M1M2 −m1m2

+ ln (M1M2)
〈(A ◦B)x, x〉 −m1m2

M1M2 −m1m2

≤ lnK

(
M1M2

m1m2

)
+ ln (m1m2)

M1M2 − 〈(A ◦B)x, x〉
M1M2 −m1m2

+ ln (M1M2)
〈(A ◦B)x, x〉 −m1m2

M1M2 −m1m2

≤ lnK

(
M1M2

m1m2

)
+ 〈U∗ (ln (A⊗B))Ux, x〉 ,

namely

ln

[
(m1m2)

M1M2−〈(A◦B)x,x〉
M1M2−m1m2 (M1M2)

〈(A◦B)x,x〉−m1m2
M1M2−m1m2

]
(20)

≤ ln

[
K

(
M1M2

m1m2

)]( 1
2−

1
M1M2−m1m2

〈U∗(|A⊗B−m1m2+M1M2
2 |)Ux,x〉

)

+ ln

[
(m1m2)

M1M2−〈(A◦B)x,x〉
M1M2−m1m2 (M1M2)

〈(A◦B)x,x〉−m1m2
M1M2−m1m2

]
≤ 〈U∗ (ln (A⊗B))Ux, x〉 ≤ 〈ln (A ◦B)x, x〉

≤ ln

[
K

(
M1M2

m1m2

)]( 1
2+

1
M1M2−m1m2

〈|A◦B−m1m2+M1M2
2 |x,x〉

)

+ ln (m1m2)
M1M2 − 〈(A ◦B)x, x〉

M1M2 −m1m2
+ ln (M1M2)

〈(A ◦B)x, x〉 −m1m2

M1M2 −m1m2

≤ lnK

(
M1M2

m1m2

)
+ ln

[
(m1m2)

M1M2−〈(A◦B)x,x〉
M1M2−m1m2 (M1M2)

〈(A◦B)x,x〉−m1m2
M1M2−m1m2

]
≤ lnK

(
M1M2

m1m2

)
+ 〈U∗ (ln (A⊗B))Ux, x〉 ,

for x ∈ H, ‖x‖ = 1.
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If we take the exponential in (20), then we get (18). �

3. Connection to Oppenheim’s Inequalities

In the finite dimensional case, if we consider the matrices A = (aij) , B = (bij) ∈
Mn (C) , then A ◦B has an associated matrix A ◦B = (aijbij) in Mn (C) .

Recall Hadamard determinant inequality [18, p. 218] for A ≥ 0

detA ≤ det (A ◦ 1) (=

n∏
i=1

aii)

and Oppenheim’s inequality [18, p. 242] for A, B ≥ 0

detA detB ≤ det (A ◦B) ≤ det (A ◦ 1) det (B ◦ 1)

(
=

n∏
i=1

aiibii

)
.

In the recent paper [12] the authors obtained the following Oppenheim’s type inequal-
ities

1

S (h1)S (h2)
≤ ∆x (A ◦B)

∆x (A ◦ 1) ∆x (1 ◦B)
≤ S (h1h2) (21)

for x ∈ H, ‖x‖ = 1, provided that 0 < m1 ≤ A ≤M1 and 0 < m2 ≤ B ≤M2.
We have the following inequalities:

Proposition 1. With the assumptions of Theorem 2 we have the determinant inequalities

1

K (h1)K (h2)
≤ ∆x (A ◦B)

∆x (A ◦ 1) ∆x (1 ◦B)
≤ K (h1h2) (22)

where h1 = M1

m1
> 1, h2 = M2

m2
> 1.

Proof. By the properties of the tensorial product, we have that

A⊗B = (A⊗ 1) (1⊗B)

where A⊗ 1 and 1⊗B are commutative operators.
Therefore

ln (A⊗B) = ln [(A⊗ 1) (1⊗B)] = ln (A⊗ 1) + ln (1⊗B)

and

U∗ (ln (A⊗B))U = U∗ [ln (A⊗ 1) + ln (1⊗B)]U
= U∗ (ln (A⊗ 1))U + U∗ (ln (1⊗B))U .

Using Jensen’s operator inequality for the operator concave function ln, we also have

U∗ (ln (A⊗ 1))U ≤ ln (U∗ (A⊗ 1)U) = ln (A ◦ 1)

and
U∗ (ln (1⊗B))U ≤ ln (U∗ ((1⊗B))U) = ln (1 ◦B) .

These imply for x ∈ H, ‖x‖ = 1 that

exp 〈U∗ (ln (A⊗B))Ux, x〉 ≤ exp [〈ln (A ◦ 1)x, x〉+ 〈ln (1 ◦B)x, x〉]
= exp [〈ln (A ◦ 1)x, x〉] exp [〈ln (1 ◦B)x, x〉]
= ∆x (A ◦ 1) ∆x (1 ◦B)

and by the second part of (18) we derive the second inequality in (22).
From (17) we have

ln Φ (P ) ≤ lnK

(
M

m

)
+ Φ (lnP )
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provided that 0 < m ≤ P ≤M.
Now, if we take in this inequality 0 < m1 ≤ P = A ⊗ 1 ≤ M1, then we get for

Φ (P ) = U∗ (A⊗ 1)U = A ◦ 1 that

ln (A ◦ 1) ≤ lnK

(
M1

m1

)
+ U∗ (ln (A⊗ 1))U

while for 0 < m2 ≤ P = 1⊗B ≤M2

ln (1 ◦B) ≤ lnK

(
M2

m2

)
+ U∗ (ln (1⊗B))U ,

which gives, by addition, that

ln (A ◦ 1) + ln (1 ◦B)− ln

[
K

(
M1

m1

)
K

(
M2

m2

)]
≤ U∗ (ln (A⊗ 1))U + U∗ (ln (1⊗B))U = U∗ (ln (A⊗B))U .

By taking the inner product for x ∈ H, ‖x‖ = 1 we get that

〈ln (A ◦ 1)x, x〉+ 〈ln (1 ◦B)x, x〉 − ln

[
K

(
M1

m1

)
K

(
M2

m2

)]
≤ 〈U∗ (ln (A⊗B))Ux, x〉

and by taking the exponential, we derive

exp 〈(A ◦ 1)x, x〉 exp 〈ln (1 ◦B)x, x〉
K (h1)K (h2)

≤ exp 〈U∗ (ln (A⊗B))Ux, x〉

for x ∈ H, ‖x‖ = 1 and by the third inequality in (18) we obtain the first part of (22). �

Remark 1. Since K (h) ≥ S (h) for h > 0 (see for instance [10, p. 4]), then the bounds
for the ratio

∆x (A ◦B)

∆x (A ◦ 1) ∆x (1 ◦B)

provided by (21) are better than the ones from (22).

Lemma 1. For all h1, h2 ∈ (1,∞) or h1, h2 ∈ (0, 1) we have

K (h1h2) ≥ K (h1)K (h2) . (23)

If h1 ∈ (1,∞) and h2 ∈ (0, 1) or h2 ∈ (1,∞) and h1 ∈ (0, 1) then the sign of inequality
reverses in (23).

Proof. We have for h1, h2 ∈ (0,∞) that

K (h1h2)−K (h1)K (h2) =
(h1h2 + 1)

2

4h1h2
− (h1 + 1)

2

4h1

(h2 + 1)
2

4h2

=
1

16h1h2

[
4 (h1h2 + 1)

2 − (h1 + 1)
2

(h2 + 1)
2
]

=
1

16h1h2
[2 (h1h2 + 1) + (h1 + 1) (h2 + 1)]

× [2 (h1h2 + 1)− (h1 + 1) (h2 + 1)] .

Observe that

2 (h1h2 + 1)− (h1 + 1) (h2 + 1) = 2h1h2 + 2− h1h2 − h1 − h2 − 1

= h1h2 + 1− h1 − h2 = (h1 − 1) (h2 − 1) ,



INEQUALITIES FOR THE NORMALIZED DETERMINANT 127

which shows that the sign of K (h1h2) − K (h1)K (h2) is the same with the one for
(h1 − 1) (h2 − 1) , and this proves the lemma. �

Corollary 2. With the assumptions of Theorem 2 we have the deteminant inequalities

1

K (h1h2)
≤ ∆x (A ◦B)

∆x (A ◦ 1) ∆x (1 ◦B)
≤ K (h1h2) . (24)

The proof follows by (22) and (23).
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