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ON THE ADDITION OF A DIRAC MASS TO A ¢-LAGUERRE-HAHN
FORM

S. JBELI AND L. KHERIJI

ABSTRACT. Our goal is to study the addition of a Dirac mass to a Hy-Laguerre-Hahn
form where Hy be the g-derivative operator. The Hgy-Laguerre-Hahn character and
the class of the obtained form is discussed into detail. An example in connection with
the first order associated of a Hy-classical form is highlighted.

1. INTRODUCTION AND PRELIMINARIES

The addition of a Dirac mass to a regular and D-semiclassical form was studied by F.
Marcelldn and P. Maroni in [7] where D is the derivative operator. Later, F. Marcellan and
E. Prianes have studied the addition problem of a D-Laguerre-Hahn form [8]. In [3], the
basic theory of H,-Laguerre-Hahn (¢-Laguerre-Hahn in short) forms (linear functionals)
and a few generic examples related to some standard transformations (association, co-
recursion, inversion) of H-classical [4, 6] or more generally H,-semiclassical g-polynomials
[5] were studied, where H, be the g-derivative operator (see also [2]).

So, the aim of this work is to construct some new g¢-Laguerre-Hahn forms of class
greater to one from old one’s by using the following standard perturbation

U= u~+ Mg,

or equivalently,
(x —c)a = Nz — )y,

where ¢ is a complex number, d. be the Dirac measure at ¢ (dp := §), A a non null complex
number and u be a g-Laguerre-Hahn form of class s. The ¢g-Laguerre-Hahn character of
@ is studied for any complex c. The variation of the class is examined into detail for ¢ =0
in order to avoid long calculations and an example in connection with the first associated
of the natural g-analogue of Hermite is emphasized and provides two g-Laguerre-Hahn
new forms of class 1 and 2 depending on the value of the parameter .

We denote by P the vector space of the polynomials with coefficients in C and by P’ its
dual space whose elements are forms. The action of uw € P’ on f € P is denoted as (u, f).
In particular, we denote by (u), := (u,z™) , n > 0 the moments of u. For instance, for
any form wu, any polynomial g and any (a,c) € (C\ {0}) x C, we let Hyu, gu, hqu, Du,
(z —c¢)"'u and 6., be the forms defined as usually [9] and [4] for the results related to the
operator H,

(Hyu, f) := —(u, Ho f) , {gu, f) := (u, gf) , (hau, f) = (u, ha f) ,
(Du, f) == ~(u, f) » ((x=) " u, f):=(wbf) . (o, f):=fle) ,
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54 S. JBELI AND L. KHERIJI
where for all f € P and ¢q € C:= {z €C, z#£0,2"#1,n> 1} [4]

T =T (1, ) (@) = fla) . @uf)(a) = L=,

(qu)(.’ﬂ): (q—l)x T —c

In particular, this yields

(Hyw)yn = —[n]g(u)p-1, n >0,
n—1
where (u)_1 =0 and [n], :== 4 T >0 [4]. It is obvious that when ¢ — 1, we meet
q—

again the derivative D.
For f € P and u € P’, the product uf is the polynomial [9]

(uf) (@) o= (u, LE =Sy _ Z(gu)j_i fj)xi,

=G i=0 Nj=i

where f(z) = Z fiz®. This allows us to define the Cauchy’s product of two forms:
i=0

(uv, f) = (u,vf) , f€P.
The Stieltjes formal series of u € P’ is defined by [9]

S(u)(z) ==~y iﬂ’;

n>0

A form w is said to be regular whenever there is a sequence of monic polynomials
{P.}n>0, deg P, = n, n > 0 MPS such that (u, P,Pp,) = 7p0n,m with 7, # 0 for any
n,m > 0. In this case, {P, }, >0 is called a monic orthogonal polynomials sequence MOPS
and it is characterized by the following three-term recurrence relation (Favard’s theorem)
(TTRR in short) [1, 9]

P()(.’l?) = 1, Pl(.’L') :aﬁ—ﬁo,
Poi2(7) = (2 = But1) Poy1 (%) — Yns1 Pu(z), n >0,

P2 -
WJ €C, Yns1 = TT“ eC\ {0}, n>0.

The shifted MOPS {P, := a™" (haPp)}n>o is then orthogonal with respect to u =
ha-1u and satisfies (1.1) with [9]

(1)

where (3, =

go=Bn 5 mn
n a ) Tn+1 a2 )

n > 0.

Moreover, the form u is said to be normalized if (u)g = 1. In this paper, we suppose that
any regular form will be normalized. The form w is said to be positive definite if and only
if 8, € R and 7,41 > 0 for all n > 0. When w is regular, { P, },,>¢ is a symmetrical MOPS
if and only if 8, =0, n > 0 or equivalently (u)2,4+1 =0, n >0 [1].

Given a regular form u and the corresponding MOPS { P, },,>0, we define the associated
sequence of the first kind {PT(LI)}nZO of {P,}n>0 by [9]

Poy1(z) — Puya(§)
r—§

P,V (z) = (u, ) = (ubgPry1)(z), n > 0.
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Proposition 1. [9] Let {P,}n>0 be a MOPS satisfying the TTRR (1.1), then its associ-
ated sequence {Py(ll)}nzo satisfies the TTRR

PM@) =1, PP(x)=xz-p,

1 1 1
Prls(@) = (@ = But2) P (0) = myaPi (@), n 20,
Lemma 1. [4,5,9] For f,ge P, u,v € P, a € C\ {0} and ¢ € C, we have

ha(gu) = (he-19)(hat) , ha(uwv) = (hau)(hav) , habc = bac, f(x)0c = f(c)de,  (2)
hg-10Hy=H,1 , Hyohy1=q "Hy-1, inP, (3)
hy10H,=q '"Hy-» , Hyoh,1=H,z1, inP, (4)
Hq(fg)(x) = (hef)(x)(Hqeg)(x) + g(x)(Hqyf)(2), (5)

Hy(gu) = (hg-19)Hqu + ¢~ (Hy-19)u, (6)

S(Hyu)(2) = ¢ (Hg-1(Sw)))(2) »  (hg—15(w))(2) = ¢S(hqu)(2), (7)
Hy(gu) = gHqu + (Hg-19)hqu, (®)

(x — 7')71((x - T)u) =u— (w)od;, (z-— T)((a: — T)flu) = u, (9)
fla™tu) = a7 (fu) + (u, 00 f)0, (10)

fluv) = (fu)v + z(ubo f)(x)v, (11)

S(fu)(z) = f(2)5(u)(2) + (ubof)(2). (12)

We will give now some future about the ¢g-Laguerre-Hahn character.

Definition 1. [3] A form u is called q-Laguerre-Hahn when it is regular and satisfies the
q-difference equation

Hy(®u) + Yu+ Bz~ 'u(hgu)) =0, (13)
where ®, W, B are polynomials, with ® monic. The corresponding orthogonal sequence
{P,}n>0 ts called g-Laguerre-Hahn MOPS.

Remark 1. 1. When B = 0 and the form u is reqular then u is Hy-semiclassical
2. [I?I}/}Len u satisfies (13), then U = hq—1u fulfills the q-difference equation [3]
Hy(a™ 8% ®(az)t) + a' "8 *W(ax)u + a~ 8 * B(ax) (z ' u(het)) = 0. (14)
3. Putt=deg®, p=degV, r=degB and d = max(t,r), we define the class of u
the nonnegative integer s [3]
s =minmax(p — 1,d — 2)

where the minimum is taken over all triplets (P, W, B) satisfying (13). Moreover,
the q-Laguerre-Hahn form w satisfying (13) is of class s = max(p — 1,d — 2) if
and only if

I {yq<hq\v><c>+<Hq<1>)<c>\+\q<hqB><c>\+

cEZp

<u,q(@cq\I/)Jr(cho@c©)+q(hqu(0009CqB))>‘} > 0,

(15)

where Zg is the set of roots of ® [3]. When ¢ € Z¢ and (13) may be simplified
by x — ¢, then (13) becomes

Hy((0:2)u) + (¢0cq¥ + Ocq 0 0cP)u + q(004B) (z™ M u(hqu)) = 0. (16)

Proposition 2. [3] Let u be a regular form. the following statement are equivalents:

(a) u belongs to the g-Laguerre-Hahn class, satisfying (13).
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(b) The Stieljes formal series S(u) satisfies the g-Riccali equation
(hq—1®)(2)Hy-1(S(u))(2) = B(2)S(u)(2)(hg-1S(u))(2) + C(2)S(u)(2) + D(z), (17)
where ® and B are polynomials defined in (13) and

{ C(z) = =(Hg1®)(2) — q¥(2) a8)
D(z) = —{H,-1(ubo®)(2) + q(ubo¥)(2) + q(uhqu)(03B)(2)}.
Moreover, u is of class s if and only if
IT {1ztcol + (Cten) + IDCea)l} > 0 (19)
cEZy
and one may write
s = max(deg B — 2,deg C — 1,deg D). (20)

Lastly, the following results and notations will be needed in the sequel.

Lemma 2. [3] If u be a q-Laguerre-Hahn form of class s fulfilling (13) such that its
Stieltjes formal series S(u) satisfies (17), then the associated form uY) is g-Laguerre-
Hahn of the same class s fulfilling (21) and its Stieltjes formal series S(u(l)) satisfying
(22) where

Hq(q;(l)u(l)) + UMy B(l)(x_lu(l)(hqu(l))) =0, (21)
(hg-1@M)(2)Hy-1 (S(uV))(2) =
BY (2)S(u)(2)(hg-1S(uM))(2) + CD(2)S (uV)(2) + DV (), (22)

with
KW () = &(x) + (g — Da{(qz — Bo)(heD)(x) — (heC)(2)} ,

KUY (2) = —{q" " (H,-1®)(x) + ¢~ (¢ '@ — Bo) D(x) + (qz — Bo)(heD)(x) — (heC)(2)},
KB(l)(m) = ’Y1D($) ’
KCW(z) = ((¢7" + 1)z — 260) D(z) — C(z) ,
KDW(z) =77 {B(z) + (¢ '@ — Bo)(z — Bo) D(x) — (¢ 'z — Bo)C(x) — (he—1®)(2)}, o)
23
and K is a normalization constant.
The quantum factorial symbol is defined by [4]
n—1
(@ q)o =1, (¥;9)n = [[(1 —2¢"), 2,9 € C. (24)
k=0

2. THE ADDITION OF A DIRAC MASS PROBLEM: THE ¢-LAGUERRE-HAHN CASE

Let u be a regular form and {P, },>¢ its MOPS satisfying the TTRR (1). Let @ € P
such that

U =u+ M., MceC, (25)
or equivalently,
(x —c)a = Az — c)u. (26)
It is seen in [7] that @ is regular, if and only if, A # \,,, n > 0 where

-1
)\n:_<z7_l(/)> s Tn:H'YuanZOa Yo := 1. (27)

v=0 v=0
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In this case, denoting {Pn}nzo its MOPS and Bn, Yn+1, n > 0 the recurrence elements

of its TTRR, we have [7]

y dn
(= ) Pay1(2) = Pasa(®) + buga Py (2) + d“

PAOPin(®)
/\7 0,
dn (28)

Py(x), n =0,

bo=P80—c, bpy1=Lny1—c—
Bn :5n+1 +bn_bn+17 n207

dpt1dn— .
'7n+1:’yn%,n20, d0:1+)\, d,12:1,’)/0:1+)\.

with

2 ) n>0. (29)

> when u is positive definite and ¢ € R, then the form @ is positive definite for any
A > 0 and regular for any A € C\] — 00, 0[.

> When w is symmetric regular and real, then for any ¢, A such that R(c) =
0, (A) # 0, the form @ is regular.

dy = <Vﬁo%> <1+>\Z

v=0
Moreover [7],

2.1. The ¢g-Laguerre-Hahn character of @. From now on, let u be a ¢-Laguerre-Hahn
form of class s satisfying (13) and its corresponding MOPS {P, },>¢ fulfilling the TTRR
(1). We suppose that A # A,,, n > 0. Consequently, the form @ defined by (25) is regular.
We are going to study the g-Laguerre-Hahn character of % and the variation of its class
§ according to that of u.

Proposition 3. The regular form 1 is q-Laguerre-Hahn of class § such that s —2 < § <
s + 2 and satisfying the q-difference equation

Hy(®(z)u) + ¥ (z)u+ B(z)(z~ " u(hqe)) =0, (30)
with
Kd(z) = q(z — ¢){(gz — ¢)®(z) + Mg — )z B(qx)},
KV(z) = (z = c){(z — cq)¥(x) — (1 + q)@(z) — A(B(x) + ¢B(qx))}, (31)
KB(x) = (z — ¢)(z — cq)B(x).

In addition, its Stieltjes formal series S(4) satisfies the q-Riccati equation

(hg-1®)(2)Hy-1(S(@)(2) = B(2)S()(2)(hg-15(w))(2) + C(2)S(a)(2) + D(2),  (32)

where

K®(2) = q(z = c){(gz — 0)®(2) + Mg — 1)2B(g2)},
KB(z) = (2 = ¢)(z — cq) B(2) (33)
KCO(2) = {(z - C)

(2 — eq)C(2) + A((1 + q)= — 2e9) B(=)},
(2 — cq)D(2) + g\2B(2) + Az - cg)C(2) + M1 B)(2)}.

Proof. Accordingly to (25) and the third formula in (2), the g-difference equation (13) is
equivalent to
Hy(®(z)(@ — Ade)) + U (z) (@ — Ade) + B(z) (27 (@ — A0e)((hqtt) — Adeq)) = 0. (34)

Multiplying (34) by (x — ¢)(z — cq), we have for the second term and the first one of the
obtained g-difference equation,

(x —c)(x — cq)¥(z)(a — N¢) = (z — ¢)(x — cq)¥(x)a,
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(5= 0o = o) Hy (¥(a) (= X02) = Hola(o = gz = )B(e)( = A.)

q

=H, (q(x —o)(qr — ¢)P(x) “)
thanks to (6) and the fact that (z — ¢)d. = 0.
To simplify the third term (z — ¢)(z — cq)B(z) (z 7 (@ — M) ((hqlt) — Adeq)), we have
(@ —c)(@ — cq) (271 (@ — Ade) ((hqtt) — Meq)) =

(x—c)(z—cq) (m‘lahqa—)\x_l (5Chqa+a50q)+>\2x—15050q)
with
(x — ¢)(x — q) (m_lcschqa) = 1( x —c)(z — cq)(dchy 12)) + (0chgti, x — (1 + ¢))0

-1 xo:—cqhu)+<hu:1: cq)d

(x —cq)hqt— ((x —cq)hq@)od + (hqtl, x — cq)d = (x —cq)hyt,

(x —¢)(x — cq) (xilﬁécq) =a! ((x —c)(x —cq)(d Cqu)> + (0cqlt, x — (1 + ¢))0

and
(x —c)(x — cq) (x*15C5cq) =g ! ((x —o)(x — cq)(5cécq)) (0c0cq,x —c(14q))o
=gt (x(x - cq)écq) + (0cq,x —cq)d =0,
since (2), (9)-(11) and definitions. Therefore, the third term of the obtained g¢-difference
equation becomes

(z = ¢)(x — cq)B(x) (z7 ! (@ — M) ((hqtt) — Adeq)) =

(z — ¢)(z — cq)B(z) (v~ ithgit) — Nz — cq) B(z)hqtt — ANz — ¢)B()i. (35)
Now, combining (6) and (8) this allows to deduce that
het = (1 — q)Hy(2u) + . (36)
Injecting (36) in (35) and thanks to (6) another time leads to
(z = o)(z — cq)B(x) (271 (& — Me) ((hqtt) — Meg)) = (z — ¢)(z — cq) B(z) (¢ thqtt)
~Ma(l = ) Hy (2 — ) Blg2)) + (= — &) (B(x) + aB(qw))it}
Consequently, we obtain (30)-(31). Moreover, on account of (31) and the definition of

the class, it is easy to see that § < s+ 2. The multiplication of (17) by (z — ¢)(z — ¢q),
while using (5) and the formula (see (12) for f(z) = z—c) S((z—c)u) = (z—¢c)S(u)+1, give

hq=1(4*(z = ¢)(z = cq” 1) @) (2) Hy-1 (S(0)) (2) = (2 = ¢)(2 — eq) B(2) S () (2) (hg-1 S (1)) ()
+8(0)(2){(2—c)(z—cq)C(2)gMz— ) B(2)} + Mz —cq) B(2) (hg-1 S (1)) (2)

+{g\?B(2) + Mz — ¢q)C(2) + (2 — ) (2 — cq) D(2) + M hg-1®)(2)}. (37)
But, from (7)-(8) we have

(hg-1S(@))(2) = qS(hq)(2) = S()(2) — (1 — g~ ")z (Hy-15(a)) (2)- (38)
By replacing (38) in (37), we obtain the desired result (32)-(33). Lastly, we have from
definitions 7 = deg ® < max(deg ® + 2, deg B + 2) < s+4, p=deg¥ < max(deg¥ +
2,deg® +1,degB+1) < s+3, 7 =deg B =degB +2 < s+4. Then, d = max(f,7) <
s+4,5=max(p— 1,d — 2) < s+ 2. On the other hand, since u = % — \d, is a regular
form we deduce from the above result that s < § + 2. Therefore, s — 2 < 3. O
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Lemma 3. Let @ the q-Laguerre-Hahn form which its Stieltjes formal series satisfies
(32)-(33).
(1) For any root 7 of ® such that T # ¢ and T # cq~*, the equation (32) with (33)
cannot be simplified by z — 7q.
(2) If 7 is a root of ® such that T = c, the equation (32) with (33) cannot be simplified
by z — cq if and only if

| cq(q — 1)B(qe) | + | gAB(qc) + @(c) [# 0. (39)

(3) If T is a root of ® such that T = cq~', the equation (32) with (33) cannot be
simplified by z — c if and only if

| e(1=q)B(c) | + | gAB(c) + @(cg™ ") + c(1 — q)C(e) |# 0. (40

Proof. (1) Let 7 be a root of the polynomial ®, such that 7 # ¢ and 7 # ¢q~*. If B(qr) =
C(gr) = D(g7r) = 0, then B(qr) = 0, which gives from the expression of ®, ®(7) = 0.
Therefore ®(7) = 0 since 7 # ¢ and 7 # c¢~'. Now, since B(qr) = (hy—1®)(q7) =
®(7) = 0 we have C(qr) = 0. Next, from the expression of D, we see that D(¢7) = 0
since D(q7) = B(qr) = C(q7) = 0 and ®(7) = 0. Thus, B(qr) = C(q7) = D(q7) = 0.
From (17), we deduce then a contradiction since u is a ¢g-Laguerre-Hahn form of class s.
(2)-(3) If ¢ is a root of ®, then B(gc) = 0, KC(qc) = Acq(q — 1)B(gc) and D(qc) =
)\2B(qc) + A®(c) and if cq’1 is a root of ®, then B(c) = 0, KC(c) = Ae(q — 1)B(c)
and KD(c) = ¢)\?>B(c) + Ae(1 — q)C(c) + )\<I>(cq 1). Thus, the results in (39)-(40) are
consequences of (17). O

=

2.2. The class of @ when ¢ = 0. Now, & = u+Ad with A # \,,, n > 0. From Proposition
3. and Lemma 3., we have

(c2,1) The regular form @ is g-Laguerre-Hahn form of class § such that s —2 < § < 542
and satisfying the g¢-difference equation

Hy(®(z)a) + ¥ (z)a+ B(z)(z~ "u(hqe)) =0, (41)
with
{ K&(x) = q2*{q®(z) + A(g — 1)B(gz)}, KB(x) = 2”B(x), (42)
KV(z) = 2{z¥(z) — (1+ q)®(x) — M(B(z) + ¢B(qx))}.

) =
In addition, its Stieltjes formal series S() satisfies the g-Riccati equation

(hg-1®)(2)Hy-1(S(@)(2) = B(2)S()(2)(hg-15(w))(2) + C(2)S(a)(2) + D(2),  (43)
where
K®(z) = ¢z*{q®(2) + Mg - 1)B(g2)}, KB(2) = 22B(2),
KC(z) = z{2C(2) + A(1 + q) B(2)}, (44)
KD(z) = 2°D(z) + g\*B(z) + Az2C(z) + A(hy-19)(2).
(c2.2) For any root 7 of ® such that 7 # 0, the equation (43) with (44) cannot be
simplified by z — 7.

(c2.3) If 7 is a root of ® such that 7 = 0, the equation (43 with (44) cannot be simplified
by z if and only if
| gAB(0) + @(0) [# 0. (45)
Theorem 1. The form @ = u + A0 when it is reqular is q-Laguerre-Hahn of class §
fulfilling (41)-(42) and its Stieltjes formal series S() satisfies the q-Riccati equation (43)
with (44). Moreover,

(1) If AB(0)+®(0) # 0, then § = s+2. In this case, S() satisfies the q-Riccati equation
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(43) with (44).

(2) If (gAB(0)+®(0) = 0, B(0) #0) or (¢AB(0)+®(0) = 0, C(0)+gAB (0)4¢1®(0) #
0), then § = s+ 1. In this case, S(@) satisfies the q-Riccali equation

(hg=1®0.1)(2) Hy-1(S(2))(2) = Bo.1(2)S(@)(2) (hy-15(0)) () + Co,1(2)8(a@)(2) + Do (2), (46)

where
K(I)O 1(2)
KCO 1(2)
2D(z) + gA\*Bo,1(2) + AC(2) + Ag™ (hy-1Po.1)(2).

KDOl(Z)
3) If((B(O) ®(0)) = (0,0), C(0)+¢AB(0) =0, B'(0) # 0) or ((B(0),%(0)) = (0,0),

C(0) + gAB (0) =0, D(0) +AC'(0) + LB (0) + 28" (0) # 0 ), then 5 = s. In this
case, S(@) satisfies the q-Riccati equation

(hg-1®0.2)(2) Hy-1(S())(2) = Bo.2(2)S(@)(2) (hy-15(w))(2) + Co.2(2)8(a)(2) + Do2(2), (48)

where
K(I)Q 2(2)
KCO 2(2)

KDO 2(2)

AP®(2) + Malg — 1)Blg2)},  KDBoa(2) = 2B(2),
2C0(2) + A1+ q)B(2), (47)

@®(2) + Aq(¢ — 1)B(qz), KBoa(z) = B(2),
C(z) + A1+ q)Boa(2), (49)
D(Z) + Q)\QBQ 2( ) /\C() ( ) + /\q 2(hq—l @072)(2).

(4) If ((B(0), ®(0)) = (C(0), B (0) = (0,0),

ALHAB(0) + C(0) £ 0 ) or ((B(O ) (0)) = (C(0), B (0)) (0,0), D(0) +AC'(0) +
2B (0)+5520"(0) =0, D'(0)+2C"(0)+L-B" (0)+ 528" (0) # 0), then § = s—1.
In this case, S( ) satisfies the q- chcatz equatz

(hy-s ®0.8) ()1 (S(@)(2) = Bo(2)S(@)(2) (g1 S(@)(2) + Co.s(2)S(@)(2) + Dos(2), (50)
where

{ K ®q3(2) = {¢*®0,1(2) + A\¢®(¢ — 1)B(qz)}, K Bos(z) = Boa(2),
= Co(

D(0 )+)\C (0)+22B"(0)+ 520" (0) =0,

K:(?o,s(z) z) + A1+ q)Boa(2), (51)
K Do 3(2) DO 1(2) + Q/\2BQ,3(Z) + )\OO,Q(Z) + )\q_S(hq—l(I)()’l)(Z).

(5) I ((B(0), ®(0)) = ( (0), B'(0)) = (0,0), D(0)—4B"(0)+ 524" (0) =0, D'(0)+
%C’”( )+ qg‘, B (0) + ’\CI) (0) =0 ), then § = s — 2. In this case, S(u) satisfies the

q-Riccati equation
(hg-1®0.4)(2) Hy1(S(@))(2) = Bo.a(2)8(a)(2)(hg—15(@))(2) + Co,4(2)S(@)(2) + Doa(2), (52)
where
{ K ®04(2) = ¢*®o2(2) + A¢*(¢ — 1)Bo2(g2), K Boa(z) = Boa(2),
= Coa(2)
D

K Coa(2) AL+ ) Boa). 53)
K D074( ) (Z) + q)\QBO74(Z) =+ ACQg(Z) =+ )\q74(hq—1 ‘1)074)(2),
and for 0 <i <3,

Do (2) = 2Po,i+1(2) + to,i+1, Po,0 = P, Bo,i(2) = 2Bo,i+1(2) + S0,i+1, Bo,o = B,
Co,i(2) = 2Co,i+1(%) + qo,i+1, Co,0 = C, Do,i(z) = 2Do,i+1(2) + po,i+1, Do,o = D.

Proof. On account of (cg1) we have s —2 < § < s+ 2 and S(u) satisfies the ¢-Riccati
equation (43) with (44). Therefore,

(1) if gAB(0)+®(0) # 0, then § = s+2 since (c22) — (¢2,3) and S(a) satisfies the ¢-Riccati
equation (43)-(44).
(2) If gAB(0) + ®(0) = 0, we have 0 is a root of ®, so the equation (43) with (44) is
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simplified by z and S(u) satisfies the Ricatti equation (46)-(47). In this case, according
o (19), the equation (46) with (47) cannot be simplified, if and only if,
| B(0) | + [ C(0) + ¢AB (0) + ¢~'®(0) [# 0.
(2.1) If B(0) # 0 or C(0) + gAB (0) + ¢~ *®(0) # 0, then 5 = s + 1.
(2.2) If B(0) = 0 and C(0) + gA\B'(0) + ¢~ '®(0) = 0, it is easy to see that 0 is a root of
g 1, so the equation (46)-(47) is simplified by z and S(u) satisfies the ¢g-Riccati equation
(48)-(49). In this case, according to (19), the equation (48) with (49) cannot be simplified,
if and only if,
’ 2
| AL+ q)/ (0)+C(0) |+ D(0) + A (0) + %QB 0+ = (0) |# 0.
(2.2. ) If A(1+ q)B'(0) + C(0) # 0 or D(0) + AC'(0) + L-B" (0) + 528" (0) # 0, then
P—
(2.2. 2) I A(1+¢)B'(0) + C(0) = 0 and D(0) + AC' (0) + B-B" (0) + 120" (0) = 0, we
have ®(0) = B(0) = 0, then 0 is a root of &g 5. Consequently, the equation (48) with (49)
is simplified by z and S(@) satisfies the g-Riccati equation (50) with (51). In this case,
according to (19), the equation (50) with (51) cannot be simpliﬁed, if and only if,
’ ’" ’ ’ 1”1 -3
| B'(0) [+ | 2552 B (0) + C'(0) | +| D'(0) + 3C"(0) + G- B” (0) + 152 0" (0) | 0.
There are two subcases: \ )
’ 1 " / ’ " 1
(22:2.1) 1 B'(0) # 0 or 2D B (0) + C'(0) # 0 or D'(0) + 3C"(0) + LB (0) +
420" (0) #£0, then § = s — 1.
(2.2.2.2) I B'(0) = 0, 250 B (0)+C"(0) = 0, D' (0)+3C" (0)+ LB (0)+ 529" (0) =
0, then § = s — 2 and S(a) satisfies the ¢g-Riccati equation (52) with (53). The theorem
is then proved. O

’

1"

Remark 2. When ¢ — 1, we recover the results established in [8].

Example 1. First of all, let us recall H(q) the natural g-analoque of the Hermite form
which is symmetric Hy-classical and {H,(.;q)}n>0 be its MOPS. We have [4, 6]

Ynt+1 = %q" [n+1]q, He(H(q)) +22zH(q) =0, H,-1(S(H(q)))(z) = —2¢2S(H(q))(z) —2q. (54)

From (54), for 0 < q < 1, the form H(q) is positive definite. Denoting HM (q) its first
associated form and {H(l)( q) }n>o0 its MOPS. On account of Proposition 1., Proposition
2. and Lemma 2., the symmetric form HY(q) is q-Laguerre-Hahn of class s = 0 fulfilling

7(L1) =0, ’Yr(zl+)1 = ; qn+1 [" + 2]q, n 2> 0,
{ H, (H®(9)) + 24~ HO (g) — gl HO ()8, H(”(Q))) (55)
H,— (S(HY(9)))(2) = —aSHY(9))(2) (kg1 S(HM (q))(2) — 2ZS(H(U( )(z) — 2.
Morover, from (55) and (20) we haveHél)(O;q) =1, HQ(}I)_H(O;q) =0,n>0, and

1 o L )n+1 q(n+1)2 (q2; q2)n+1
Hy,)y2(050) o H Vék)ﬂ 27+ (1 — g)ntt »n20. (56)

Now, from the fact that HY(q) is also positive definite for 0 < q < 1, then & = HM (¢q) +
NS is positive definite for 0 < g < 1 and A > 0. Moreover, thanks to the coefficients of the
q-Riccati equation in (55), we have BM(0) = —¢, @M (0) = 1 and gA\BM(0) + &M (0) =
—¢?X+ 1. Two cases arise.

> gABM(0) + &M (0) # 0, equivalently X # q~2. From the point (1) of Theorem 1.,
we deduce that for 0 < q < 1 and for all X\ > 0, X\ # q~2, the positive definite form
@ = HWY (q) + A6 is q-Laguerre-Hahn of class 5 = 2. On the other hand, thanks to (56)
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no(2. 02
and put w, (A, q) = <1+)\ E Wq_k>,n >0,A>0,0<q <1, we get for
; k
k=0

(27)-(29) and (43)-(44),

n(n2+1) ( 2 ) .
_ g q 59)n _ _
Tn = Ton(d_gqr b, =0, Bn=0,n2>0,
n(2n+1),, 2. (n+1)(2n+1) (2.
_q (¢75a)2n _4q (4759)2n41
don = 22n(1,q)2n)27 wn()\v Q)a d2n+1 = 22n+1(1,q)2n+21nJr wn(AaQ)a n >0,

Jo=14X Fonta = 3¢*+2[2n 4 3], 22 0 >0,

. 1 . no1(,
"= g((lig))v T2nt+1 = %qgnﬂ 2n + 2], ww”(lx(ﬂ?)’ nzl,

q 22 Hy1 (S(@))(2) = =g~ M (1 = Mg — 1)) 7'228(a) (2) (hg-15(@))(2)
—¢ (1= Mg — 1))712(22% + Mq(1 + q))S(a)(2)
+q72(1 = Mg —1))7H(=2(1 + A)2% + A(1 — ¢®))).

> gABW(0) + &M (0) = 0, equivalently X = q—2. Moreover, it is seen that B()(0) = —q #
0. Consequently, the first condition in (2) of Theorem 1. is valid and for 0 < ¢ <1, A =
q~2, the positive definite form @ = H(l)(q) + ¢ 26 is q-Laguerre-Hahn of class § = 1
satisfying

q 'zH,-1(S(0)(2) = —q(¢* — ¢+ 1) 25(@)(2) (hy-1S(2))(2)

—q NP —q+1)7 (202 +1+)S(a)(2) —2¢ 2(1+¢*)(¢* —q+1) 2.
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