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THE DIRECT PROBLEM AND THE INVERSE PROBLEM OF THE

NORMAL DISTRIBUTION.

MATHEMATICAL MODELS-ALGORITHMS-PROGRAM

CONSTANTIN ZĂVOIANU AND FELICIA ZĂVOIANU

Abstract. In this article we present two mathematical models, the algorithms that

implement them, and the software that solves the direct problem and the inverse
problem of the normal distribution. Tandem solving of the two issues provides both

the possibility of forming an overview of the normal distribution as well as a set

of useful and strictly necessary information to perform an informative analysis of
the effectiveness of the used mathematical models and algorithms. The efficiency

of mathematical models and, implicitly, of their algorithms is ultimately expressed

through the accuracy and precision of the results obtained by using the software
encoding these algorithms. The accuracy of the results reflects the extent to which

the calculated value approaches the real value and the precision of the results refers to

the exact number of digits in the representation of a double-precision mobile floating-
point solution. Here, we have also demonstrated, using the concepts of absolute error

and relative error, that the scientific approach in this article is rigorously substantiated
both from a mathematical point of view and from the point of view of implementing

algorithms in a high-level programming language.

1. Introduction

The random variable X follows a normal distribution of parameters m,σ ∈ R, σ > 0 if
it has the distribution density

f(x) =
1

σ
√

2π
e−

(x−m)2

2σ2 , x ∈ R,m ∈ R, σ > 0 (1)

where m is the mean value and σ is the standard deviation.
The fact that the random variable X has a normal distribution of parameters m and

σ is marked by X ∼ N(m,σ).
If X ∼ N(m,σ), then the following properties are met:

1. f(x) ≥ 0,∀x ∈ R

2.

∞∫
−∞

f(x)dx = 1.

The cumulative distribution function (CFD) of the random variable X ∼ N(m,σ) is

F (x) =

x∫
−∞

f(t)dt =
1

σ
√

2π

x∫
−∞

e−
(t−m)2

2σ2 dt, t, x ∈ R,m, σ ∈ R, σ > 0 (2)

and the value of this function for a given xα represents the probability that the value of
the random variable X is less than xα, namely that F (xα) = P (X < xα). The value xα
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60 CONSTANTIN ZĂVOIANU AND FELICIA ZĂVOIANU

of a random variable X ∼ N(m,σ) for which F (xα) = α is called the quantile of order α
or α− quantile.

Observation. If m = 0 and σ = 1, then, by convention, the random variable is
denoted by Z and is said to follow a standard normal distribution, that is Z ∼ N(0, 1) .
In this case, the distribution density is

ϕ(z) =
1√
2π
e−

z2

2 , ∀z ∈ R. (3)

The cumulative distribution function of Z ∼ N(0, 1) is

Φ(z) =
1√
2π

z∫
−∞

e−
t2

2 dt (4)

and is called Laplace’s function.
Regarding the normal distribution, two types of problems are of general interest:

• The direct problem of determining the probability α = F (xα) when the value
of the α− quantile xα is known;

• The inverse problem of determining the α− quantile xα such that F (xα) = α
when the probability value α, α ∈ (0, 1) is known.

To easily solve the two problems, we notice that between the cumulative distribution
function F of the random variable X ∼ N(m,σ) and the cumulative distribution function
Φ of the variable Z ∼ N(0, 1) one can establish a causal dependence: if in (2) we make
the variable change t−m = σz, we have that

F (x) =
1√
2π

x−m
σ∫

−∞

e−
z2

2 dz = Φ

(
x−m
σ

)
. (5)

In this context, whatever the random variable X ∼ N(m,σ), solving the direct problem
first requires determining the value zα = xα−m

σ and then determining the value α = Φ(zα)

while solving the inverse problem first requires determining the value zα = Φ−1(α) from
the equation Φ(zα) = α and then determining the value xα = m+ σ · zα. Therefore, it is
sufficient to only solve the direct problem and the inverse problem of the standard normal
distribution and this will be discussed in detail in the next sections.

2. Numerical model and algorithm for solving the direct problem

Problem statement. Knowing the value of the α−quantile zα of the random variable
Z ∼ N(0, 1), the task is to determine the probability α = Φ(zα).

Solution. If zα > 0 then −zα < 0, and Φ(zα) = 1√
2π

zα∫
−∞

e−
z2

2 dz =
1√
2π

0∫
−∞

e−
z2

2 dz +

1√
2π

zα∫
0

e−
z2

2 dz =
1

2
+

1√
2π

zα∫
0

e−
z2

2 dz and because 1√
2π

0∫
−zα

e−
z2

2 dz =
1√
2π

zα∫
0

e−
z2

2 dz,

we deduce that Φ(−zα) = 1√
2π

−zα∫
−∞

e−
z2

2 dz =
1

2
− 1√

2π

zα∫
0

e−
z2

2 dz. Therefore, calculation

the value of the indefinite integral Φ(zα) = 1√
2π

zα∫
−∞

e−
z2

2 dz is reduced to computing the
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value of the definite integral:

Φ?(zα) =
1√
2π

zα∫
0

e−
z2

2 dz, zα > 0 (6)

and the probability value α will be

α =


1
2 + Φ?(zα) if zα > 0
1
2 if zα = 0
1
2 − Φ?(−zα) if zα < 0.

(7)

Figure 1

We notice that in order to determine the probability α = Φ(zα), it is necessary and

sufficient to determine Φ?(|zα|) = 1√
2π

|zα|∫
0

e−
z2

2 dz. Because it is not possible to ana-

lytically determine an antiderivative of g(z) = e−
z2

2 , in order to calculate the approxi-
mate value Φ?(|zα|) we can use, e.g.1, the generalized Simpson quadrature formula, that
can be summarized as: if g : [a, b] → R is an integrable function on the interval [a, b],
and z0 = a, zi = a + i · h, i = 1, n− 1, zn = b is a division of the interval [a, b], with

h = b−a
n , n ∈ N, n chosen conveniently, then the approximate value for I(g) =

b∫
a

g(z)dz

is

I(g) ∼=
1

3

b− a
n

[
g(a) + g(b)

2
+

n−1∑
i=1

g(zi) + 2

n−1∑
i=0

g(
zi + zi+1

2
)

]
. (8)

In this case, the interval [a, b] = [0, |zα|] and Φ?(|zα|) ∼= 1√
2π
· I(g). With these specifica-

tions, the algorithm that solves the direct problem of the standard normal distribution is
structurally composed of the following steps:
Step 1. Read the value zα and assign ε = 10−18.
Step 2. If |zα| ≤ ε then α = 1

2 , otherwise perform the following operations:

• determine the value I(g)2 and then Φ?(|zα|) = 1√
2π
· I(g);

1In order to obtain results with a better precision, we can use the Gauss quadrature formula, which
also guarantees much faster convergence.

2The value of the integral is determined by the procedure Simpson(g,n,0,ABS(zalfa),vi).
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• if |zα| > ε then the probability α is α = 1
2 + Φ?(|zα|);

• if |zα| < −ε then the probability α is α = 1
2 − Φ?(|zα|).

Step 3. Stop.

The subprogram FUNCTION probability(zalfa:EXTENDED):EXTENDED;
implements this algorithm.

3. Numerical model and algorithm for solving the inverse problem

Problem statement. For the random variable Z ∼ N(0, 1) the probability value α
is known and the task is to determine the value of the α− qunatile such that Φ(zα) = α,
that is, the task is to determine zα = Φ−1(α).

Solution. From (7) we deduce that zα = 0 when α = 1
2 , and if α 6= 1

2 then the

equation Φ?(zα) = α− 1
2 must be solved when zα > 0, or the equation Φ?(−zα) = 1

2 − α
must be solved when zα < 0. Because the (positive or negative) nature of zα is not
known a priori, we do not know which of the two equations is to be solved. But, if zα > 0
then Φ?(zα) > 0, i.e., α > 1

2 and if zα < 0 then Φ?(−zα) > 0, i.e., α < 1
2 . Therefore,

the equation to be solved is either Φ?(zα) = α − 1
2 if α > 1

2 , in which case zα > 0, or

Φ?(−zα) = 1
2 − α if α < 1

2 , in which case zα < 0. But if zα < 0 then −zα > 0 and
therefore solving the inverse problem of the standard normal distribution is reduced to
solving the equation

Φ?(|zα|) = β (9)

where

β =

{
α− 1

2 if α > 1
2

1
2 − α if α < 1

2 .
(10)

Provided that through an arbitrary procedure uα = |zα| = (Φ?)−1(β) can be determined,
then

zα =

{
uα if α > 1

2

−uα if α < 1
2 .

(11)

The remaining open problem is: how to determine the value uα = |zα| = (Φ?)−1(β),
which is the solution of the equation Φ?(uα) = β, i.e., the solution of the equation

1√
2π

uα∫
0

e−
z2

2 dz = β, uα > 0. (12)

Equation (12) is equivalent with the equation

uα∫
0

e−
z2

2 dz = γ (13)

where γ = β
√

2π.

Since it is not possible to analytically determine an antiderivative of g(z) = e−
z2

2 , in
order to solve equation (13), we designed a novel numerical approach that we called: the
small steps with return method.

The mathematical support of this method is the following: the solution uα of the equa-

tion

uα∫
0

g(z)dz = γ is certainly located inside an interval [0, b] ∈ R+. Without restricting
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generality, we can assume that [0, b] =

m⋃
k=0

Jk is a union of equidistant intervals such that

Ji
⋂
Jj = ∅,∀i 6= j. The intervals Jk = [ak, bk], k = 0,m are progressively constructed as

follows: a0 = 0, b0 = a0 + p, ai+1 = bi, bi+1 = ai+1 + p, ∀i = 0,m− 1 with p, p > 0,
being a conveniently chosen step; e.g., p = 0.1. Under these circumstances, we have that

b∫
0

g(z)dz =

m∑
k=0

bk∫
ak

g(z)dz =

m∑
k=0

Ik, where Ik =

bk∫
ak

g(z)dz. (14)

In order to determine the value of uα we proceed as follows: let n ∈ N be the first natural

number for which S =
n∑
k=0

Ik ≥ γ. If for any ε > 0, e.g., ε = 10−18, we have that

|S − γ| ≤ ε, then uα = bn, and if |S − γ| > ε, we subtract from S the value of In and
we proceed to process the interval [an, bn] in a similar manner to the interval [0, b] while
reducing the step size p. For example, we can continue with a step size of p/10. After
a finite number of steps we will have that |S − γ| ≤ ε and, if we denote by Iq the last
integral added to the sum S, then uα = bq. In order to calculate the value of a given

integral Ik =

bk∫
ak

g(z)dz, we can use, as in the case of the direct problem, the generalized

Simpson quadrature formula.
In light of the previous analysis, the algorithm that solves the inverse problem of the

standard normal distribution is structurally composed of the following steps:
Step 1. Read the probability value α and assign ε = 10−18.
Step 2. If α = 1

2 , then assign the value 0 to zα. Otherwise execute steps 3, 4, 5 and 6.

Step 3. If α > 1
2 , then assign the value

√
2π(α − 1

2 ) to γ or if α < 1
2 , then assign the

value
√

2π( 1
2 − α) to γ.

Step 4. Make the initializations: a← 0; p← 0.1; s← 0; n← 5000; kod← 13.
Step 5. While the condition kod 6= 0 is satisfied, perform the following operations:

1. Repeat the following operations:
a) b← a+ p;
b) Call the procedure Simpson(g,n,a,b,vi) in order to determine the value

vi←
b∫
a

g(z)dz;

c) Make the assignments: s← s+ vi; a← b;
until s > γ.

2. If |s − γ| < ε, then assign the value 0 to the variable kod. Otherwise, make the
following assignments: kod← 1; a← b− p; p← p/10.

Step 6. If α > 1
2 , then assign the value b to zα or, if α < 1

2 , then assign the value −b to
zα.
Step 7. Stop.

The subprogram FUNCTION quantile(alfa:EXTENDED):EXTENDED; im-
plements this algorithm.

3The kod variable will have the value 1 as long as the approximate value of the α− quantile zα has
not been determined and when this value is determined, the variable will receive the value 0.
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4. Algorithmic efficiency and result precision

In this section, by referring to the concepts of absolute error and relative error, we
demonstrate that our study is rigorously substantiated both from a mathematical point
of view and from the point of view of implementing the proposed algorithms in a high
level programming language.

Therefore, we analyzed the following two cases:

1. When solving the direct problem, after starting from the initial value zα, the
probability α = Φ(zα) is determined and then, for α, the inverse problem is

solved, thus finally determining a value z
′

α = Φ−1(α). If all calculations are made
without any error, according to the following scheme:

zα
Φ−→ α

Φ−1

−→ z
′

α

the value z
′

α should be equal to zα, but this is generally not the case because
two types of errors appear in the data processing process: method errors and
calculation errors. The effect of method errors can be diminished by adopting
the best mathematical model and computational errors (that are due to cropping
or rounding out results) can be diminished by working with data represented in
a double-precision floating-point format. The difference between the calculated
value z

′

α and the ground truth value zα is measured by absolute error and relative

error. The absolute error of z
′

α is determined by the formula Ea(z
′

α) = |zα − z
′

α|,
and the relative error is determined by the formula Er(z

′

α) = | zα−z
′
α

zα
|. The lower

the values of these errors, the more efficient are the mathematical models that
solve the two problems (direct and inverse) and this directly translated into a
higher precision of the obtained results. From the multiple numerical experiments
we performed on the computer, we came to the conclusion that both the absolute
error and the relative error are, in most cases, smaller than 10−16 and this finding
proves that the pursued objective has been achieved. An example in this sense is
the following:

The solution to the direct problem:

If zalfa = 1.400000000000000000 then alfa= 0.919243340766228954

The solution to the inverse problem:

If alfa = 0.919243340766228954 then zalfap = 1.400000000000000010

Errors for zalfap:

Absolute error is Ea= 7.04731412115578E-0018

Relative error is Er= 5.03379580082556E-0018

2. When solving the inverse problem, after starting from the initial value α, the
quantile z

′

α = Φ−1(α) is determined, and then, for z
′

α, the direct problem is

solved, thus finally determining a probability value α
′

= Φ(z
′

α). If all calculations
are performed accurately, according to the following scheme:

α
Φ−1

−→ z
′

α
Φ−→ α

′

the value α
′
should be equal to the ground truth value of α, but in this case also the

value α
′

is affected by the same types of errors as in the previous case. This time

the absolute error is Ea(α
′
) = |α− α′ | and the relative error is Er(α

′
) = |α−α

′

α |.
Following the computer experiments we came to the same conclusion as in the
previous case, namely that both the absolute error and the relative error are lower
than 10−16. An example in this sense is the following:
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The solution to the direct problem:

If alfa = 0.919243340766228954 then zalfap = 1.400000000000000010

The solution to the inverse problem:

If zalfap = 1.400000000000000010 then alfap= 0.919243340766228955

Errors for alfa:

The absolute error is Ea= 9.21571846612679E-0019

The relative error is Er= 1.00253306795185E-0018

5. The Borland Pascal program which solves the direct problem and the
inverse problem of the standard normal distribution

The scientific approach presented in this article reaches its finality if based on it a
software product can be realized that implements all the encountered cases. The program
presented in this section is a rather expressive solution and provides interested specialists
with a useful tool to solve the practical problems they face in day-to-day work. The
program has a modular structure and is quite easy to read. The underlying algorithm of
this program structurally consists of the following steps:
Step 1. Interrogate what kind of problem to solve (D / I), i.e., direct or inverse.
Step 2. If the direct problem has to be solved, then the value of zα (coded with zalfa)
is read, the function probability(zalfa) is called assigning to α (coded with alfa) the
return value of this function and the value of alfa is finally printed. If the inverse problem
has to be solved, the value of alfa is read, the function quantile(alfa) is called assigning
to zalfa the return value of this function and the value of zalfa is finally printed.

The obtained software product is the following:

PROGRAM PDI_Normal_Distribution;{$F+} {$N+}

{ The Direct problem and the Inverse problem of the standard normal

distribution.}

TYPE func=FUNCTION(x:EXTENDED):EXTENDED;

VAR alfa,zalfa:EXTENDED;

tp:CHAR;

CONST eps=1.0E-18;

FUNCTION g(x:EXTENDED):EXTENDED;

BEGIN

g:=EXP(-x*x/2);

END;

PROCEDURE Simpson(g:func;n:INTEGER;a,b:EXTENDED;VAR vi:EXTENDED);

VAR h,s1,s2:EXTENDED;

i:INTEGER;

BEGIN

h:=(b-a)/n;

vi:=(g(a)+g(b))/2;

s1:=0;

FOR i:=1 TO n-1 DO s1:=s1+g(a+i*h);

s2:=0;

FOR i:=0 TO n-1 DO s2:=s2+g(a+i*h+h/2);

vi:=h*(vi+s1+2*s2)/3;

END;
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FUNCTION probability(zalfa:EXTENDED):EXTENDED;

VAR vi:EXTENDED;

n:INTEGER;

BEGIN

n:=5000;

IF ABS(zalfa)<=eps THEN probability:=0.5

ELSE

BEGIN

Simpson(g,n,0,ABS(zalfa),vi);

vi:=vi/SQRT(2*PI);

IF zalfa> eps THEN probability:=0.5+vi

IF zalfa<-eps THEN probability:=0.5-vi;

END;

END;

FUNCTION quantile(alfa:EXTENDED):EXTENDED;

VAR a,b,p,vi,s,za,gama:EXTENDED;

n,kod:INTEGER;

BEGIN

IF alfa=0.5 THEN quantile:=0

ELSE

BEGIN

IF alfa>0.5 THEN gama:=SQRT(2*PI)*(alfa-0.5);

IF alfa<0.5 THEN gama:=SQRT(2*PI)*(0.5-alfa);

a:=0; p:=0.1; s:=0;

n:=5000;kod:=1;

WHILE kod<>0 DO

BEGIN

REPEAT

b:=a+p;

Simpson(g,n,a,b,vi);

s:=s+vi; a:=b;

UNTIL s>gama;

IF ABS(s-gama)<eps THEN kod:=0

ELSE

BEGIN

kod:=1; a:=b-p;

s:=s-vi; p:=p/10;

END;

END;

IF alfa>0.5 THEN quantile:=b;

IF alfa<0.5 THEN quantile:=-b;

END;

END;

{ M A I N P R O G R A M }

BEGIN

WRITE(’Problem type (D/I): ’);

READLN(tp);

IF UPCASE(tp)=’D’ THEN

BEGIN
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WRITE(’Input the value of the alfa quantile: zalfa= ’);

READLN(zalfa);

alfa:=probability(zalfa);

WRITELN(’The solution of the direct problem:’);

WRITELN(’If zalfa = ’,zalfa:20:18,’ then alfa = ’,alfa:20:18);

END

ELSE

BEGIN

WRITE(’Input the probability value: alfa= ’);

READLN(alfa);

zalfa:=quantile(alfa);

WRITELN(’The solution of the inverse problem:’);

WRITELN(’If alfa = ’,alfa:20:18,’ then zalfa = ’,zalfa:20:18);

END;

END.

6. Final conclusions

1. In this article, we synthesized the main theoretical results regarding the normal
distribution and we also emphasized that the field of investigations on this issue
is not closed. We justify this last statement by the fact that the solutions for the
direct and the inverse problem of the standard normal probability distribution
returned by the statistical functions NORMSDIST and NORMSINV included in
the Microsoft Office Excel spreadsheet program have a much lower precision than
those obtained in this work.

2. The mathematical models and the algorithms by which we have solved the two
problems (i.e., direct and inverse) are quite expressive entities and the program
we have designed is a useful and efficient tool for both statistics and computer
science practitioners.

3. The study is also important for researchers working in the field of numerical
simulation because they have the possibility to generate random variables with
a normal distribution by the inverse method although it is not possible to de-
termine the analytical expression of the inverse of the cumulative distribution
function F (x) corresponding to the random variable X ∼ N(m,σ). The inverse
method of generating random variables is grounded on the Smirnov-Hincin lemma
that states the following: if X is a random variable that has the cumulative distri-
bution function F (x), and U is uniformly distributed random variable over (0, 1)
then the cumulative distribution function Y = F−1(U) is F (x). Basically, in or-
der to generate a value xα of a random variable X ∼ N(m,σ), one can proceed
as follows:

Step 1. Generate a random number α uniformly distributed over (0, 1).
Step 2. Determine zα = Φ−1(α) and then the value xα = m+ σ · zα.
Obviously, if the requirement is to generate an array of random numbers
x1, x2, . . . , xn, n ∈ N, steps 1 and 2 are to be repeated, in this order, n times.
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68 CONSTANTIN ZĂVOIANU AND FELICIA ZĂVOIANU
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[6] Vraciu G. şi colectiv. Analiză numerică. Editura SINTECH, Craiova, 1996. ISBN 973-97524-3-7.
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Universităţii 20, 332006 Petroşani, România
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