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VORONEC EQUATIONS FOR NONLINEAR NONHOLONOMIC

SYSTEMS

FEDERICO TALAMUCCI

Abstract. One of the founders of the mechanics of nonoholonomic systems is Voro-

nec who published in 1901 a significant generalization of the Čaplygin’s equations, by

removing some restrictive assumptions. In the frame of nonholonomic systems, the
Voronec equations are probably less frequent and common with respect to the preva-

lent methods of quasi–coordinates (Hamel–Boltzmann equations) and of the accelera-

tion energy (Gibbs–Appell equations). In this paper we start from the case of linear
nonholonomic constraints, in order to extend the Voronec equations to nonlinear non-

holonomic systems. The comparison between two ways of expressing the equations of

motion is performed. We finally comment that the adopted procedure is appropriated
to implement further extensions.

1. Introduction

Let us considerN material points (P1,m1), . . . , (PN ,mN ) whose coordinates in a three-
dimensional vector space are listed in the vector X ∈ R3N . Assume that the system under-
goes certain positional constraints, possibly depending on time (i. e. fixed or moving con-
straints involving the coordinates X): the configurations of the system can be expressed
by the representative vector X(q1, . . . , qn, t), n ≤ 3N , where (q1, . . . , qn) ∈ Q ⊆ Rn is the
set of the local lagrangian coordinates and t appears only if at least one of the geomet-

rical constraints depends explicitly on time. The Newton’s equations mi

..

P i = Fi + Ri,
i = 1, . . . , N , where Fi and Ri are respectively the active force and the constraint force
concerning Pi can be summarized in R3N by

Q̇ = F +R (1)

where Q = (m1Ṗ1, . . . ,mN ṖN ) is the representative vector of the linear momentum,
F = (F1, . . . ,FN ) and R = (R1, . . . ,RN ). As it is known, the space of the all possible
velocities consistent with the constraints is in each point the linear space generated by

the n vectors
∂X

∂qi
, i = 1, . . . , n and the scalar products of (1) with them lead to the well

known equations

d

dt

∂T

∂q̇i
− ∂T

∂qi
= F (qi) +R(qi) i = 1, . . . , n (2)

where T is the kynetic energy T (q1, . . . , qn, q̇1, . . . , qn, t) = 1
2Q·Ẋ and for each i = 1, . . . , n:

i)
d

dt

∂T

∂q̇i
− ∂T

∂qi
= Q̇ · ∂X

∂qi
,

2010 Mathematics Subject Classification. 70H03, 37J60, 70F25.
Key words and phrases. Lagrange’s equations - Linear nonholonomic systems - Nonlinear dynamical

systems - Voronec equations.

193



194 FEDERICO TALAMUCCI

ii) F (qi) = F · ∂X

∂qi
, R(qi) = R · ∂X

∂qi
are the i–th lagrangian component of the active

forces - possibly related to a potential scalar function U(q1, . . . , qn, t) - and of the
constraint forces, respectively.

The constraints are said to be ideal if they play merely their role of restricting the
configurations of the system, without entering the possible movements of it: as it is
well known, in the holonomic case this is equivalent to the vanishing of the lagrangian
components of R, since the set of the possible displacements corresponds to the linear
space TX (the tangent space) generated by ∂X

∂q1
, . . . , ∂X

∂qn
. In that case, the n equations

(2) contain precisely the n unknown quantities q1, . . . , qn. A simple and suitable way
to move forward more general systems consists in keeping in mind points (a) and (b)
listed above: to identify the set of displacements (vectors) along which the constraints
forces are said to be ideal - by reasonable motivations - and to develop the calculus of (1)
along those directions, finding the additional terms which generally appear, besides the
Lagrangian binomial. First of all, such a way to proceed will make us retrieve the linear
nonholonomic Voronec equations, as we explain hereafter.
On the basis of that frame we let additional constraints of kinematical type to be present:
such a situation can be formulated by operating directly on the lagrangian coordinates
and by adding the equations

Φj(q1, . . . , qn, q̇1, . . . , q̇n) = 0, j = 1, . . . , k (3)

where k < n and q̇ = (q̇1, . . . , q̇n) ∈ R` are the generalized velocities. The given functions
Φj are assumed to be independent w. r. t. the kinetic variables, namely the jacobian
matrix J(q̇1,...,q̇n)(Φ1, . . . ,Φm) attains its maximum rank m.
Without limiting the generality of our discussion, we can assume that the regularity
condition of the nonholonomic constraints holds for the k × k submatrix formed by the
last k columns, so that (3) can be written in the form

q̇m+1 = α1(q1, . . . , qn, q̇1, . . . , q̇m)

. . .

q̇m+k = αk(q1, . . . , qn, q̇1, . . . , q̇m)

(4)

with m = n − k somehow decreases the range of freedom of the system, when the kine-
matical constraints (3) are encompassed,
Our main aim is to formulate the equations of motion if the nonholonomic conditions (3)
are embraced in the dynamics. It is evident that the main question to be rivised in (2)
concerns with the new set of possible velocities, owing to (3) (or (4)): the right idea to
pursue is the same as in the holonomic case, of null constraint forces along all the possible
displacement.
Actually, joining (2) with (3) produces a set of n + m equations, with the 2n unknows
quantities q1(t), . . . , qn(t) and R(q1), . . . , R(qn) which cannot be claimed to be null and
which are difficult to model at this stage of the problem.
Although the most common technique in nonholonomic problems makes use of the so
called quasi–coordinates and quasi–velocities (see, among others, [1], [2], [3], [4], [5]), the
point of view adopted here is to employ only the lagrangian coordinates and velocities
already present in the equations. More precisely, the implicit conditions (3) correspond
to make the set of m velocities ( (q̇1, . . . , q̇m) in the selected case) as the independent
ones and assuming all values in Rm, whereas the remaining velocities (q̇m+1, . . . , q̇m+k=n)
have to assume the values (4), in each position (q1, . . . , qn), at any time t and for each set
(q̇1, . . . , q̇m), in order to be consistent with the kinematical constraints.
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This point of view dates back to Voronec, whose equations will be reproduced in the next
Section. They deals with a simpler case with respect to our assumptions: the rest of the
paper is devoted to make a generalization of Voronec’s equations. Unexpectedly, they are
not as common as other classical sets for nonholonomic systems (Maggi [6], Hamel [7],
Appell [8],...) and probably the most known version of them is the specific case introduced
by Čaplygin, which will be mentioned hereafter.

2. The Voronec equations for linear kinematical constraints

The equations derived by Voronec in [9] concerns the case of linear nonholonomic con-
straints: 

q̇m+1 =
m∑
i=1

α1,i(q1, . . . , qn)q̇i,

. . .

q̇m+k =
m∑
i=1

αk,i(q1, . . . , qn)q̇i

(5)

(we use again the greek letter α, where the double subscript distinguishes the linear case).
The lagrangian expression of the velocity of the system is

Ẋ = ̂̇X +
∂X

∂t

where ̂̇X =
n∑
i=1

q̇i
∂X

∂qi
is any velocity consistent with the instantaneous configuration of

the system (i. e. at a blocked time t) and the second term appears in case of mobile
constraints. Owing to (5), one has

̂̇X =

m∑
i=1

q̇i

 ∂

∂qi
X(q1, . . . , qn, t) +

k∑
j=1

αj,i(q1, . . . , qn)
∂

∂qm+j
X(q1, . . . , qn, t)

 (6)

The arbitrariness of (q̇1, . . . , q̇m) makes the set of possible displacements, at any blocked
time t, the linear subspace of TX generated by the m vectors of (6) (for i = 1, . . . ,m) in
brackets.
We require the constraint forces to play the same ideal role as described in the Introduc-
tion: the natural extension of ideal constraint demands that the constraint forces have
no lagrangian components on that subspace, that is

R ·

∂X

∂qi
+

k∑
j=1

αj,i
∂X

∂qm+j

 = R(qi) +

k∑
j=1

αj,iR(qm+j) = 0, i = 1, . . . ,m. (7)

Equivalently, the constraint forces are ideal if the lagrangian components R(q) = (R(q1),
. . . , R(qn))T are linear combinations of the rows of the matrix (A | − Ik) or, that is the
same, they verify

(Im | A)R(q) = 0 (8)

where A is the k ×m matrix of elements αj,i appearing in (5) and Ir is the unit matrix
of order r, r = k,m.

From the point of view of the energy of the system, we see that (7) entails
n∑
i=1

R(qi)q̇i = 0,

so that the energy is not dissipated.
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Remark 1. An alternative way to attain the same set (6) is to consider the vectors
m∑
i=1

q̇i
∂Ẋ

∂q̇i
(9)

for arbitrary (q̇1, . . . , q̇m) and taking account of (5). The linearity of the velocity of the
system with respect to the generalized velocities q̇i is a well–known property in the la-
grangian formalism. Such an evidence will be convenient in order to access the more
general case discussed in the following.

At this point, it makes sense to multiply the Newton’s equation (1) by the m vectors
in brackets in (6), for each i, in order to achieve the following equations of motion:

d

dt

∂T

∂q̇i
− ∂T

∂qi
+

k∑
j=1

αj,i

(
d

dt

∂T

∂q̇m+j
− ∂T

∂qm+j

)
= F (qi) +

k∑
j=1

αj,iF (qm+j), i = 1, . . . ,m.

(10)
The m equations (10) joined with (5) consist of a set of m+ k = n differential equations
in the n unknown quantities q1(t), . . . , qn(t).
One advantage of (10) is the direct appearance of coefficients αj,i in the equations of
motions, owing to the explicit form of the constraints conditions (5). If the constraints

are expressed by implicit linear conditions like
n∑
j=1

ai,j q̇j = 0, i = 1, . . . ,m, it is necessary

to calculate the vectors orthogonal to the rows of the matrix ai,j in order to get the
coefficients entering the equations of motion (such a procedure must be adopted, as an
instance, for writing the Maggi’s equations).

Remark 2. In (10) one can recover the case when one of the contraints (5), say the

r–th one, is integrable, that is it exists a function f (r) such that αr,i(q1, . . . , qm) = ∂f(r)

∂qi

for any i = 1, . . . ,m. The term in (10) for j = r is ∂f(r)

∂qi
( ddt

∂T
∂q̇r
− ∂T

∂qr
) and this cor-

responds, as it is known, to add to the system X(q1, . . . , qn, t) the holonomic constraint
qr = f (r)(q1, . . . , qm).

Following [4], equations (10) can be formulated in terms of the reduced function

T ∗(q1, . . . , qn, q̇1, . . . , q̇m, t) = T (q1, . . . , qn, q̇1, . . . , q̇m, q̇m+1(·), . . . , q̇m+k(·), t) (11)

where q̇m+j(·), j = 1, . . . , k, stands for q̇m+j(q1, . . . , qn, q̇1, . . . , q̇m), in accordance with
(4). Simple calculations lead to the Voronec’s equations of motion, for each i = 1, . . . ,m:

d

dt

∂T ∗

∂q̇i
− ∂T ∗

∂qi
−

k∑
ν=1

αν,i
∂T ∗

∂qm+ν
−

k∑
ν=1

m∑
j=1

βνij q̇j
∂T

∂q̇m+ν
= F (qi) +

k∑
j=1

αj,iF (qm+j) (12)

where

βνij(q1, . . . , qn) =
∂αν,i
∂qj

− ∂αν,j
∂qi

+

k∑
µ=1

(
∂αν,i
∂qm+µ

αµ,j −
∂αν,j
∂qm+µ

αµ,i

)
. (13)

In the terms
∂T

∂q̇m+ν
the arguments q̇m+1, . . . , q̇n have to be removed by taking advantage

of (5).

Remark 3. Under the same assumptions of Remark 2.1, it is worth checking the effect
of an integrable constraint in (12): by defining the reduced function

Tr = T ∗(q1, . . . , qm, . . . , qr−1, f
(r)(q1, . . . , qm), qr+1, . . . , qn, q̇1, . . . , q̇m, t)
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which does not contain qr, one has for ν = r:

d

dt

∂T ∗

∂q̇i
− ∂T ∗

∂qi
− αr,i

∂T ∗

∂qm+r
=

d

dt

∂Tr
∂q̇i
− ∂Tr
∂qi

and βrij = 0. Clearly, if each of the constraints (5) is integrable, the left side of (12)

reduces to the lagrangian binomial d
dt
∂T̂
∂q̇i
− ∂T̂
∂qi

characteristic of holonomic systems, where

T̂ = T ∗(q1, . . . , qm, f
(1)(q1, . . . , qm), . . . , f (k)(q1, . . . , qm), q̇1, . . . , q̇m, t).

Although the equations of motion (12) do not contain the velocities q̇m+1, . . . , q̇m+k,
system (12) is still coupled with the constraints expressions (5), because of the presence
of qm+1, . . . , qm+k. A special case, formulated by Čaplygin some years before the Voronec
equations, consists in assuming that the lagrangian coordinates q1, . . . , qm do not occur
in T , in the coefficients αj,i, j = 1, . . . ,m nor in the forces F (qi) for any i = 1, . . . ,m. In

that case, (10) reduces to the Čaplygin equations [10], namely for each i = 1, . . . ,m:

d

dt

∂T ∗

∂q̇i
− ∂T ∗

∂qi
−

k∑
ν=1

m∑
j=1

(
∂αν,i
∂qj

− ∂αν,j
∂qi

)
q̇j

∂T

∂q̇m+ν
= F (qi) +

k∑
j=1

αj,iF (qm+j) (14)

where T ∗ = T ∗(q1, . . . , qm, q̇1, . . . , q̇m, t), the same for the forces terms. The clear ad-
vantage is that the set (14) is now disentangled from (5) and one needs to solve only m
differential equations in order to solve the motion.
Assumptions for (14) may appear demanding: it is worthwhile to remark that Čaplygin
systems are not so uncommon in real examples, if the lagrangian coordinates are properly
chosen.
Lastly, let us comment how is it framed (12) within a more general situation, where (5) are

replaced by the linear implicit conditions
m∑
i=1

Φj,i(q1, . . . , qn)q̇i = 0, j = 1, . . . , k. Using a

vector–matrix notation for simplicity, we write Φ(q)q̇ = 0, where Φ is the k × n matrix
Φ of elements (Φj,i) and q = (q1, . . . , qn). If the rank of Φ is maximal, m independent
vectors (γ1,j , . . . , γn,j), j = 1, . . . ,m, orthogonal to the rows of Φ can be found, so that
ΦΓ = O, with Γ n×m matrix of elements γi,j and Ok,m zero matrix k×m. The set (6) is

replaced by
m∑
i=1

q̇i
n∑
j=1

γj,i
∂X
∂qi

and the ideal constraints assumption (7) by
n∑
j=1

γj,iR(qj) = 0,

i = 1, . . . ,m, so that the m equations of motion are

ΓT
(
d

dt
∇q̇T −∇qT −F (q)

)
= 0 (15)

with obvious meaning of symbols. As we said before, the special case leading to (12) does
not require the calculation fo Γ: indeed, it is Φ = (A | − Ik) and ΓT = (Im | A), where A
is the k×m matrix of elements αj,i appearing in (5) and Ir is the unit matrix of order r,
r = k,m (see also (8)). Incidentally, we remark that if an invertible change of coordinates
q̄i = q̄i(q1, . . . , qn), i = 1, . . . , n is implemented, then the constraints equations move to

Φ̄(q̄) ˙̄q = 0, with Φ̄ = Φ(q(q̄))(Jq̄q) (the latter is the jacobian matrix of entries ∂qi
∂q̄j

,

i, j = 1, . . . , n). At the same time, the new matrix of orthogonal vectors is Γ̄ = (Jqq̄)Γ:
it follows that the writing of the equations of motion in terms of q̄, that is

Γ̄T
(
d

dt
∇ ˙̄qT −∇q̄T −F (q̄)

)
= ΓT (Jqq̄)T (Jq̄q)T

(
d

dt
∇q̇T −∇qT −F (q)

)
exhibits a balance between the change of Γ (showing the inverse of the jacobian matrix
of the transformation q̄(q)) and the change of the lagrangian equations, in the same way
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as the jacobian matrix. This means an invariant behaviour of equations (15), which can
be easily explained in terms of lagrangian components and contravariant components of

(1) in the basis
∂X

∂qi
, i = 1, . . . , n.

Remark 4. Concerning (5), it is clear that a general transformation q̄(q) does not
preserve the explicit arrangement of the constraints and the simplified path to (10): if this
is demanded, only partial changes of coordinates q̄i(q1, . . . , qm), i = 1, . . . ,m, q̄j = qj,
j = m+ 1, . . . , n, can be considered.

3. The nonlinear case

The aim is to extend equation of type (12) to the case of nonlinear constraints (4). We refer
to [11] for a comprehensive list of references abuot nonlinear nonholonomic systems, where
the scarcity of literature - especially in english - on such an important topic is underlined.
The starting point comes from Remark 1 of the previous Section: the constraints forces
are going to be tested with the set of vectors (9), which takes the form

̂̇X =

m∑
i=1

q̇i

 ∂

∂qi
X(q1, . . . , qn, t) +

k∑
j=1

∂αj
∂q̇i

(q1, . . . , qn, q̇1, . . . , q̇m)
∂

∂qm+j
X(q1, . . . , qn, t)


(16)

For arbitrary m–uples (q̇1, . . . , q̇m) the set (16) plays the role of the totality of the possi-
ble velocities consistent with the constraints at each position (q1, . . . , qn) and, when the
configuration space is freezed at a time t. As in the linear case, assumption (17) entails

R· ˆ̇X = 0, that is the power of the constraint forces is zero, with respect to all the possible
displacements consistent to any blocked configuration of the system.
We are motivated to state that the constraint forces R are ideal if they are orthogonal to
m the vectors in brackets in (16):

R ·

∂X

∂qi
+

k∑
j=1

∂αj
∂q̇i

∂X

∂qm+j

 = 0, for each i = 1, . . . ,m. (17)

In an equivalent way, we can refer to the lagrangian components of the constraint forces
extending condition (8) to nonlinear constraints, by replacing the matrix A with the k×m

matrix of entries
∂αi
∂q̇j

, i = 1, . . . , k, j = 1, . . . ,m. In this way, the generalized constraint

forcesR(q) are orthogonal to them vectors (0, . . . ,

j−th︷︸︸︷
1 , . . . , 0︸ ︷︷ ︸
m

, ∂α1

∂q̇j
, . . . , ∂αk∂q̇j

), j = 1, . . . ,m,

whereas they are linear combinations of the k vectors (∂αi∂q̇1
, . . . , ∂αi∂q̇m

0, . . . ,

i−th︷︸︸︷
−1 , . . . , 0︸ ︷︷ ︸
k

),

i = 1, . . . , k.

Theorem 1. The equations of motion of the system X(q, t) subject to the nonlinear
kinematical constraints (4) are, for each i = 1, . . . ,m:

d

dt

∂T ∗

∂q̇i
− ∂T ∗

∂qi
−

k∑
ν=1

∂T ∗

∂qm+ν

∂αν
∂q̇i
−

k∑
ν=1

∂T

∂q̇m+ν
Bνi = F (qi) +

k∑
j=1

∂αj
∂q̇i
F (qm+j), (18)
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where Bνi (q1, . . . , qn, q̇1, . . . , q̇m) are the functions

Bνi =

m∑
r=1

(
∂2αν
∂q̇i∂qr

q̇r +
∂2αν
∂q̇i∂q̇r

..
qr

)
− ∂αν
∂qi

+

k∑
σ=1

(
∂2αν

∂q̇i∂qm+σ
ασ −

∂ασ
∂q̇i

∂αν
∂qm+σ

)
(19)

and T ∗ is the reduced function

T ∗(q1, . . . , qn, q̇1, . . . , q̇m, t) = T (q1, . . . , qn, q̇1, . . . , q̇m, α1(·), . . . , αk(·), t) (20)

intending for each αj(·), j = 1, . . . , k, the dependence on (q1, . . . , qn, q̇1, . . . , q̇m) according
to (4).

Proof. In the same way as we did for (10), we multiply (1) by the m vectors appearing
in (16), for each i = 1, . . . ,m, in order to get, reminding (17):

d

dt

∂T

∂q̇i
− ∂T
∂qi

+

k∑
j=1

∂αj
∂q̇i

(
d

dt

∂T

∂q̇m+j
− ∂T

∂qm+j

)
= F (qi)+

k∑
j=1

∂αj
∂q̇i
F (qm+j), i = 1, . . . ,m

(21)
The following relations

∂T

∂q̇i
=
∂T ∗

∂q̇i
−

k∑
ν=1

∂T

∂q̇m+ν

∂αν
∂q̇i

, i = 1, . . . ,m

∂T

∂qi
=
∂T ∗

∂qi
−

k∑
ν=1

∂T

∂q̇m+ν

∂αν
∂qi

, i = 1, . . . , n

(22)

allow us to write (21) in terms of T ∗: in order to get (18) it suffices to have in mind that

− d

dt

(
∂T

∂q̇m+ν

∂αν
∂q̇i

)
+
d

dt

(
∂T

∂q̇m+ν

)
∂αν
∂q̇i

= − ∂T

∂q̇m+ν

d

dt

(
∂αν
∂q̇i

)
=

= − ∂T

∂q̇m+ν

(
m∑
s=1

(
∂2αν
∂q̇i∂qs

q̇s +
∂2αν
∂q̇i∂q̇s

..
qs

)
+

k∑
j=1

∂2αν
∂q̇i∂qm+j

αj

)
.

�

Whenever αν are the linear functions
∑m
j=1 αν,j q̇j of (5) for any ν = 1, . . . , k, then (18)

and (19) reproduce exactly (12) and (13): we have in that case, for any i = 1, . . . ,m and
ν = 1, . . . , k

∂αν
∂q̇i

= αν,i,
m∑
s=1

∂2αν
∂q̇i∂qs

q̇s −
∂αν
∂qi

=
m∑
j=1

(
∂αν,i
∂qj

− ∂αν,j
∂qi

)
q̇j ,

∂2αν
∂q̇i∂q̇s

= 0,

k∑
j=1

(
∂2αν

∂q̇i∂qm+j
αj −

∂αj
∂q̇i

∂αν
∂qm+j

)
=

k∑
µ=1

m∑
j=1

(
∂αν,i
∂qm+µ

αµ,j −
∂αν,j
∂qm+µ

αµ,i

)
q̇j .

The m equations (18), containing the n unknown functions q1(t), . . . , qn(t), have to be
coupled with (4) in order to solve the problem. Even in this case, if the functions appearing
in the equations exhibit special sets of variables, a reduction of the problem can be
made analogously to (14) and the Čaplygin’s equations can be formally extended to the
nonlinear case. Apart from this, the main point we are interested in is the mathematical
problem arisen from (18), specifying our analysis on the case where T does not contain
explicitly t.
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3.1. The case of fixed constraints. The presence of the second derivatives
..
qs in the

coefficients Bνi seems unusual and may somehow alter the structure we usually meet in
ordinary lagrangian equations, even in the linear nonholonomic case, where the second
derivatives of the unknown functions originate only from the first term in (12). Clearly,
the existence and uniqueness of the solution is closely related to the way the second
derivatives appear in the equations. Hence, we do not find pointless to derive the equations
of motion following a different way, in the special (but significant) case of fixed holonomic
constraints, namely X = X(q1, . . . , qn). Focussing on the left side of (1), let us make use
of the 3N vector X(m) = (m1P1, . . . ,mNPN ) (position vector equipped by masses of the
points), so that

Q = Ẋ(M) =
m∑
i=1

∂X(M)

∂qi
q̇i +

k∑
j=1

∂X(M)

∂qm+j
αj ,

Q̇ =
..

X
(M)

=
m∑
i=1

∂X(M)

∂qi

..
qi +

m∑
i,j=1

∂2X(M)

∂qi∂qj
q̇iq̇j + 2

m∑
i=1

k∑
j=1

∂2X(M)

∂qi∂qm+j
q̇iαj

+
k∑

i,j=1

∂2X(M)

∂qm+i∂qm+j
αiαj +

k∑
j=1

∂X(M)

∂qm+j

(
m∑
i=1

(
∂αj
∂qi

q̇i +
∂αj
∂q̇i

..
qi

)
+

k∑
ν=1

∂αj
∂qm+ν

αν

) (23)

Theorem 2. Define for each i, j, k = 1, . . . , n

gi,j(q1, . . . , qn) =
∂X(M)

∂qi
· ∂X

∂qj
, ξi,j,k(q1, . . . , qn) =

∂2X(M)

∂qi∂qj
· ∂X

∂qk
. (24)

Then,the equations of motions of the system X(q) subject to the nonlinear kinematical
constraints (4) can be written in the following form, for each i = 1, . . . ,m:

m∑
ν=1

(
Cνi

..
qν +

m∑
µ=1

Dν,µ
i q̇ν q̇µ + Eνi q̇ν

)
+Gi = F (qi) +

k∑
j=1

∂αj
∂q̇i
F (qm+j) (25)

where the coefficients, depending on (q1, . . . , qn, q̇1, . . . , q̇m), are defined as

Cνi =
k∑

r,s=1

(
gi,ν + gi,m+r

∂αr
∂q̇ν

+ gm+r,ν
∂αr
∂q̇i

+ gm+s,m+r
∂αs
∂q̇i

∂αr
∂q̇ν

)
,

Dν,µ
i = ξν,µ,i +

k∑
r=1

ξν,µ,m+r
∂αr
∂q̇i

,

Eνi =
k∑

r,s=1

(
2

(
ξν,m+r,i + ξν,m+r,m+s

∂αs
∂q̇i

)
αr +

(
gm+r,i + gm+r,m+s

∂αs
∂q̇i

)
∂αr
∂qν

)
,

Gi =
k∑

r,s,p=1

((
ξm+r,m+s,i + ξm+r,m+s,m+p

∂αp
∂q̇i

)
αrαs

+

(
gm+r,i + gm+r,m+p

∂αp
∂q̇i

)
∂αr
∂qm+s

αs

)
.

Proof. Recalling (16) and implementing the products Q̇ · (∂X∂qi +
k∑
j=1

∂αj
∂q̇i

∂X
∂qm+j

) for each

i = 1, . . . ,m where Q̇(q1, . . . , qn, q̇1, . . . , q̇m, α1(·), . . . , αk(·)) is the function in (23) and
(·) stands for (q1, . . . , qn, q̇1, . . . , q̇m), straightforward calculations easily drive to (25). �

Equations (25), possibly expressed in terms of quasi–velocities, are the same as the
ones that can be deduced from the Gauss principle, as for instance discussed in [12].

Remark 5. The procedure of Proposition 3.2 corresponds to the method of Appell: indeed,

the energy of accelerations is S =
1

2
Q̇ ·

..

X and
∂S

∂
..
qi

= Q̇ · ∂
..

X

∂
..
qi

= Q̇ · (∂X∂qi +
k∑
j=1

∂αj
∂q̇i

∂X
∂qm+j

):
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in other words, the calculus to implement in order to write the Appell equations is exactly
the same illustrated in the proof of Proposition 3.2.

Equations (18) and equations (25), describing the same motion, show dissimilarities,
which can be mainly reported to how the constraint equations αj appear. Thus, it is
not pointless to develop explicitly the calculations in (18), in order to check if redundant
terms are present. In terms of the defined quantities and in the examined case, the kinetic

energy is T =
1

2

n∑
i,j

gi,j q̇iq̇j and (20) takes the form

T ∗ =
1

2

m∑
i,j

gi,j q̇iq̇j +

k∑
ν=1

αν

1

2

k∑
µ=1

gm+ν,m+ναµ +

m∑
j=1

gj,m+ν q̇j

 (26)

Theorem 3. Assume that equations (18) are written with T ∗ as in (26). Then, for each

i = 1, . . . ,m the terms −
k∑
ν=1

∂T

∂q̇m+ν
Bνi correspond to the sum of the terms

(i) −
m∑

r,s=1

k∑
ν,µ,σ=1

(gr,m+ν q̇r + gm+ν,m+µαµ)

(
∂2αν
∂q̇i∂qs

q̇s +
∂2αν
∂q̇i∂q̇s

..
qs +

∂2αν
∂q̇i∂qm+σ

ασ

)
(ii)

m∑
r=1

k∑
ν=1

(gr,m+ν q̇r + gm+ν,m+µαµ)
∂αν
∂qi

(iii)
m∑

r,s=1

k∑
ν,µ,σ=1

(gr,m+ν q̇r + gm+ν,m+µαµ)
∂ασ
∂q̇i

∂αν
∂qm+σ

which appear with opposite sign in
d

dt

(
∂T ∗

∂q̇i

)
(terms (i)), in −∂T

∗

∂qi
(terms (ii)) and in

−
k∑
ν=1

∂T ∗

∂qm+ν

∂αν
∂q̇i

(terms (iii)) respectively. Therefore, all the terms of −
k∑
ν=1

∂T

∂q̇m+ν
Bνi

vanish and the remaining terms of (18) coincide precisely with (25).

Proof. The check is a not short but simple calculus based on the following preliminary
formulae (whenever (26)is assumed)

∂T ∗

∂q̇i
=

m∑
r=1

k∑
ν,µ=1

((
gr,i + gr,m+ν

∂αν
∂q̇i

)
q̇i +

(
gm+ν,m+µ

∂αν
∂q̇i

+ gi,µ

)
αµ

)
, i = 1, . . . ,m

∂T ∗

∂qi
=

m∑
r,s=1

k∑
ν,µ=1

(
1
2

(
∂gr,s
∂qi

q̇r q̇s +
∂gm+ν,m+µ

∂qi
αναµ

)
+ (gm+ν,m+µαµ + gr,m+ν q̇r)

∂αν
∂qi

+
∂gr,m+ν

∂qi
q̇rαν

)
, i = 1, . . . , n

∂T

q̇m+ν

∣∣∣∣
q̇m+µ=αµ,µ=1,...,k

=
m∑
r=1

gm+ν,r q̇r +
k∑
µ=1

gm+ν,m+µαµ, ν = 1, . . . , k.

Once the just written expressions have been placed in (18), the terms declared in the
statement of the Proposition cancel and the remaining terms match with (25). �

4. Conclusions and feasible generalizations

The framework depicted by (4) is quite general, since the constraints equations are as-
sumed to be independent. The Voronec equations develop such a starting point, without
employing quasi–coordinates and quasi–velocities.
The classic Voronec equations for linear kinematical constraints have been extended to
the nonlinear case by (18). At the same time, in a special case (fixed constraints) the
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comparison with the set of equations depicting the same motion and present in literature in
an apparently dissimilar form made us conclude that several terms in (18) are redundant.
However, this is strictly connected to the specific selection summarized by (20). The two
different ways of drawing the equations of motions reflect the two points of view of keeping
the lagrangian structure of the equations save for additional terms (equations (18)), or
basing directly on the D’Alembert’s principle he one and
Two main points can be planned in order to examine the question in a more general
frame:

(1) the holonomic constraints depend explicitly on time t,
(2) even the nonholonomic constraints depend on time.

The first topic is actually already sketched by equations (18), where the manifold of
configurations is allowed to be mobile. Nevertheless, the expression of the kinetic energy
is no longer (26) and 0–degree and 1–degree terms with respect to q̇1, . . . , q̇m have to
be added. Hence, Propositions 3.2 and 3.3 need to be rearranged in order to check the
possible deletions of terms.
As regards the second issue, whenever one (or more) of (4) is replaced by q̇m+j =
αj(q1, . . . , qn, q̇1, . . . , q̇m, t), the set of velocities consistent with the instantaneous con-
figuration of the system is still (6), but the equations of motion cannot be longer written
in the form (18). More precisely, relations (22) still hold, but not the successive formula.
A final interesting theme which can be treated in a natural way by means of the introduced
approach concerns higher order constraints equations, of the type Φj(q1, . . . , qn, q̇1, . . . , q̇n,

. . . ,
p·
q 1, . . . ,

p·
qn, t), where p· stands for the sequence of p dots, p ≥ 2: the key point is to

extend (9) to higher derivatives, by virtue of the lagrangian known property
∂
κ·
X

∂
κ·
q i

=
∂X

∂qi
,

κ = 1, 2, . . . .
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