
TJMM
13 (2021), No. 1-2, 45-58

STRONGLY GENERAL BIVARIATIONAL INEQUALITIES

MUHAMMAD ASLAM NOOR AND KHALIDA INAYAT NOOR

Abstract. In this work, we introduce and study some new classes of biconvex
functions involving an arbitrary bifunction, which are called strongly biconvex
functions. Some new relationships among various concepts of strongly biconvex
functions have been established. We have shown that the optimality conditions
for the biconvex functions can be characterized by a class of bivariational in-
equalities. An auxiliary principle technique is used to propose proximal point
methods for solving bivariational inequalities. We also discussed the conver-
sance criteria for the suggested methods under pseudo-monotonicity. Several
special cases are discussed as applications of our main concepts and results.

1. Introduction

Convexity theory is a branch of mathematical sciences with a wide range of
applications in industry, physics, social, regional and engineering sciences. The
general theory of the convexity started soon after the introduction of differential
and integral calculus by Newton and Leibnitz, although some individual opti-
mization problems had been investigated before that. It is worth mentioning that
variational inequalities represent the optimality conditions for the differentiable
convex functions on the convex sets. Variational inequality theory provides us
with a simple, natural, unified, novel and general framework to study an exten-
sive range of unilateral, obstacle, free, moving and equilibrium problems arising
in fluid flow through porous media, elasticity, circuit analysis, transportation,
oceanography, operations research, finance, economics, and optimization. Varia-
tional inequalities were introduced and considered in early 1960s by Stampacchia
[20], and they combine both theoretical and algorithmic advances with new and
novel domains of applications. The analysis of these problems requires a blend of
techniques from convex analysis, functional analysis and numerical analysis.

Inspired by the research work going on in this field, we introduce and consider
a new class of nonconvex functions with respect to an arbitrary function and bi-
function. This class of nonconvex functions is called the strongly general biconvex
functions. We have shown that the strongly general biconvex functions enjoy some
nice properties, which convex have. We establish the relationship between these
classes and derive some new results under some mild conditions. It is shown that
the optimality conditions of the differentiable biconvex functions can be charac-
terized by a class of variational inequalities, which is called general bivariational
inequalities. Some iterative methods are suggested for solving the bivariational
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inequalities using the auxiliary principle technique [3, 11, 12, 13, 14, 16, 17, 23]
involving Bregman distance functions. A convergence criteria is also discussed
using the pseudo monotonicity which is a weaker condition than monotonicity.
It is expected that the ideas and techniques of this paper may stimulate further
research in this field.

2. Preliminary and basic Results

Let K be a nonempty closed set in a real Hilbert space H. We denote by ⟨·, ·⟩
and by ∥ · ∥ the inner product and norm, respectively. Let F : K → R be a
continuous function and let β(. − .) : K × K → R be an arbitrary continuous
bifunction.

Definition 1. The set K in H is said to be a general biconvex set with respect to
an arbitrary function g and the bifunction β(· − ·) if

g(u) + λβ(g(v)− g(u)) ∈ K, ∀u, v ∈ K,λ ∈ [0, 1].

Remark 1. The biconvex set K is also called gβ-convex set. In fact, a research
on this “connectivity” is necessary to understand whether the new convexity im-
plies connectivity or is of a non-connected type. Of course, there are connected
particular cases, as when β(g(v) − g(u)) = g(v) − g(u), which implies that set
g(K) is connected, if K has the property of strong biconvexity with respect to g
and β(.− .). This new “connectivity” uses an object that may be an arch of some
curve instead of straight-line segment, as in case of the classical convexity. For
more details, see Cristescu and Lupsa [2].

Note that the biconvex set with β(g(v), g(u)) = v − u is a convex set, but the
converse is not true. For example, the set K = R − (−1

2 ,
1
2) is an biconvex set

with respect to g taken as the identity map, and β as follows

β(v − u) =

{
v − u, for v > 0, u > 0 or v < 0, u < 0
u− v, for v < 0, u > 0 or v < 0, u < 0.

It is clear that K is not a convex set.
If β(g(v)− g(u)) = g(v)− g(u),∀u, v ∈ K, then the Definition 1 reduces to

Definition 2. The set K in H is said to be a general convex set with respect to
an arbitrary function g, if

g(u) + λ(g(v)− g(u)) ∈ K, ∀u, v ∈ K,λ ∈ [0, 1].

This definition was introduced by Youness [22]. For the applications and prop-
erties of the general convex sets and general convex functions, see [10, 11, 16, 17].

From now onward K is a nonempty, closed, biconvex set in H with respect to
the arbitrary function g and the bifunction β(· − ·), unless otherwise specified.

We now introduce some new concepts of general biconvex functions and their
variant forms, which is the main motivation of this paper.
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Definition 3. The function F on the biconvex set K is said to be strongly biconvex
with respect to an arbitrary function g and the bifunction β(· − ·), if there exists
a constant µ ≥ 0, such that

F (g(u) + λβ(g(v)− g(u))) ≤ (1− λ)F (g(u)) + λF (g(v))

− µλ(1− λ)∥β(g(v)− g(u))∥2,
∀u, v ∈ K,λ ∈ [0, 1]. (1)

The function F is said to be strongly general biconcave, if and only if, −F is a
strongly general biconvex function. Consequently, we have a new concept.

Definition 4. A function F is said to be strongly general affine biconvex involving
an arbitrary function g and the bifunction β(·−·), if there exists a constant µ ≥ 0,
such that

F (g(u) + λβ(g(v)− g(u))) = (1− λ)F (g(u)) + λF (g(v))

− µλ(1− λ)∥β(g(v)− g(u))∥2,
∀u, v ∈ K,λ ∈ [0, 1]. (2)

If β(g(v) − g(u)) = v − u, then the strongly general biconvex function becomes
strongly convex functions, that is,

F (u+ λ(v − u)) ≤ (1− λ)F (u) + λF (v)− µλ(1− λ)∥β(v − u)∥2, ∀u, v ∈ K,λ ∈ [0, 1],

which were introduced by Polyak [19] and Karmardian [5], who used these strongly
convex functions in the study of complementarity problems. For the properties
of the convex functions in variational inequalities and equilibrium problems, see
Noor [8, 9, 11, 12, 13] and Noor et al [15, 16, 17]. Note that every strongly convex
function is strongly biconvex, but the converse is not true.

Definition 5. The function F on the biconvex set K is said to be strongly general
quasi biconvex with respect to an arbitrary function g and the bifunction β(· − ·),
if there exists a constant µ ≥ 0, such that

F (g(u) + λβ(g(v)− g(u))) ≤ max{F (g(u)), F (g(v))}
−µλ(1− λ)∥β(g(v)− g(u))∥2, ∀u, v ∈ K,λ ∈ [0, 1].

Definition 6. The function F on the general biconvex set K is said to be strongly
general log-biconvex with respect to an arbitrary function g and the bifunction
β(· − ·), if there exists a constant µ ≥ 0, such that

F (g(u) + λβ(g(v)− g(u))) ≤ (F (g(u)))1−λ(F (g(v)))λ

−µλ(1− λ)∥β(g(v)− g(u))∥2, ∀u, v ∈ K,λ ∈ [0, 1].

where F (·) > 0.

From the above definitions, we have

F (g(u) + λβ(g(v)− g(u)))

≤ (F (g(u)))1−λ(F (g(v))))λ − µλ(1− λ)∥β(g(v)− g(u))∥2

≤ (1− λ)F (g(u)) + λF (g(v))− µλ(1− λ)∥β(g(v)− g(u))∥2

≤ max{F (g(u)), F (g(v))} − µλ(1− λ)∥β(g(v)− g(u))∥2, ∀u, v ∈ K,λ ∈ [0, 1].
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This shows that every strongly general log-biconvex function is a strongly general
biconvex function and every strongly general biconvex function is a strongly gen-
eral quasi-biconvex function. However, the converse is not true.

Definition 7. The differentiable function F is said to be strongly general biconvex
function with respect to g, and β if there exists a constant µ ≥ 0, such that

F (g(v))− F (g(u)) ≥ ⟨F ′(g(u)), β(g(v)− g(u))⟩
+µ∥β(g(v)− g(u))∥2,∀u, v ∈ K. (3)

For λ = 1, Definition 3 and 6 reduce to the following condition.
Condition A.

F (g(u) + β(g(v)− g(u))) ≤ F (g(v)), ∀v ∈ K,

which plays an important role in the derivation of the results.

If µ = 0, then Definition 3 reduces to

Definition 8. The function F on the biconvex set Kgβ is said to be general
biconvex with respect to the bifunction β(· − ·), if

F (g(u) + λβ(g(v)− g(u))) ≤ (1− λ)F (g(u)) + λF (g(v)),∀u, v ∈ K,λ ∈ [0, 1]. (4)

This class of functions was introduced and studied by Noor [14].

We now consider some basic properties of strongly general biconvex functions
with respect to g and β and their variant forms. For this purpose, we need the
following assumption regarding the bifunction β(· − ·).

Condition M. The bifunction β(.− .) is required to satisfy the assumptions:

(i). β(γβ(g(v)− g(u))) = γβ(g(v)− g(u)), ∀u, v ∈ K, γ ∈ R.

(ii). β(g(v)− g(u)− λβ(g(v)− g(u)) = (1− λ)β(g(v)− g(u)),

∀u, v ∈ K,λ ∈ [0, 1].

Remark 2. Let β(· − ·) : K ×K → H satisfy the assumption

β(g(v)− g(u)) = β(g(v)− g(z)) + β(g(z)− g(u)),∀u, v, z ∈ K. (5)

One can easily show that β(g(v)− g(u)) = 0 ∀u, v ∈ K. Consequently β(0) = 0,
for v = u ∈ K. Also β(g(v) − g(u)) + β(g(u) − g(v)) = 0. This implies that the
bifunction β(.− .) is skew symmetric.

Theorem 1. Let F be a differentiable general biconvex function on the general
biconvex set K with respect to g and β in H, and let the condition M holds. Then

F (g(v))− F (g(u)) ≥ ⟨F ′(g(u)), β(g(v)− g(u)))⟩+ µ∥β(g(v)− g(u))∥2, (6)

if and only if, F is a strongly general biconvex function.
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Proof. Let F be a strongly general biconvex function on the general biconvex set
K.
Then

F (g(u) + λβ(g(v)− g(u))) ≤ (1− λ)F (g(u)) + λF (g(v))

−µλ(1− λ)∥β(g(v)− u)∥2∀u, v ∈ K,λ ∈ [0, 1].

which can be written as

F (g(v))− F (g(u)) ≥ F (g(u) + λβ(g(v)− g(u)))− F (g(u))

λ

+µ(1− λ)∥β(g(v)− g(u))∥2.
Taking the limit in the above inequality as λ → 0 , we have

F (g(v))− F (g(u)) ≥ ⟨F ′(g(u)), β(g(v)− g(u)))⟩+ µ∥β(g(v)− g(u))∥2,
which is the required relation (6).
Conversely, let F be a strongly general biconvex function with respect to g and
β on the biconvex set K. Then, ∀u, v ∈ K,λ ∈ [0, 1], g(vλ) = g(u) + λβ(g(v)
−g(u)) ∈ K and using the condition M, we have

F (g(v))− F (g(u) + λβ(g(v)− g(u)))

≥ ⟨F ′(g(u) + λβ(g(v)− g(u))), β(g(v)− g(u) + λβ(g(v)− g(u)))⟩
+µ∥β(g(v)− g(vλ))∥2

= (1− λ)∠F ′(g(u) + λβ(g(v)− g(u))), β(g(v)− g(u))⟩
+(1− λ)2µ∥β(g(v)− g(u))∥2. (7)

In a similar way, we have

F (g(u))− F (g(u) + λβ(g(v)− g(u)))

≥ ⟨F ′(g(u) + λβ(g(v)− g(u))), β(g(u)− g(u) + λβ(g(v)− g(u)))⟩
+µ∥β(g(u)− g(vλ))∥2

= −λ⟨F ′(g(u) + λβ(g(v)− g(u))), β(g(v)− g(u))⟩
+λ2µ∥β(g(v)− g(u))∥2. (8)

Multiplying (7) by λ and (8) by (1− λ) and adding the resultants, we have

F (g(u) + λβ(g(v)− g(u))) ≤ (1− λ)F (g(u)) + λF (g(v))

−µλ(1− λ)∥β(g(v)− g(u))∥2,
which shows that F is a strongly general biconvex function. □

Theorem 2. Let F be a differentiable strongly general biconvex function with
respect to g and β on the biconvex set K. Assume that β satisfies the Condition
M. If F is a strongly general biconvex function then

⟨F ′(g(u)), β(g(v)− g(u)))⟩+ ⟨F ′(g(v)), β(g(u)− g(v))⟩
≤ −2µ∥β(g(v)− g(u))∥, ∀u, v ∈ K. (9)

If, additionally, the condition A is satisfied, then the converse statement holds
true.
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Proof. Let F be a strongly general biconvex function on the general biconvex set
K with respect to g and β. Then

F (g(v))− F (g(u)) ≥ ⟨F ′(g(u)), β(g(v)− g(u)))⟩
+µ∥β(g(v)− g(u))∥2, ∀u, v ∈ K. (10)

Changing the role of u and v in (10), we have

F (g(u))− F (g(v)) ≥ ⟨F ′(g(v)), β(g(u)− g(v))⟩+ µ∥β(g(u)− g(v))∥2, ∀u, v ∈ K.(11)

Adding (10) and (11), we have

⟨F ′(g(u)), β(g(v)− g(u)))⟩ + ⟨F ′(g(v)), β(g(u)− g(v))⟩
≤ −2µ{∥β(g(v)− g(u))∥2, ∀u, v ∈ K,

which is the required result (10).

Let F ′(.) satisfy inequality (9). Since K is a general biconvex set,
∀u, v ∈ K, λ ∈ [0, 1] g(vλ) = g(u) + λβ(g(v)− g(u)) ∈ K. Taking
g(v) = g(vλ) in (9) and using the Condition M, we have

⟨F ′(g(vλ)), β(−λβ((g(v)− g(u)))⟩ ≤ ⟨F ′(g(u)), β(λβ(g(v)− g(u)))⟩
−2µλ2∥β(g(v)− g(u))∥2

= −λ⟨F ′(g(u)), β(g(v)− g(u))⟩
−2µλ2∥β(g(v)− g(u))∥2,

which implies that

⟨F ′(g(vλ)), β(g(v)− g(u))⟩ ≥ ⟨F ′(g(u)), β(g(v)− g(u))⟩
+2µλ∥β(g(v)− g(u)∥2. (12)

We now consider the auxiliary function

ξ(λ) = F (g(u) + λβ(g(v)− g(u))) = F (g(vλ)).

Then, from (12), we have

ξ′(λ) = ⟨F ′(g(u) + λβ(g(v)− g(u))), β(g(v)− g(u))⟩
≥ ⟨F ′(g(u)), β(g(v)− g(u))⟩+ 2µ∥β(g(v)− g(u))∥2. (13)

Integrating (13) between 0 and 1, we have

ξ(1)− ξ(0) ≥ ⟨F ′(g(u)), β(g(v)− g(u))⟩+ 2µ

∫ 1

0
λ∥β(g(v)− g(u))∥2dλ,

that is,

F (g(u) + β(g(v)− g(u)))− F (g(u)) ≥ ⟨F ′(g(u)), β(g(v)− u)⟩
+µ∥β(g(v)− g(u))∥2.

By using Condition A, we have

F (g(v))− F (g(u)) ≥ ⟨F ′(g(u)), β(g(v)− g(u))⟩+ µ∥β(g(v)− g(u))∥2.

the required result. □
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3. General bivariational inequalities

In this section, we consider strongly general bivariational inequalities and
suggest some iterative methods by using the auxiliary principle techniques
involving the Bregman distance functions.

For the readers convenience, we recall some basic properties of the Bregman
convex functions [1]. For strongly convex function F, we define the Bregman
distance function as

B(v, u) = F (v)− F (u)− ⟨F ′(u), v − u⟩
≥ α∥v − u∥2, ∀u, v ∈ K. (14)

It is important to emphasize that various types of function F give different Breg-
man distance function. We give the following important examples of some prac-
tical important types of function F and their corresponding Bregman distance
functions, see [4, 21].

Examples

(1) If f(v) = ∥v∥2, then B(v, u) = ∥v − u∥, which is the squared Euclidean
distance (SE).

(2) If f(v) =
∑n

i=1 ai log vi, which is known as Shannon entropy, then its
corresponding Bregman distance is given as

B(v, u) =
n∑

i=1

(
vi log(

vi
ui
) + ui − vi

)
,

This distance is called Kullback-Leibler distance (KL) and has become
a very important tool in several areas of applied mathematics such as ma-
chine learning.

(3) If f(v) = −
∑n

i=1 log vi, which is called Burg entropy, then its correspond-
ing Bregman distance is given as

B(v, u) =
n∑

i=1

(
log

vi
ui

+
vi
ui

− 1

)
.

This is called Itakura–Saito distance (IS),which is very important in the
information theory, data analysis and machine learning.

Remark 3. It is a challenging problem to explore the applications of Bregman dis-
tance for other types of nonconvex functions such as biconvex, k-convex functions
and harmonic functions.

We now discuss the optimality conditions for the differentiable strongly general
biconvex functions.
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Theorem 3. Let F be a differentiable strongly general biconvex function with
respect to g and β, with modulus µ > 0. If u ∈ K is the minimum of the function
F, then u ∈ K satisfies the inequality

F (g(v))− F (g(u)) ≥ µ∥β(g(v)− g(u))∥2, ∀u, v ∈ K. (15)

Proof. Let u ∈ K be a minimum of the function F. Then

F (g(u)) ≤ F (g(v)), ∀v ∈ K. (16)

Since K is a biconvex set, ∀u, v ∈ K, λ ∈ [0, 1],

g(vλ) = g(u) + λβ(g(v)− g(u)) ∈ K.

Taking g(v) = g(vλ) in (16), we have

0 ≤ lim
λ→0

{F (g(u) + λβ(g(v)− g(u)))− F (g(u))

λ
}

= ⟨F ′(g(u)), β(g(v)− g(u))⟩. (17)

Since F is a differentiable general biconvex function, it follows that

F (g(u) + λβ(g(v)− g(u))) ≤ F (g(u)) + λ(F (g(v))− F (g(u)))

−µλ(1− λ)∥β(g(v)− g(u))∥2, ∀u, v ∈ K,

from which, using (17), we have

F (g(v))− F (g(u)) ≥ lim
λ→0

F (g(u) + λβ(g(v)− g(u)))− F (g(u))

λ

+∥β(g(v)− g(u))∥2

= ⟨F ′(g(u)), β(g(v), g(u))⟩+ µ∥β(g(v)− g(u))∥2

≥ µ∥β(g(v)− g(u))∥2,

which is the required result (15). □

Remark: We would like to mention that, if u ∈ K satisfies the inequality

⟨F ′(g(u)), β(g(v)− g(u))⟩+ µ∥β(g(v)− g(u))∥2 ≥ 0, ∀u, v ∈ K, (18)

then u ∈ K is the minimum of the differentiable strongly general biconvex func-
tion F.

The inequality of the type (18) is called the bivariational inequality and ap-
pears to be a new one. It is worth mentioning that inequalities of the type (18)
may not arise as the minimization of the biconvex functions. This motivated us
to consider a more general bivariational inequality of which (18) is a special case.

For given operators T, g and bifunction β(.− .), consider the problem of finding
u ∈ Kgβ, such that

⟨Tu, β(g(v)− g(u))⟩+ µ∥β(g(v)− g(u))∥2 ≥ 0, ∀v ∈ K, (19)
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which is called strongly general bivariational inequality.

It is worth mentioning that for suitable and appropriate choice of the opera-
tors, biconvex sets, biconvex functions and spaces, one can obtain a wide class of
variational inequalities and optimization problems. This shows that the strongly
bivariational inequalities are quite flexible and unified ones.

We would like to mention that the projection method and its variant form
can not be used to suggest the iterative methods for solving these bivariational
inequalities. To overcome these drawback, one may use the auxiliary principle
technique of Glowinski et al.[3] as developed by Noor [8, 9, 11, 12, 13] and Noor
et al. [14, 15, 16, 17] to suggest and analyze some iterative methods for solving
the bivariational inequalities(19). We again use the auxiliary principle technique
coupled with Bergman distance functions. These applications are based on the
type of convex functions associated with the Bregman distance. We now suggest
and analyze some iterative methods for bivariational inequalities (19) using the
auxiliary principle technique coupled with Bregman functions as developed by
Noor [12, 13, 14].

For given u ∈ K satisfying the general bivariational inequality (19), we consider
the auxiliary problem of finding w ∈ K such that

⟨ρTw, β(g(v)− g(w))⟩ + ⟨E′(g(w))− E′(g(u)), β(g(v)− g(w))⟩
+ρµ∥β(g(v)− g(w))∥2 ≥ 0, ∀v ∈ K, (20)

where ρ > 0 is a constant and E′(g(u)) is the differential of a strongly general
biconvex function E(g(u)) at u ∈ K. Since E(g(u)) is a strongly general biconvex
function, this implies that its differential E′(u) is strongly β-monotone. Conse-
quently, it follows that problem (19) has a unique solution.

Remark 3.1: The function

B(w, u) = E(g(w))− E(g(u))− ⟨E′(g(u)), β(g(w)− g(u))⟩
≥ µ∥β(g(w)− g(u))∥2,∀u,w ∈ K,

associated with the strongly general biconvex function E(g(u)) is called the gener-
alized Bregman distance function. By the strongly general biconvexity of the func-
tion E(g(u)), the Bregman function B(., .) is nonnegative and B(g(w), g(u)) = 0,
if and only if, g(u) = g(w), ∀u,w ∈ K. For the applications of the Bregman dis-
tance function in solving variational inequalities and complementarity problems,
see [12, 13, 15, 16, 17, 23].

We note that, if w = u, then clearly w is solution of the strongly general
bivariational inequality (19). This observation enables us to suggest and analyze
the following iterative method for solving (19).

Algorithm 3.1. For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme

⟨ρTun+1, β(g(v)− g(un+1))⟩ + ⟨E′(g(un+1))− E′(g(un)), β(g(v)− g(un+1))⟩
+ρµ∥β(g(v)− g(un+1))∥2 ≥ 0, ∀v ∈ K, (21)
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where ρ > 0 is a constant. Algorithm 3.1 is called the proximal method for
solving bivariational inequalities (19). We remark that the proximal point method
was suggested in the context of convex programming problems as a regularization
technique.

If β(g(v)− g(u)) = v − u, then Algorithm 3.1 collapses to:

Algorithm 3.2. For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme

⟨ρT (un+1), v − un+1⟩ + ⟨E′(un+1)− E′(u), v − un+1⟩
+ρµ∥v − un+1∥2 ≥ 0, ∀v ∈ K,

for solving the strongly variational inequality and appears to be a new one.
For suitable and appropriate choice of the operators and the spaces, one can

obtain a number of known and new algorithms for solving variational inequalities
and related problems.
For the convergence analysis of Algorithm 3.1, we need the following concept.

Definition 9. The operator T is said to be strongly pseudo gβ-monotone with
respect to the µ∥β(g(v)− g(u))∥2, if

⟨Tu, β(g(v)− g(u))⟩+ µ∥β(g(v)− g(u))∥2 ≥ 0

⇒
−⟨Tv, β(g(u)− g(v))⟩ − µ∥β(g(u)− g(v))∥2 ≥ 0, ∀v, u ∈ K.

Theorem 4. Let the operator T be strongly gβ- pseudomonotone with respect to
µ∥β(g(v) −g(u))∥2. If E be differentiable strongly general biconvex function with
module β > 0, g−1 exits and Condition M holds, then the approximate solution
un+1 obtained from Algorithm 3.1 converges to a solution u ∈ K satisfying the
general bivariational inequality (19).

Proof. Let u ∈ K be a solution of general bivariational inequality (19). Then

⟨Tu, β(g(v)− g(u))⟩+ µ∥β(g(v)− g(u))∥2 ≥ 0, ∀v ∈ K,

implies that

−⟨Tv, β(g(u)− g(v)))⟩ − µ∥β(g(u)− g(v))∥2 ≥ 0, ∀v ∈ K, (22)

since T is a strongly pseudo gβ-monotone operator.
Taking v = u in (21) and v = un+1 in (22), we have

⟨ρT (un+1), β(g(u), g(u)− g(un+1))⟩
+⟨E′(g(un+1))− E′(g(un)), β(g(u)− g(un+1))⟩
+ρµ∥β(g(u)− g(un+1)∥2 ≥ 0. (23)

and

−⟨Tun+1, β(g(u)− g(un+1))⟩ − µ∥β(g(u)− g(un+1)∥2 ≥ 0. (24)
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We now consider the Bregman function

B(u,w) = E(g(u))− E(g(w))− ⟨E′(g(w)), β(g(u)− g(w))⟩
≥ µ∥β(g(u)− g(w))∥2, (25)

using the strongly general biconvexity of E.
Now combining (23), (24) and (25), we have

B(u, un)− B(u, un+1)

= E(g(un+1))− E(g(un))− ⟨E′(g(un)), β(g(u)− g(un))⟩
+ ⟨E′(g(un+1)), β(g(u)− g(un+1))⟩
= E(g(un+1))− E(g(un))− ⟨E′(g(un))− E′(g(un+1), β(g(u)− g(un+1))⟩

−⟨E′(g(un), g(un+1)− g(un)⟩
≥ µ∥β(g(un+1)− g(un))∥2 + ⟨E′(g(un+1))− E′(g(un)), β(g(u)− g(un+1))⟩
≥ µ∥β(g(un+1)− g(un))∥2 − ρ⟨T (un+1), β(g(u)− g(un+1))⟩

−ρµ∥β(g(u)− g(un+1))∥2

≥ µ∥β(g(un+1)− g(un))∥2.
If g(un+1) = g(un), then clearly un is a solution to problem (19). Otherwise, it

follows that B(u, un)− B(u, un+1) is nonnegative and we must have

lim
n→∞

∥β(g(un+1)− g(un))∥ = 0.

from which, we have

lim
n→∞

∥g(un+1)− g(un)∥ = 0 =⇒ lim
n→∞

un+1 = un,

where we used the fact that g−1 exits. It follows that the sequence {un} is
bounded. Let ū be a cluster point of the subsequence {uni}, and let {uni} be
a subsequence converging toward ū. Now using the technique of Zhu and Mar-
cotte [23], it can be shown that the entire sequence {un} converges to the cluster
point ū satisfying the general bivariational inequality (19).

□

It is well-known that to implement the proximal point methods, one has to
find the approximate solution implicitly, which is itself a difficult problem. To
overcome this drawback, we now consider another method for solving the general
bivariational inequality (19) using the auxiliary principle technique.

For a given u ∈ K satisfying the general bivariational inequality (19), find
w ∈ K such that

⟨ρT (u, β(g(v)− g(w))⟩ + ⟨E′(g(w))− E′g(u), β(g(v)− g(w))⟩
+µ∥β(g(v)− g(w))∥2 ≥ 0, ∀v ∈ K, (26)

where E′(g(u)) is the differential of a biconvex function E(g(u)) at u ∈ K. Problem
(19) has a unique solution, since E is strongly biconvex function. Note that
problems (26) and (21) are quite different problems.
It is clear that for w = u, w is a solution of (19). This fact allows us to suggest and
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analyze another iterative method for solving the general bivariational inequality
(19).

Algorithm 3.3. For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative scheme

⟨ρTun, β(g(v)− g(un+1))⟩ + ⟨E′(g(un+1))− E′(g(un)), β(g(v)− g(un+1))⟩
+µ∥β(g(v)− g(un+1))∥2 ≥ 0, ∀v ∈ K, (27)

for solving the strongly general bivariational inequality (19).

If β(g(v), g(u)) = v − u, Algorithm 3.3 collapses to:

Algorithm 3.4. For a given u0 ∈ H, compute the approximate solution un+1 by
the iterative schemes

ρ⟨Tun, v − un+1⟩+ ⟨E′(un+1)− E′(un), v − un+1⟩+ µ∥v − un+1∥2 ≥ 0, ∀v ∈ K,

for solving the strongly variational inequalities and appears to be a new one.

Remark 4. For suitable and appropriate choice of the operators and the spaces,
one can obtain various known and new algorithms for solving strongly bivaria-
tional inequality (19) and related optimization problems. we have only give some
glimpse of the applications of the auxiliary principle techniques. It is an interest-
ing problem from both analytically and numerically point of views.

Conclusion

In this paper, we have introduced and studied some new classes of strongly bi-
convex functions. These concepts are more general and unifying ones. Several new
properties of these strongly biconvex functions are discussed and their relations
with previously known results are highlighted. It is shown that the optimality
conditions of the differentiable strongly biconvex functions can be characterised
by a class of bivariational inequalities. This result is used to introduce a more
general class of strongly general bivariational inequalities (19). Auxiliary princi-
ple techniques is used to suggest and analyze some iterative methods for solving
the general bivariational inequalities. Convergence analysis of the proposed meth-
ods is condition using the pseudo monotonicity which is a weaker condition than
monotonicity. It is itself an interesting problem to develop some efficient numeri-
cal methods for solving strongly bivariational inequalities along with applications
in pure and applied sciences. Despite the current activities in these fields, much
clearly remains to be done in these fields. It is expected that the ideas and tech-
niques of this paper may be starting point for future research activities.
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