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AN INTEGRAL EQUATION FROM PHYSICS - A SYNTHESIS

SURVEY - PART III

MARIA DOBRIŢOIU

Abstract. This is the third part of the synthesis survey on the study of the integral

equation from physics:

x(t) =

∫ b

a
K(t, s, x(s), x(a), x(b))ds + f(t), t ∈ [a, b],

and contains the results concerning the approximation of its solution by applying
numerical methods. This part ends with an example.

1. Introduction

The results obtained in the study of the integral equation from physics:

x(t) =

∫ b

a

K(t, s, x(s), x(a), x(b))ds+ f(t), t ∈ [a, b], (1)

where K : [a, b]× [a, b]×R3 −→ R or K : [a, b]× [a, b]× J3 −→ R, J ⊂ R closed interval,
and f : [a, b] −→ R. were organized in a three-part presentation.

In the first part of this synthesis survey, the results on the existence and uniqueness of
the solution of this integral equation were presented. Some properties of the solution of
this integral equation formulated as integral inequalities, were also presented.

In the second part of the synthesis survey, the results on the continuous data depen-
dence, the differentiability with respect to a and b, and the differentiability with respect
to a parameter of the solution of this integral equation were presented.

This last part of this synthesis survey is dedicated to the presentation of the obtained
results regarding the approximation of the solution of the integral equation (1), which
were published in the papers [1], ([5]-[9]), [11] and [15].

Section 2 contains the notations and the existing results that were used to obtain the
algorithms of approximating the solution of integral equation (1).

In section 3 we present a synthesis of the study of approximating the solution of the
integral equation (1) containing the results obtained by using the method of successive
approximations. For approximate calculus of the integrals that appear in terms of the
successive approximations sequence, the following quadrature formulas were used: the
trapezoids’ rule, the Simpson’s rule and the rectangles’ quadrature formula.

Finally, section 4 concludes the article with some examples.
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2. Existing results

To study the approximation of the solution of integral equation (1), we used, as in the
first two parts, the Banach space C[a, b],

C[a, b] = {x : [a, b] −→ R|x continuous function},
endowed with the Chebyshev norm

‖x‖C := max
t∈[a,b]

|x(t)| , for all x ∈ C[a, b]. (2)

In order to establish an algorithm for approximating the solution of the integral equa-
tion (1), the existence of a unique solution of this equation is required. Therefore, the
conditions in the theorems of existence and uniqueness of the solution of the integral
equation (1), presented in the first part of this survey, must be satisfied. We present
these theorems below.

Theorem 1 (Ambro M., [1]). If

(i) K ∈ C([a, b]× [a, b]× R3), f ∈ C[a, b];
(ii) there exists L > 0 such that

|K(t, s, u1, u2, u3)−K(t, s, v1, v2, v3)| ≤ L(|u1 − v1|+ |u2 − v2|+ |u3 − v3|),
for all t, s ∈ [a, b], ui, vi ∈ R, i = 1, 2, 3;

(iii) 3L(b− a) < 1 (contraction condition),

then the integral equation (1) has a unique solution x∗ ∈ C[a, b], which can be obtained by
the successive approximations method, starting at any element x0 ∈ C[a, b]. In addition,
if xn is the n-th successive approximation, then the following estimation is hold:

‖x∗ − xn‖C[a,b] ≤
[3L(b− a)]

n

1− 3L(b− a)
‖x0 − x1‖C[a,b] . (3)

Theorem 2 (Ambro M., [1]). Suppose that the following conditions:

(i) K ∈ C([a, b]× [a, b]× J3), J ∈ R closed interval, f ∈ C[a, b];
(ii) there exists L > 0 such that

|K(t, s, u1, u2, u3)−K(t, s, v1, v2, v3)| ≤ L(|u1 − v1|+ |u2 − v2|+ |u3 − v3|),
for all t, s ∈ [a, b], ui, vi ∈ J , i = 1, 2, 3;

(iii) 3L(b− a) < 1 (contraction condition),

are satisfied.
If r > 0 is a positive real number such that

x ∈ B(f ; r) =⇒ x(t) ∈ J ⊂ R, and M(b− a) ≤ r,
where M is a positive constant, such that

|K(t, s, u1, u2, u3)| ≤M, for all t, s ∈ [a, b], u1, u2, u3 ∈ J,
then the integral equation (1) has a unique solution x∗ ∈ B(f ; r) ⊂ C[a, b], which can be
obtained by the successive approximations method, starting at any element x0 ∈ B(f ; r) ⊂
C[a, b]. Moreover, if we denote by xn is the n-th successive approximation, then the
estimation (3) is satisfied.

These theorems was proved by applying The Banach Contraction Principle.
In the process of determining an algorithm for approximating the solution of the in-

tegral equation (1), the method of successive approximations was used. For the approxi-
mate calculus of the integrals that appear in the terms of the successive approximations
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sequence, trapezoids’ formula, rectangles’ formula and Simpson’s formula were used; for
the basic results that we used see references [2], [3], [4], [15], [16] and [19]; for the results
obtained as applications see references [1], [5]-[9] and [11].

In what follows, we recall these methods for calculating the approximate value of the
integral of a function f .

2.1. Trapezoids’ formula.
The trapezoids’ method for approximate integration of a function f consists of approx-

imating the function f with a polygonal function, i.e. to approximate a given function f
with a polygonal line with vertices on the graph.

Let f ∈ C2[a, b] be a function. A formula of the approximate calculus of the integral∫ b
a
f(t)dt is: ∫ b

a

f(t)dt =
b− a

2

[
f(a) + f(b)

]
+R(f), (4)

where R(f) represent the remainder of this formula. Due to the geometrical interpretation
of (4), this relation is called trapezoids’ formula or trapezoids’ rule.

To get a better result, it is considered a division ∆ of the interval [a, b] into n equal
parts by the points a = t0 < t1 < · · · < tn = b and we apply the trapezoids’ formula (4),
to each subinterval [ti−1, ti]. Under these conditions it is obtains the following trapezoids’
formula (see references [4], [15], [16]):∫ b

a

f(t)dt =
b− a
2n

[
f(a) + 2

n−1∑
i=1

f(ti) + f(b)

]
+R(f), (5)

where R(f) =
∑n
i=1Ri(f) is the remainder of the formula (5) and for it we have the

estimate given by the relation:

|R(f)| ≤MT (b− a)3

12n2
, (6)

where was denoted

MT = max
t∈[a,b]

|f”(t)| . (7)

2.2. Simpson’s formula.
The approximation method that results using the Simpson’s formula, consists in ap-

proximation of a given function f on certain intervals with a second degree polynomial,
i.e. to approximate the graph of the function f on certain intervals with a parable.

Let f ∈ C4[a, b] be a function. The Simpson’s formula of the approximate calculus of

the integral
∫ b
a
f(t)dt is:∫ b

a

f(t)dt =
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
+R(f), (8)

where R(f) represent the remainder of this formula.
To get a better result, it is considered a division ∆ of the interval [a, b] into n equal

parts by the points a = t0 < t1 < · · · < tn = b and we apply the Simpson’s formula (8), to
each subinterval [ti−1, ti]. Under these conditions it was obtained the following Simpson’s
quadrature formula (see references [15], [16]):∫ b

a

f(t)dt =
b− a
6n

[
f(a) + 2

n−1∑
i=1

f(ti) + 4

n−1∑
i=1

f

(
ti + ti+1

2

)
+ f(b)

]
+R(f), (9)
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with an estimate of the remainder R(f) =
∑n
i=1Ri(f), given by the relation:

|R(f)| ≤MS (b− a)5

2880n4
, (10)

where was denoted

MS = max
t∈[a,b]

∣∣∣f (4)(t)
∣∣∣ . (11)

2.3. Rectangles’ formula.
The rectangles’ method for approximate integration of a function f consists in approx-

imating the function f with a constant function on intervals, i.e. the approximation of
the graph of function f with a polygonal line with sides parallel to the coordinate axes.

Let f ∈ C1[a, b] be a function, ∆ a division of the interval [a, b] into n equal parts by
the points a = t0 < t1 < · · · < tn = b and σ∆(f) an integral sum corresponding to this
division ∆:

σ∆(f) =

n−1∑
i=0

f(ξi)(ti+1 − ti), ti ≤ ξi ≤ ti+1.

If ∆ is a sufficiently fine division, i.e. the norm of division ∆ is sufficiently small, then
the integral can be approximated by the integral sum, i.e.∫ b

a

f(t)dt ≈
n−1∑
i=0

f(ξi)(ti+1 − ti) (12)

To simplify the calculus, it was considered that the division ∆ of the interval [a, b] is
equidistant, i.e.

ti+1 − ti =
b− a
n

.

Under these conditions the following two formulas of approximation were obtained (see
references [15], [16]):

(a) If we consider the intermediary points of the division ∆ of the interval [a, b] on the
left end of partial intervals [ti, ti+1], ξi = ti, then the formula below is obtained:∫ b

a

=
b− a
n

[
f(a) +

n−1∑
i=1

f(ti)

]
+R(f); (13)

(b) If we consider the intermediary points of the division ∆ of the interval [a, b] on
the right end of partial intervals [ti, ti+1], ξi = ti+1, then it results the formula:∫ b

a

=
b− a
n

[ n−1∑
i=1

f(ti) + f(b)

]
+R(f), (14)

and each of these two formulas is called rectangles’ formula or rectangles’ rule.
For the remainder of the formula (13) or (14), we have the estimate given by the

relation:

|R(f)| ≤MD (b− a)2

n
, (15)

where was denoted

MD = max
t∈[a,b]

| f ′(t)| . (16)
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3. The approximation of the solution

The results regarding the procedure for approximating the solution of the integral
equation with modified argument (1), have been published in ([5]-[9]), [11] and [15]. In
what follows we present a synthesis of these results.

To obtain these results, the conditions of Theorem 1, of existence and uniqueness of
the solution of the integral equation (1), stated above, were assumed to be fulfilled.

In order to lay down the ideas we consider the case of the integral equation with a
unique solution, x∗ ∈ C[a, b], established by using the successive approximations method,
starting at any element x0 ∈ C[a, b]. Moreover, if xn is the n-th successive approximation,
then the estimation (3) is true.

We have the successive approximations’ sequence:

x0(t) = f(t), x0 ∈ C[a, b] (17)

x1(t) =

∫ b

a

K(t, s, x0(s), x0(a), x0(b))ds+ f(t)

.........................................................................

xm(t) =

∫ b

a

K(t, s, xm−1(s), xm−1(a), xm−1(b))ds+ f(t),

.........................................................................

To get a better result, it is considered an equidistant division ∆ of the interval [a, b]
through the points a = t0 < t1 < · · · < tn = b. Then, the successive approximations
sequence will be:

x0(tk) = f(tk), x0(a) = f(a), x0(b) = f(b) (18)

x1(tk) =

∫ b

a

K(tk, s, f(s), f(a), f(b))ds+ f(tk)

x1(a) =

∫ b

a

K(a, s, f(s), f(a), f(b))ds+ f(a)

x1(b) =

∫ b

a

K(b, s, f(s), f(a), f(b))ds+ f(b)

.........................................................................

xm(tk) =

∫ b

a

K(tk, s, xm−1(s), xm−1(a), xm−1(b))ds+ f(tk),

xm(a) =

∫ b

a

K(a, s, xm−1(s), xm−1(a), xm−1(b))ds+ f(a),

xm(b) =

∫ b

a

K(b, s, xm−1(s), xm−1(a), xm−1(b))ds+ f(b),

.........................................................................

In the following three paragraphs we present the results concerning the algorithm for
approximating the solution of the integral equation (1), obtained by applying the succes-
sive approximations method and using the trapezoids’ formula, the rectangles’ formula
and the Simpson’s formula for the approximate calculus of the integrals that appear in
the terms of the successive approximations sequence.
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3.1. The approximation of the solution using the trapezoids’ formula.
Suppose that the following conditions are fulfilled:

(h11) K ∈ C2([a, b]× [a, b]× R3)
(h12) f ∈ C2[a, b]

and consider an equidistant division ∆ of the interval [a, b] through the points a = t0 <
t1 < · · · < tn = b. Using the trapezoids’ formula (5) for the approximate calculus of the
integrals that appear in the terms of the successive approximations sequence (17), with
the estimate of the remainder given by (6) and (7), we will approximate the terms of this
sequence. Thus, for xm(tk) we have:

xm(tk) =
b− a
2n

[
K(tk, a, xm−1(a), xm−1(a), xm−1(b))+ (19)

+2

n−1∑
i=1

K(tk, ti, xm−1(ti), xm−1(a), xm−1(b))+

+K(tk, b, xm−1(b), xm−1(a), xm−1(b))

]
+ f(tk) +RTm,k, k = 0, n, m ∈ N,

with the estimate of the remainder:∣∣RTm,k∣∣ ≤ (b− a)3

12n2
· max
s∈[a,b]

∣∣∣∣∂2K(tk, s, xm−1(s), xm−1(a), xm−1(b))

∂s2

∣∣∣∣.
According to hypotheses (h11) and (h12), it results that there exists the derivative of

the functions K and f from the estimate of the remainder RTm,k, and following its calculus,
it was obtained:∣∣RTm,k∣∣ ≤MT

0 ·
(b− a)3

12n2
, MT

0 = MT
0 (K,DαK, f,Dαf), |α| ≤ 2, (20)

where MT
0 doesn’t depend on m and k.

Thus, it was obtained a formula for the approximate calculus of the integrals that
appear in the terms of the successive approximations sequence. Using the successive ap-
proximations method and the formula (19) with the estimation of the remainder resulted
from (20), it results an algorithm in order to solve the integral equation (1) approximately.
The terms of the successive approximations sequence have been calculated approximately.

In general case for xm(tk) it is obtains:

xm(tk) =
b− a
2n

[
K(tk, a, x̃m−1(a), x̃m−1(a), x̃m−1(b))+

+2

n−1∑
i=1

K(tk, ti, x̃m−1(ti), x̃m−1(a), x̃m−1(b))+

+K(tk, b, x̃m−1(b), x̃m−1(a), x̃m−1(b))

]
+ f(tk) + R̃Tm,k =

= x̃m(tk) + R̃Tm,k, k = 0, n.

Using the contraction condition (Theorem 1) it results the estimate of the remainder:∣∣R̃Tm,k∣∣ ≤ (b− a)3

12n2[1− 3L(b− a)]
·MT

0 .

So, using an equidistant division of the interval [a, b] through the points a = t0 < t1 <
· · · < tn = b, it was obtained the sequence (x̃m(tk))m∈N, k = 0, n, that approximates the
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successive approximations sequence (xm(tk))m∈N, k = 0, n, with the following calculation
error: ∣∣xm(tk)− x̃m(tk)

∣∣ ≤ (b− a)3

12n2[1− 3L(b− a)]
·MT

0 . (21)

Finally, using the estimates (3) and (21) it is obtains the following theorem for approx-
imating the solution of the integral equation (1).

Theorem 3. Suppose that the conditions of Theorem 1 are fulfilled. In addition, we as-
sume that the exact solution x∗ of the integral equation (1) is approximated by the sequence
(x̃m(tk))m∈N, k = 0, n, on the nodes tk, k = 0, n, of the equidistant division ∆ of the
interval [a, b], using the successive approximations method (17) and the trapezoids’ method
(5)+(6). Under these conditions, the approximation error is given by the evaluation:∣∣x∗(tk)− x̃m(tk)

∣∣ ≤ 3mLm(b− a)m

1− 3L(b− a)
|x1 − x0|+

(b− a)3

12n2[1− 3L(b− a)]
·MT

0 . (22)

3.2. The approximation of the solution using the Simpson’s formula.
Suppose that the following conditions are fulfilled:

(h21) K ∈ C4([a, b]× [a, b]× R3)
(h22) f ∈ C4[a, b]

and consider an equidistant division ∆ of the interval [a, b] through the points a = t0 <
t1 < · · · < tn = b. Using the Simpson’s formula (9) for the approximate calculus of the
integrals that appear in the terms of the successive approximations sequence (17), with
the estimate of the remainder given by (10) and (11), we will approximate the terms of
this sequence. Thus, for xm(tk) we have:

xm(tk) =
b− a
6n

[
K(tk, a, xm−1(a), xm−1(a), xm−1(b))+ (23)

+2

n−1∑
i=1

K(tk, ti, xm−1(ti), xm−1(a), xm−1(b))+

+4

n−1∑
i=1

K

(
tk,

ti + ti+1

2
, xm−1

(
ti + ti+1

2

)
, xm−1(a), xm−1(b)

)
+

+K(tk, b, xm−1(b), xm−1(a), xm−1(b))

]
+ f(tk) +RSm,k, k = 0, n, m ∈ N,

with the estimate of the remainder:∣∣RSm,k∣∣ ≤ (b− a)5

2880n4
· max
s∈[a,b]

∣∣∣∣∂4K(tk, s, xm−1(s), xm−1(a), xm−1(b))

∂s4

∣∣∣∣.
According to hypotheses (h21) and (h22), it results that there exists the derivative

of the functions K and f from the estimate of the remainder RSm,k, and following its
calculation, it was obtained:∣∣RSm,k∣∣ ≤MS

0 ·
(b− a)5

2880n4
, MS

0 = MS
0 (K,DαK, f,Dαf), |α| ≤ 4, (24)

where MS
0 doesn’t depend on m and k.

Thus, it was obtained a formula for the approximate calculus of the integrals that
appear in the terms of the successive approximations sequence. Using the successive
approximations method and the formula (23) with an estimation of the remainder resulted
from (24), it results an algorithm in order to solve the integral equation (1) approximately.
The terms of the successive approximations sequence have been calculated approximately.
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In general case for xm(tk) it is obtains:

xm(tk) =
b− a
6n

[
K(tk, a, x̃m−1(a), x̃m−1(a), x̃m−1(b))+

+2

n−1∑
i=1

K(tk, ti, x̃m−1(ti), x̃m−1(a), x̃m−1(b))+

+4

n−1∑
i=1

K

(
tk,

ti + ti+1

2
, x̃m−1

(
ti + ti+1

2

)
, x̃m−1(a), x̃m−1(b)

)
+

+K(tk, b, x̃m−1(b), x̃m−1(a), x̃m−1(b))

]
+ f(tk) + R̃Sm,k =

= x̃m(tk) + R̃Sm,k, k = 0, n.

Using the contraction condition (Theorem 1) it results the estimate of the remainder:∣∣R̃Sm,k∣∣ ≤ (b− a)5

2880n4[1− 3L(b− a)]
·MS

0 .

Consequently, using an equidistant division of the interval [a, b] through the points
a = t0 < t1 < · · · < tn = b, it was obtained the sequence (x̃m(tk))m∈N, k = 0, n,
that estimates the successive approximations sequence (xm(tk))m∈N, k = 0, n, with the
following calculation error:∣∣xm(tk)− x̃m(tk)

∣∣ ≤ (b− a)5

2880n4[1− 3L(b− a)]
·MS

0 . (25)

Finally, using the estimates (3) and (25) it is obtains a theorem for approximating the
solution of the integral equation (1), that we present below.

Theorem 4. Suppose that the conditions of Theorem 1 are fulfilled. In addition, we as-
sume that the exact solution x∗ of the integral equation (1) is approximated by the sequence
(x̃m(tk))m∈N, k = 0, n, on the nodes tk, k = 0, n of the equidistant division ∆ of the in-
terval [a, b], using the successive approximations method (21) and the Simpson’s method
(9)+(10). Under these conditions, the approximation error is given by the evaluation:∣∣x∗(tk)− x̃m(tk)

∣∣ ≤ 3mLm(b− a)m

1− 3L(b− a)
|x1 − x0|+

(b− a)5

2880n4[1− 3L(b− a)]
·MS

0 . (26)

3.3. The approximation of the solution using the rectangles’ formula.
Suppose that the following conditions are fulfilled:

(h31) K ∈ C1([a, b]× [a, b]× R3)
(h32) f ∈ C1[a, b]

and consider an equidistant division ∆ of the interval [a, b] through the points a = t0 <
t1 < · · · < tn = b. Using one of the rectangles’ formula (13) or (14) for the approxi-
mate calculus of the integrals that appear in the terms of the successive approximations
sequence (17), with the estimate of the remainder given by (15) and (16), we will approx-
imate the terms of this sequence. We used the formula (13) with the remainder given by
(15) and (16), considering the intermediary points of the division ∆ of the interval [a, b]
on the left end of the partial intervals [ti, ti+1], ξi = ti. For xm(tk) we have:

xm(tk) =
b− a
n

[
K(tk, a, xm−1(a), xm−1(a), xm−1(b))+ (27)
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+

n−1∑
i=1

K(tk, ti, xm−1(ti), xm−1(a), xm−1(b))

]
+ f(tk) +RDm,k, k = 0, n, m ∈ N,

with the estimate of the remainder:∣∣RTm,k∣∣ ≤ (b− a)2

n
· max
s∈[a,b]

∣∣∣∣∂K(tk, s, xm−1(s), xm−1(a), xm−1(b))

∂s

∣∣∣∣.
According to hypotheses (h31) and (h32) it results that there exists the derivative of the

functions K and f from the estimate of the remainder RDm,k and following its calculation,
it was obtained:∣∣RDm,k∣∣ ≤MD

0 ·
(b− a)2

n
, MD

0 = MD
0 (K,DαK, f,Dαf), |α| = 1, (28)

where MD
0 doesn’t depend on m and k.

Thus, it was obtained a formula for the approximate calculus of the integrals that
appear in the terms of the successive approximations sequence. Using the successive ap-
proximations method and the formula (27) with the estimation of the remainder resulted
from (28), it results an algorithm in order to solve the integral equation (1) approximately.
The terms of the successive approximations sequence have been calculated approximately.

In general case for xm(tk) we obtain:

xm(tk) =
b− a
n

[
K(tk, a, x̃m−1(a), x̃m−1(a), x̃m−1(b))+

+

n−1∑
i=1

K(tk, ti, x̃m−1(ti), x̃m−1(a), x̃m−1(b))

]
+ f(tk) + R̃Dm,k =

= x̃m(tk) + R̃Dm,k, k = 0, n

Using the contraction condition (Theorem 1) it results the estimate of the remainder:∣∣R̃Dm,k∣∣ ≤ (b− a)2

n[1− 3L(b− a)]
·MD

0 .

So, using an equidistant division of interval [a, b] through the points a = t0 < t1 <
· · · < tn = b, we obtain the sequence (x̃m(tk))m∈N, k = 0, n, that estimates the successive
approximations sequence (xm(tk))m∈N, k = 0, n, with the following calculation error:∣∣xm(tk)− x̃m(tk)

∣∣ ≤ (b− a)2

n[1− 3L(b− a)]
·MD

0 . (29)

Finally, using the estimates (3) and (29) it is obtains the following theorem for approx-
imating the solution of the integral equation (1).

Theorem 5. Suppose that the conditions of Theorem 1 are fulfilled. In addition, we as-
sume that the exact solution x∗ of the integral equation (1) is approximated by the sequence
(x̃m(tk))m∈N, k = 0, n, on the nodes tk, k = 0, n of the equidistant division ∆ of the in-
terval [a, b], using the successive approximations method (17) and the rectangles’ method
(13)+(15). Under these conditions, the approximation error is given by the evaluation:∣∣x∗(tk)− x̃m(tk)

∣∣ ≤ 3mLm(b− a)m

1− 3L(b− a)
|x1 − x0|+

(b− a)2

n[1− 3L(b− a)]
·MD

0 . (30)
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4. Example

We consider the integral equation with modified argument:

x(t) =

∫ 1

0

[
2 sin(x(s))

7
+
x(0) + x(1)

5

]
ds+ cos t, t ∈ [0, 1] (31)

where K ∈ C([0, 1] × [0, 1] × R3), K(t, s, u1, u2, u3) = 2 sin(u1)
7 + u2+u3

5 , f ∈ C[0, 1],
f(t) = cos t, x ∈ C[0, 1]

The existence and uniqueness of the solution of this integral equation was presented in
the first part of this synthesis survey.

The conditions of Theorem 1 and Theorem 2 are fulfilled and therefore, we establish
under what conditions the integral equation (31) has a unique solution in the space C[0, 1]
and in the sphere B(cos t; r) ⊂ C[0, 1], respectively.

Consider the case when the conditions of Theorem 2 are fulfilled. So the integral
equation (31) has a unique solution x∗ ∈ B(cos t; r) ⊂ C[0, 1]. From the contraction
condition 3L(b− a) = 3L = 24

35 , it results that L = 8
35 .

To determine x∗, we apply the successive approximations method, starting at any
element x0 ∈ B(cos t; r) ⊂ C[0, 1], and if xn is the n-th successive approximation, then
the following estimation is true:

|xn − x∗| ≤
24n

35n−1 · 11
|x1 − x0|. (32)

To calculate the integrals that appear in the terms of the successive approximations se-
quence, there have been used the following quadrature formulas: the trapezoids’ formula,
the rectangles’ formula and the Simpson’s formula, respectively.

It is observed that the functions K and f fulfill the conditions:

- (h11), (h12), necessary to apply the trapezoids’ formula;
- (h21), (h22), necessary to apply the Simpson’s formula;
- (h31), (h32), necessary to apply the rectangles’ formula.

Also, to get a better approximation of the solution, an equidistant division of the
interval [0, 1] through the points 0 = t0 < t1 < t1 < · · · < tn = 1 was considered.

The approximate value of the integral that arise in the general term of the successive
approximations sequence:

xm(tk) =

∫ 1

0

[
2 sin(xm−1(s))

7
+
xm−1(0) + xm−1(1)

5

]
ds+ costk

was calculated as it follows:

a) when we used the trapezoids’ formula, we have the relation:∫ 1

0

[
2 sin(xm−1(s))

7
+
xm−1(0) + xm−1(1)

5

]
ds =

=
1

2n

[
2 sin(xm−1(0))

7
+
xm−1(0) + xm−1(1)

5
+

+2

n−1∑
i=1

(
2 sin(xm−1(ti))

7
+
xm−1(0) + xm−1(1)

5

)
+

+
2 sin(xm−1(1))

7
+
xm−1(0) + xm−1(1)

5

]
+RTm,k, k = 0, n, m ∈ N
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with the estimate of the remainder:

|RTm,k| ≤
1

12n2
· max
s∈[0,1]

∣∣∣∣∂2K(t, s, x(s), x(0), x(1))

∂s2

∣∣∣∣.
b) when we used the Simpson’s formula, we have the relation:∫ 1

0

[
2 sin(xm−1(s))

7
+
xm−1(0) + xm−1(1)

5

]
ds =

=
1

6n

[
2 sin(xm−1(0))

7
+
xm−1(0) + xm−1(1)

5
+

+2

n−1∑
i=1

(
2 sin(xm−1(ti))

7
+
xm−1(0) + xm−1(1)

5

)
+

+4

n−1∑
i=1

(
2 sin(xm−1( ti+ti+1

2 ))

7
+
xm−1(0) + xm−1(1)

5

)
+

+
2 sin(xm−1(1))

7
+
xm−1(0) + xm−1(1)

5

]
+RSm,k, k = 0, n, m ∈ N

with the estimate of the remainder:

|RSm,k| ≤
1

2880n4
· max
s∈[0,1]

∣∣∣∣∂4K(t, s, x(s), x(0), x(1))

∂s4

∣∣∣∣.
c) when we used the rectangles’ formula, we have the relation:∫ 1

0

[
2 sin(xm−1(s))

7
+
xm−1(0) + xm−1(1)

5

]
ds =

=
1

n

[
2 sin(xm−1(0))

7
+
xm−1(0) + xm−1(1)

5
+

+

n−1∑
i=1

(
2 sin(xm−1(ti))

7
+
xm−1(0) + xm−1(1)

5

)]
+RDm,k, k = 0, n, m ∈ N

with the estimate of the remainder:

|RDm,k| ≤
1

n
· max
s∈[0,1]

∣∣∣∣∂K(t, s, x(s), x(0), x(1))

∂s

∣∣∣∣.
Thus, using an equidistant division of the interval [0, 1] through the points a = t0 <
t1 < · · · < tn = b, we obtain the sequence

(
x̃m−1(tk)

)
m∈N, k = 0, n, that estimates the

successive approximations sequence
(
xm−1(tk)

)
m∈N, k = 0, n, with the following error in

calculation:

a) when we used the trapezoids’ formula, the error is:

|xm(tk)− x̃m(tk)| ≤ 0, 0238095238 · 1

n2
;

b) when we used the Simpson’s formula, the error is:

|xm(tk)− x̃m(tk)| ≤ 0, 0001984126 · 1

n4
;

c) when we used the rectangles’ formula, the error is:

|xm(tk)− x̃m(tk)| ≤ 0, 2404202813 · 1

n
.
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The calculus of the approximate value of the integral from the expression of the general
term of the successive aproximations sequence using the trapezoids’ formula, the Simp-
son’s formula and the rectangles’ formula respectively, was performed with a software
developed in MATLAB.
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