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ANALYTICAL ANALYSIS AND GRAPHICAL PRESENTATIONS OF

THREE DIMENSIONAL INFLUENCE FUNCTIONS WITHIN A

THERMOELASTIC HALF-LAYER

VICTOR ŞEREMET1,2 AND ION CREŢU1,3

Abstract. This paper is devoted to analytical analysis of the solution for a boundary

value problem given partially in the works: [18] V. S, eremet, A three-dimensional
generalized BVP of thermoelasticity for a layer: Green’s functions and integration

formula, TJMM, vol. 10, no. 2, p. 121-129, 2018 and [19] V. S, eremet and I. Cret,u,

Three-dimensional influence functions and integration formula for many boundary
value problems within a thermoelastic half-layer, TJMM, vol. 12, no, 1, p. 45-58,

2020. The mentioned above solutions satisfy equations of thermoeasticity and bounda-

ry conditions only, but derived Green’s functions for thermoelastic displacements,
caused by a unit point heat source do not vanish at infinity. Thus, the application

simultaneous of analytical and graphical methods permed us to obtain exact analytical

solutions which vanish at the infinity. In fact, to derive exacts analytical expressions
for main termoelastic displacements Green’s functions (MTDGFs) was necessary to

be omitted in the solutions given in [18] and [19] the terms which do not vanish at

infinity without affecting the other main equations. Graphical presentation of derived
exact analytical expressions for a three-dimensional MTDGFs, plotted by using soft

Maple 18 is included.

Abbreviations

MTDGFs – main thermoelastic displacements Green’s functions;
3D – three dimensional;
BVP – boundary value problem;
GFPE – Green’s function for Poisson equation;
HIRM – harmonic integral representations method;
HIR - harmonic integral representations;
TVD – thermoelastic volume dilatation.

1. INTRODUCTION

As is well known the theory of thermal stresses [1]-[8] is the most used theory for
practical engineering calculations. In the limit of this theory was proposed a new effi-
cient method to solve BVPs of thermoelasticity, called harmonic integral representations
method (HIRM) [9]. This method is based on new approach [10] and new general har-
monic integral representations (HIR) [11] for main thermoelastic displacements Green’s
functions (MTDGFs) via Green’s functions for Poisson equation (GFPE) [12]. HIRM was
used successfully [13]-[19] to constructing structural formulas and analytical expressions
for MTDGFs expressed via GFPE for many generalized and particular BVPs of thermo-
elasticity. The mentioned in [13]-[19] analytical expressions for solutions (thermoelastic
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displacements) of particular BVPs were derived by using proposed special integration
formulas. These formulas express the searched thermoelastic displacements via integral
from the product of MTDGFs and given on the surfaces thermal boundary conditions,
without preliminary determination of the inner temperature field, as in classical methods
[5],[6]. This paper is devoted to continuation of the research given in the works [18],[19].
Note that made by us analytical and graphical analysis the analytical expressions for
MTDGFs given in the works [18],[19] do not vanish at infinity. So, the main objective
of this paper is to obtain exact analytical expressions for MTDGFs within thermoelastic
layer and half-layer by simultaneous using analytical and graphical analysis.

2. MATHEMATICAL FORMULATION OF THE RESEARCH PROBLEM
FOR HALF-LAYER AND ANALYTICAL EXPRESSIONS

FOR MTDGFs GIVEN IN [19]

The BVP to uncoupled thermoelasticity for determining analytical expressions for MT-
DGFs Ui(x, ξ); i = 1, 2, 3 within the half-layer consists from Lame’s and Poisson’s equa-
tions:

µ52
ξ Ui(x, ξ) + (λ+ µ)Θ,ξi(x, ξ)− γGT,ξi(x, ξ) = 0; i = 1, 2, 3;

∇2
ξGT (x, ξ) = −δ(x− ξ);x ≡ (x1, x2, x3), ξ ≡ (ξ1, ξ2, ξ3),

(1)

where λ and µ are Lame constants of elasticity; γ = αT (3λ + 2µ) is the thermoelastic
constant; αT is the coefficient of linear thermal dilatation; Θ(x, ξ) is thermoelastic vol-
ume dilatation (TVD); δ(x − ξ) is delta Dirac function; x ≡ (x1, x2, x3) is the point of
application of the unit interior heat source; ξ ≡ (ξ1, ξ2, ξ3) is the point in which MTDGFs
Ui(x, ξ) appeared. So the MTDGFs are generated by the unitary inner point heat source
described by Dirac function. In addition on the surface of the half-layer are given suit-
able boundary conditions for normal derivative of temperature GFPE ∂GT (x, y)/∂nΓ,
for MTDGFs Ui(x, y); i = 1, 2, 3 and thermal stresses σ∗ij(x, y); i, j = 1, 2, 3, which are
determined by the Duhamel-Newman law [5],[6]:

σ∗ij = µ(Ui,j + Uj,i) + δij(λΘ− γGT ), (2)

where δij is the Kronecker’s symbol and GT is GFPE for temperature.
These suitable mechanical and thermal boundary conditions look as follows (see Figure

1 also):

U3(x, y) = σ∗31(x, y) = σ∗32(x, y) = 0, ∂GT (x, y)/∂nΓ30
= 0;

x ∈ V ; y ≡ (y1, y2, 0) ∈ Γ30;
(3)

- on the boundary half-plane Γ30(0 ≤ y1 <∞,−∞ < y2 <∞, y3 = 0),

U3(x, y) = σ∗31(x, y) = σ∗32(x, y) = 0, ∂GT (x, y)/∂nΓ31
= 0;

x ∈ V ; y ≡ (y1, y2, a3) ∈ Γ31;
(4)

- on the boundary half-plane Γ31(0 ≤ y1 <∞,−∞ < y2 <∞, y3 = a3), and

U1(x, y) = σ∗12(x, y) = σ∗13(x, y) = 0, ∂GT (x, y)/∂nΓ10 = 0;

x ∈ V ; y ≡ (0, y2, y3) ∈ Γ10;
(5)

- on the boundary strip Γ10(y1 = 0,−∞ < y2 <∞, 0 ≤ y3 ≤ a3).
The analytical expressions for MTDGFs for BVP (1) - (5) are the following [19]:
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Figure 1. The scheme of the half-layer V ≡ (0 ≤ x1 < ∞,−∞ <
x2 <∞, 0 ≤ x3 ≤ a3) with boundary half-planes Γ30, Γ31 and boundary
strip Γ10, on which are given the homogeneous mechanical locally-mixed
boundary conditions as normal displacements, tangential stresses and
homogeneous external normal derivatives from GFPE for temperature
GT .

U1(x, ξ) =
γ

2(λ+ 2µ)
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)]}
; (6)

U2(x, ξ) =
γ

2(λ+ 2µ)
(ξ2 − x2)

×

{
b− 1

πa3
ln rr1 +

1

πa3

∞∑
n=1

[K0(µ1r) +K0(µ1r1)] cosµ1x3 cosµ1ξ3

}
; (7)

U3(x, ξ) =
γ

2πa3(λ+ 2µ)

×

{
ξ3(r + r1) +

∞∑
n=1

[rK1(µ1r) + r1K1(µ1r1)] cosµ1x3 sinµ1ξ3

}
; (8)

- for MTDGFs Ui(x, ξ).

Here, and after here µ1 =
nπ

a3
; b is an arbitrary constant; K0(µ1r) and K0(µ1r1) are

modified Bessel functions (or cylindrical functions) of the zero-order of the second type,
respectively:
K1(µ1r) = −∂K0(µ1r)/∂(µ1r) and K1(µ1r1) = −∂K0(µ1r1)/∂(µ1r1);

r =
√

(x1 − ξ1)2 + (x2 − ξ2)2; r1 =
√

(x1 + ξ1)2 + (x2 − ξ2)2.

Also, for TVD in [19] is given the following analytical expression:

Θ(x, ξ) =
γ

λ+ 2µ
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×

{
b− 1

πa3
ln rr1 +

1

πa3

∞∑
n=1

[K0(µ1r) +K0(µ1r1)] cosµ1x3 cosµ1ξ3

}
. (9)

The analytical and graphical analyses of the MTDGFs and TVD in Eqns. (6) - (9)
showed that their analytical expressions do not vanish at infinity. Thus, the MTDGFs
and TVD in Eqns. (6) - (9) are not yet exact solutions for half-layer. So, we have to
find exact expressions for MTDGFs and TVD by using simultaneous the analytical and
graphical analyzes of expressions (6) - (9).

3. EXACT ANALYTICAL EXPRESSIONS FOR MTDGFs AND TVD
WITHIN THERMOELASTIC HALF-LAYER

The analytical and graphical analyses of the MTDGFs and TVD in Eqns. (6) - (9)
showed that they may became exact solutions, if will be omitted the following terms: ξ1b;
ln r; ln r1 - in the Eqn. (6), b − (πa3)−1 ln rr1 - in the Eqns. (7), (9) and ξ3(r + r1) - in
the Eqn. (8).

In fact, to obtain exact analytical expressions for MTDGFs and TVD which vanish at
infinity is necessary to be omitted the terms showed before. In this case the expressions
(6) - (9) will vanish at infinity without affecting the equations (1) - (5).

Thus, after making mentioned omitting in the equations (6) - (9) they became the
following final exact solutions for thermoelastic half-layer:

U1(x, ξ) =
γ

2πa3(λ+ 2µ)

{
(ξ1 − x1)

[ ∞∑
n=1

K0(µ1r) cosµ1x3 cosµ1ξ3

]

+ (x1 + ξ1)

[ ∞∑
n=1

K0(µ1r1) cosµ1x3 cosµ1ξ3

]}
; (10)

U2(x, ξ) =
γ

2πa3(λ+ 2µ)
(ξ2 − x2)

×

{ ∞∑
n=1

[K0(µ1r) +K0(µ1r1)] cosµ1x3 cosµ1ξ3

}
; (11)

U3(x, ξ) =
γ

2πa3(λ+ 2µ)

×

{ ∞∑
n=1

[rK1(µ1r) + r1K1(µ1r1)] cosµ1x3 sinµ1ξ3

}
; (12)

- for MTDGFs, and

Θ(x, ξ) =
γ

πa3(λ+ 2µ)

{ ∞∑
n=1

[K0(µ1r) +K0(µ1r1)] cosµ1x3 cosµ1ξ3

}
; (13)

- for TVD.
So, analytical expressions (10) - (13) satisfy Eqns. (1) - (5) to BVP of thermoelasticity

and vanish at infinity.
Thus, obtained in this paper analytical expressions (10) - (13) present the final exact

expressions for MTDGFs and TVD within thermoelastic half-layer.
Note that the respective exact analytical expressions for MTDGFs and TVD within a

thermoelastic layer can be obtained from expressions (10) - (13) for half-layer, if will be
omitted terms containing distance r1.
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4. GRAPHICAL PRESENTATION OF MTDGFs FOR THERMOELASTIC
HALF-LAYER

Graphs of the thermoelastic displacements Ui(x, ξ) within the thermoelastic half-layer
V , caused by a unit heat source applied in the point (x ≡ (x1, x2, x3)) were plotted by
using the soft Maple 18 and exact expressions (10) - (12) for MTDGFs at the following
values of the constants: Poisson ratio ν = 0, 3; modulus of elasticity E = 2, 1 · 105MPa
and coefficient of linear thermal dilatation αT = 1, 2 · 10−5(K−1).

Graphs of the MTDGFs Ui(x, ξ) in dependence of ξ1, ξ3, within the thermoelastic half-
layer V for 0 ≤ ξ1 ≤ 10m; ξ2 = 0, 1m; 0 ≤ ξ3 ≤ 2m, caused by a unit heat source applied
in the point x1 = 5m,x2 = 0, x3 = 1m are presented in the Figure 2 (U1(x, ξ) - Figure
2a); U2(x, ξ) - Figure 2b) and U3(x, ξ) - Figure 2c)).
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Figure 2. Graphs of MTDGFs Ui(x, ξ) within the thermoelastic half-
layer V for 0 ≤ ξ1 ≤ 10m; ξ2 = 0, 1m; 0 ≤ ξ3 ≤ 2m, caused by a unit
heat source applied in the point x1 = 5m,x2 = 0, x3 = 1m.
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In the Figure 2 can be observed:

1) All graphs were plotted by the soft Maple 18;
2) In the Figure 2, all graphs have jumps in the point x1 = 5m,x2 = 0, x3 = 1m

of application of the unit point heat source. In this point the MTDGFs achieve
maximal values;

3) All graphs of MTDGFs at infinity vanish;
4) The graph in the Figure 2a) is symmetrical in rapport with the plane ξ3 = 1m and

asymmetrical in rapport to the planes U1 = 0; ξ1 = 5m. The boundary condition
U1 = 0 for ξ1 = 0 is met (see eqn. (5) or Figure 1);

5) The graph in the Figure 2b) is symmetrical in rapport with the planes ξ3 = 1m
and ξ1 = 5m;

6) The graph in the Figure 2c) is symmetrical in rapport with the plane ξ1 = 5m and
asymmetrical in rapport to the planes U3 = 0; ξ3 = 1m. The boundary conditions
U3 = 0 for ξ3 = 0 and ξ3 = 2m are met (see eqns. (3)-(4) or Figure 1).
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Figure 3. Graphs of MTDGFs Ui(x, ξ) within the thermoelastic half-
layer V for ξ1 = 5, 1m; −10m ≤ ξ2 ≤ 10m; 0 ≤ ξ3 ≤ 2m, caused by a
unit heat source applied in the point x1 = 5m,x2 = 0, x3 = 1m.
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Graphs of the MTDGFs Ui(x, ξ) in dependence of ξ2, ξ3, within the thermoelastic half-
layer V for ξ1 = 5, 1m; −10m ≤ ξ2 ≤ 10m; 0 ≤ ξ3 ≤ 2m, caused by a unit heat source
applied in the point x1 = 5m,x2 = 0, x3 = 1m are presented in the Figure 3 (U1(x, ξ) -
Figure 3a); U2(x, ξ) - Figure 3b) and U3(x, ξ) - Figure 3c)).

In the Figure 3 can be observed:

1) All graphs were plotted by the soft Maple 18;
2) In the Figure 3, all graphs have jumps in the point x1 = 5m,x2 = 0, x3 = 1m

of application of the unit point heat source. In this point the MTDGFs achieve
maximal values.

3) All graphs of MTDGFs at infinity vanish;
4) The graph in the Figure 3a) is symmetrical in rapport with the planes ξ3 = 1m

and ξ2 = 0;
5) The graph in the Figure 3b) is symmetrical in rapport with the plane ξ3 = 1m

and asymmetrical in rapport to the plane ξ2 = 0;
6) The graph in the Figure 3c) is symmetrical in rapport with the plane ξ2 = 0 and

asymmetrical in rapport to the planes U3 = 0; ξ3 = 1m. The boundary conditions
U3 = 0 for ξ3 = 0 and ξ3 = 2m are met (see eqns. (3)-(4) or Figure 1).

5. CONCLUSION

Simultaneous application of the analytical and graphical analysis permitted us to ob-
tain exact MTDGFs and TVD for a BVP of thermoelasticity within half-layer and layer.
The proposed analyzes can be applied to other seven BVPs for thermoelastic half-layer
given in [19] in order to obtain for them respective exact analytical expressions for MTD-
FGs and TVD.
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[18] Şeremet, V., A Three-Dimensional Generalized BVP of Thermoelasticity for a Layer: Green’s Func-
tions and Integration Formula, Transylvanian Journal of Mathematics and Mechanics, 10 (2018),

2, 121-129.
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