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ULAM-HYERS STABILITY OF SOME INTEGRAL EQUATIONS

MARIA DOBRIŢOIU

Abstract. This paper contains some results regarding the property of the Ulam-
Hyers stability of a Fedholm type, a Volterra type and a Fredholm-Volterra type

respectively, integral equation. The results presented in this paper were obtained

using the Picard operator technique and complete the study of the solution of these
integral equations.

1. Introduction

In Mathematical Modelling the integral equations have had and continue to play an
important role. Many mathematical models of various phenomena in engineering, eco-
nomics, biology, physics, even in mathematics and other fields of science are governed by
integral equations. For some examples of such mathematical models governed by integral
equations can be consulted papers, among which we mention the papers [1]-[15] and also,
the references therein.

In this paper we aim to study the property of Ulam-Hyers stability of the following
integral equations with modified argument:

x(t) =

∫ b

a

K1(t, s, x(s), x(g1(s)))ds+ f1(t), (1)

where t ∈ [a, b], K1 : [a, b]× [a, b]× R2 → R, g1 : [a, b] → [a, b], f1 : [a, b] → R;

x(t) =

∫ t

a

K2(t, s, x(s), x(g2(s)))ds+ f2(t), (2)

where t ∈ [a, b], K2 : [a, b]× [a, b]× R2 → R, g2 : [a, b] → [a, b], f2 : [a, b] → R;

x(t) = F
(
t, x(a),

∫ b

a

K1(t, s, x(s), x(g1(s)))ds,

∫ t

a

K2(t, s, x(s), x(g2(s)))ds
)
, (3)

where t ∈ [a, b], F : [a, b]×R3 → R, K1,K2 : [a, b]× [a, b]×R2 → R, g1, g2 : [a, b] → [a, b].
We studied some integral equations of these types and obtained some results regarding

the existence and uniqueness, comparison, continuous dependence on data, differentiabil-
ity and approximation of their solutions and these results can be consulted in the papers
[2]-[8].

In this paper we studied the property of Ulam-Hyers stability of the integral equations
(1), (2) and (3) and the obtained results complete the study of their solutions. The results
obtained for the integral equation (1) were communicated to the conference [3] and we
publish it in this paper.

The paper contains three sections. In section 2, we recall some definitions and results
concerning the obtained properties. The section 3 contains the results regarding the
Ulam-Hyers stability of the equations (1), (2) and (3).
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2. Preliminaries

In what follows, we present some definitions and results that were used in obtaining
the results of Ulam stability of the integral equations (1), (2) and (3). These preliminaries
were used to obtaining the results which were communicated to the conference [3]. We
present them again in this paper, to help the reader to more easily understand the new
obtained results.

First of all, we present the Ulam stability for a coincidence equation in a metric space
(see [14]).

Let (X, d) and (Y, ρ), with d(x, y), ρ(x, y) ∈ E+, be two metric spaces and let f, g :
X −→ Y be two operators. Let us consider the coincidence equation:

f(x) = g(x) (4)

Definition 1. ([12], [14]) The equation (4) is Ulam-Hyers stable if there exists a linear
increasing operator cfg : E −→ E such that for each ε ∈ E∗

+ and each solution y∗ ∈ X of
the inequality

ρ(f(x), g(x)) ≤ ε (5)

there exists a solution x∗ ∈ X of (5) such that

d(y∗, x∗) ≤ cf,g(ε).

Remark 1. If Y := X and g := 1X , then we have the notion of Ulam-Hyers stability for
a fixed point equation.

Remark 2. If E := R is endowed with the usual structure, then then instead of the
Definition 1 we will have the definition below.

Definition 2. ([12], [14]) The equation (4) is Ulam-Hyers stable if there exists a positive
real number cf,g > 0 such that for each ε ∈ R∗

+ and each solution y∗ ∈ X of (5), there
exists a solution x∗ ∈ X of the equation (4) such that

d(y∗, x∗) ≤ cf,g(ε).

Next, we present the definition of the Ulam-Hyers stability of the fixed point equation

x = A(x). (6)

Definition 3. ([12], [14]) Let (X, d) be a metric space and A : X −→ X an operator.
The equation of fixed point (6) is Ulam-Hyers stable if there exists a real number cA > 0
such that for each ε > 0 and each solution y∗ of the inequation d(y,A(y)) ≤ ε there exists
a solution x∗ of equation (6), such that

d(y∗, x∗) ≤ cAε.

Also, in this paper we will use the Remark 2.1 from [14], that you can find below.

Remark 3. ([14], Remark 2.1) If f is a c-weakly Picard operator, then the fixed point
equation (6) is Ulam-Hyers stable.

Indeed, let ε > 0 and y∗ a solution of d(y,A(y)) ≤ ε. Since A is c-weakly Picard
operator, we have that

d(x,A∞(x)) ≤ c · d(x,A(x)),∀x ∈ X.

If we take x := y∗ and x∗ := A∞(y), we have that d(y∗, x∗) ≤ cAε. ([14])



ULAM-HYERS STABILITY OF SOME INTEGRAL EQUATIONS 29

3. Ulam-Hyers stability

A. For the Fredholm nonlinear integral equation (1) we suppose that the following
conditions hold:

(a1) K1 ∈ C([a, b]× [a, b]× R2), g1 ∈ C([a, b], [a, b]);
(a2) f1 ∈ C[a, b].
Theorem 1 presents the conditions of existence and uniqueness of the solution of the

integral equation (1) ([7], [8]). Theorem 2 gives us the conditions of Ulam-Hyers stability
of this integral equation.

Theorem 1. ([7], [8]) Suppose that the conditions (a1) and (a2) are satisfied and the
following conditions hold:

(a3) there exists L1 > 0 such that:

|K1(t, s, u1, v1)−K1(t, s, u2, v2)| ≤ L1 (|u1 − u2|+ |v1 − v2|) ,
for all t, s ∈ [a, b], ui, vi ∈ R, i = 1, 2;

(a4) 2L1(b− a) < 1.
Then the Fredholm integral equation (1) has a unique solution x∗ ∈ C[a, b].

Theorem 2. Under the conditions of the Theorem 1, the Fredholm integral equation (1)
is Ulam-Hyers stable, i.e. for ε > 0 and y∗ ∈ C[a, b] a solution of the inequation∣∣∣∣∣y(t)−

∫ b

a

K1(t, s, y(s), y(g1(s)))ds− f1(t)

∣∣∣∣∣ ≤ ε, for all t ∈ [a, b],

there exists a solution of the integral equation (1), x∗ ∈ C[a, b], such that

|y∗(t)− x∗(t)| ≤ 1

1− LA1

ε, for all t ∈ [a, b],

where LA1
= 2L1(b− a).

In the proof of the Theorem 2, the Picard operators technique is applied and the
Remark 1.2 from [14] is used.

The Theorem 1 and Theorem 2 with its proof were communicated to the conference
[3].

B. For the Volterra nonlinear integral equation (2) we suppose that the following con-
ditions hold:

(b1) K2 ∈ C([a, b]× [a, b]× R2), g2 ∈ C([a, b], [a, b]);
(b2) f2 ∈ C[a, b].
Theorem 3 presents the conditions of existence and uniqueness of the solution of the

integral equation (2). Theorem 4 gives us the conditions of Ulam-Hyers stability of this
integral equation.

Theorem 3. Suppose that the conditions (b1) and (b2) are satisfied and the following
conditions hold:

(b3) there exists L2 > 0 such that:

|K2(t, s, u1, v1)−K2(t, s, u2, v2)| ≤ L2 (|u1 − u2|+ |v1 − v2|) ,
for all t, s ∈ [a, b], ui, vi ∈ R, i = 1, 2;

(b4) 2L2(b− a) < 1.
Then the Volterra integral equation (2) has a unique solution x∗ ∈ C[a, b].

Remark 4. Chebyshev’s norm was used to prove this theorem. Instead of the Chebyshev’s
norm, the Bielecki’s norm can be used.
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Theorem 4. Under the conditions of the Theorem 3, the Volterra integral equation (2)
is Ulam-Hyers stable, i.e. for ε > 0 and y∗ ∈ C[a, b] a solution of the inequation∣∣∣∣y(t)− ∫ t

a

K2(t, s, y(s), y(g2(s)))ds− f2(t)

∣∣∣∣ ≤ ε, for all t ∈ [a, b],

there exists a solution of the integral equation (2), x∗ ∈ C[a, b], such that

|y∗(t)− x∗(t)| ≤ 1

1− LA2

ε, for all t ∈ [a, b],

where LA2 = 2L2(b− a).

Proof. We consider the operator A2 : C[a, b] → C[a, b], defined by the relation:

A2(x)(t) =

∫ t

a

K2(t, s, x(s), x(g2(s)))ds+ f2(t), for all t ∈ [a, b]. (7)

Under the conditions of Theorem 3, it results that the operator A2 is a contraction and
therefore, A2 is c-Picard operator (PO) with the constant c2 = 1

1−LA2
. Consequently, the

conclusion of this theorem it results as an application of the Remark 2.1 from [14] and
the proof is complete. □

C. We consider the Fredholm-Volterra nonlinear integral equation (3) and suppose that
the following conditions hold:

(c1) F ∈ C([a, b]× R3);
(c2) K1 ∈ C([a, b]× [a, b]× R2), g1 ∈ C([a, b], [a, b]);
(c3) K2 ∈ C([a, b]× [a, b]× R2), g2 ∈ C([a, b], [a, b]).
Theorem 5 presents the conditions of existence and uniqueness of the solution of the

integral equation (3) (see [4]). Theorem 6 gives us the conditions of Ulam-Hyers stability
of this integral equation.

Theorem 5. ([4]) Suppose that the conditions (c1)− (c3) are satisfied and the following
conditions hold:

(c4) there exist α, β, γ > 0 such that:

|F (t, u1, v1, w1)− F (t, u2, v2, w2)| ≤ α |u1 − u2|+ β |v1 − v2|+ γ |w1 − w2| ,
for all t ∈ [a, b], ui, vi, wi ∈ R, i = 1, 2;

(c5) there exists L1 > 0 such that:

|K1(t, s, u1, v1)−K1(t, s, u2, v2)| ≤ L1 (|u1 − u2|+ |v1 − v2|) ,
for all t, s ∈ [a, b], ui, vi ∈ R, i = 1, 2;

(c6) there exists L2 > 0 such that:

|K2(t, s, u1, v1)−K2(t, s, u2, v2)| ≤ L2 (|u1 − u2|+ |v1 − v2|) ,
for all t, s ∈ [a, b], ui, vi ∈ R, i = 1, 2;

(c7) α+ (βL1 + γL2)(b− a) < 1.
Then the Fredholm-Volterra integral equation (3) has a unique solution x∗ ∈ C[a, b].

Proof. We attach to the integral equation (3) the operator A3 : C[a, b] → C[a, b], defined
by:

A3(x)(t) = F
(
t, x(a),

∫ b

a

K1(t, s, x(s), x(g1(s)))ds,

∫ t

a

K2(t, s, x(s), x(g2(s)))ds
)
, (8)

for all t ∈ [a, b].
The set of the solutions of the integral equation (3) coincide with the set of fixed points

of the operator A3.
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In order to use the Contraction Principle, the operator A3 must be a contraction. We
have: ∣∣∣A3(x1)(t)−A3(x2)(t)

∣∣∣ ≤∣∣∣∣∣F(
t, x1(a),

∫ b

a

K1(t, s, x1(s), x1(g1(s)))ds,

∫ t

a

K2(t, s, x1(s), x1(g2(s)))ds
)

−F
(
t, x2(a),

∫ b

a

K1(t, s, x2(s), x2(g1(s)))ds,

∫ t

a

K2(t, s, x2(s), x2(g2(s)))ds
)∣∣∣∣∣.

Using (c4), (c5) and (c6) and the Chebyshev norm it result:∣∣∣∣A3(x1)−A3(x2)
∣∣∣∣
C[a,b]

≤
[
α+ (βL1 + γL2)(b− a)

]
·
∣∣∣∣x1 − x2

∣∣∣∣
C[a,b]

Consequently, from (c7) it result that the operator A3 is a contraction with the coeffi-
cient α+ (βL1 + γL2)(b− a) < 1.

Now, we will apply the Contraction Principle and it results that the Fredholm-Volterra
integral equation (3) has a unique solution x∗ ∈ C[a, b]. The proof is complete. □

Theorem 6. Under the conditions of the Theorem 5, the Fredholm-Volterra integral equa-
tion (3) is Ulam-Hyers stable, i.e. for ε > 0 and y∗ ∈ C[a, b] a solution of the inequation:∣∣∣y(t)− F

(
t, y(a),

∫ b

a
K1(t, s, y(s), y(g1(s)))ds,

∫ t

a
K2(t, s, y(s), y(g2(s)))ds

)∣∣∣ ≤ ε,

for all t ∈ [a, b],

there exists a solution of the integral equation (3), x∗ ∈ C[a, b], such that

|y∗(t)− x∗(t)| ≤ 1

1− LA3

ε, for all t ∈ [a, b],

where LA3
= α+ (βL1 + γL2)(b− a).

Proof. We consider the operator A3 : C[a, b] −→ C[a, b], defined by the relation (8).
Under the conditions of the Theorem 5, it results that the operator A3 is a contraction

and therefore, A3 is c-Picard operator (PO) with the constant c = 1
1−LA3

.

Finally, the conclusion of the Theorem 6 it results as an application of the Remark 2.1
from [14] and the proof is complete. □
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