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ON SOME COMMON FIXED POINTS THEOREMS IN

INTUITIONISTIC FUZZY METRIC SPACES AND ITS

APPLICATIONS

RAJINDER SHARMA AND DEEPTI THAKUR

Abstract. In this paper, we established some common fixed point theorems for pairs

of semi compatible and occasionally weakly compatible mappings in an intuitionistic
fuzzy metric space (briefly IFM space) satisfying contractive type condition. In this

paper, we observe that the notion of common property (E.A.) relatively relaxes the

required containment of the range of one mapping into the range of other which is
utilized to construct the sequence of joint iterates. We extended the results established

in [13] to intuitionistic fuzzy metric space.

1. Introduction

It is no doubt true that the concept of fuzzy set given by Zadeh [37] helped other
researchers to introduce and develop the fuzzy metric in distinct forms. Credit for further
development goes to Grabiec [10] who extended two fixed point theorems of Banach [6]
and Edelstein [9] for contractive mappings of complete and compact fuzzy metric space
in the sense of Kramosil and Michalek [19]. Thereafter, George and Veeramani ([11, 12])
modified the concept of fuzzy metric space given by Kramosil and Michalek [19] and
defined a Hausdroff topology on it.
Attansov ([3, 4]) generalized the fuzzy metric space to intuitionistic fuzzy metric space and
proved some common fixed point theorems for the same. Park [24] in 2004, using the idea
of intuitionistic fuzzy sets defines the notion of intuitionistic fuzzy metric space with the
help of continuous t-norm and t-conorm as a generalization of fuzzy metric space due to
George and Veermani ([11, 12]). Various authors proved common fixed point theorems in
different spaces by taking under consideration the mappings satisfying contractive type of
conditions. Majority of the results comprises of either commuting or weak commutativity
mappings introduced by Sessa [27] while establishing common fixed point results. In 1994,
Mishra et al. [23] extended the notion of compatible maps introduced by Jungck et al.
[16] in metric space under the name of asymptotically commuting maps to fuzzy metric
spaces. Sharma et.al.([29, 30]) introduced and studied the concept of common fixed point
for weakly and multivalued mappings in intuitionistic fuzzy metric spaces. In 2002, Aamir
and Moutawakil [5] established a couple of new common fixed point theorems under strict
contractive conditions via (E.A.) property. Pant and Pant [25] explored the new horizons
by establishing the common fixed points theorems for a pair of non compatible maps and
the property E.A in fuzzy metric space. For more details, we refer to ( Alaca et al. [1],
Anderson et al. [2], Deng [7], Erceg[8], Grabiec [10], Jungck [14], Kaleva and Seikkala [18],
Kubiaczyk and Sharma [20], Jungck ([14, 15]), Jungck and Rhoades [17], Schweizer and
Skaler[26], Sessa [27], Sharma and Bamboria [28], Sharma and Deshpande [31], Thagafi
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and Shahzad [33], Singh and Jain [34], Turkoglu et. al. [35]), Manro et.al. [22], Pant [25]
and Sharma et. al. [29]) respectively.

2. Preliminaries

Definition 1. [26] A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is continuous t-norm if ∗
is satisfying the following conditions:

∗ is commutative and associative, (1)

∗ is continuous, (2)

a ∗ 1 = a,∀ a ∈ [0, 1], (3)

a ∗ b ≤ c ∗ dwhenever a ≤ c and b ≤ d, ∀ a, b, c, d ∈ [0, 1]. (4)

Definition 2. [26] A binary operation ♦ : [0, 1]× [0, 1]→ [0, 1] is continuous t-norm if ♦
is satisfying the following conditions:

♦ is commutative and associative, (5)

♦ is continuous, (6)

a♦0 = a,∀ a ∈ [0, 1], (7)

a♦b ≤ c♦dwhenever a ≤ c and b ≤ d,∀ a, b, c, d ∈ [0, 1]. (8)

Remark 1. The concept of triangular norms (t norms) and triangular conorms (t-
conorms) are known as the axiomatic sekeltons that we use for characterizing fuzzy in-
tersections and unions respectively. These concepts were originally introduced by Menger
[21] in his study of Statistical metric spaces.

Definition 3. [1] A 5-tuple (X,M,N, ∗,♦) is said to be an intuitionistic fuzzy metric
spaces if X is an arbitrary set, ∗ is a continuous t-norm, ♦ is a continuous t-conorm and
M,N are fuzzy sets on X2 × [0,∞) satisfying the following conditions:
∀x, y, z ∈ X and t, s > 0,

M(x, y, t) +N(x, y, t) ≤ 1, (9)

M(x, y, 0) = 0, (10)

M(x, y, t) = 1,∀t > 0 iff x = y, (11)

M(x, y, t) = M(y, x, t), (12)

M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s), (13)

M(x, y, .) : [0,∞)→ [0, 1] is left continuous, (14)

limt→∞M(x, y, t) = 1, (15)

N(x, y, 0) = 1, (16)

N(x, y, t) = 0,∀t > 0 iff x = y, (17)

N(x, y, t) = N(y, x, t), (18)

N(x, y, t)♦N(y, z, s) ≥ N(x, z, t+ s), (19)

N(x, y, .) : [0,∞)→ [0, 1]isrightcontinuous, (20)

limt→∞N(x, y, t) = 0. (21)
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Then (M,N) is called an intuitionistic fuzzy metric on X. The functions M(x, y, t)
and N(x, y, t) denote the degree of nearness and the degree of non-nearness between x and
y with respect to t, respectively.

Remark 2. Every fuzzy metric space (X,M, ∗) is an intuitionistic fuzzy metric space
of the form (X,M, 1−M, ∗,♦) such that t-norm ∗ and t-conorm ♦ are associated , i.e.,
x♦y = 1− ((1− x) ∗ (1− y)),∀x, y ∈ X.
Example 1. [32] Let (X, d) be a metric space. Define t-norm a ∗ b = min{a, b} and t-

conorm a♦b = max{a, b} and ∀x, y ∈ X and t > 0,Md(x, y, t) = t
t+d(x,y) , Nd(x, y, t) = d(x,y)

t+d(x,y) .

Then (X,M,N, ∗,♦) is an intuitionistic fuzzy metric space. We call this intuitionistic
fuzzy metric (M, N) induced by the metric d, the standard intuitionistic fuzzy metric.

Example 2. [1] Let X = N . Define a∗b = max{0, a+b−1} and a♦b = a+b−ab,∀a, b ∈
[0, 1] and let M and N be the fuzzy sets on X2 × (0,∞) as follows :
∀x, y ∈ Xandt > 0. Then (X,M,N, ∗,♦) is an intuitionistic fuzzy metric space.

M(x, y, t) =

{
x
y , if x ≤ y
y
x , if y ≤ x

and

N(x, y, t) =

{
y−x
y , if x ≤ y

x−y
x , if y ≤ x

Remark 3. In an intuitionistic fuzzy metric space X,M(x, y, .) is non- decreasing and
N(x, y, .) is non-increasing, ∀x, y ∈ X.
Definition 4. [1] Let (X,M,N, ∗,♦) be an intuitionistic fuzzy metric space. Then

A sequence {xn} in X is said to be convergent to a point x ∈ X
(denoted by limn→∞{xn} = x) if, ∀t > 0,
limn→∞M(xn, x, t) = 1, limn→∞N(xn, x, t) = 0.

A sequence {xn} in X is said to be a cauchy sequence if ∀ t > 0 and p > 0
limn→∞M(xn+p, x, t) = 1, limn→∞N(xn+p, x, t) = 0.

Definition 5. [1] An intutionistic fuzzy metric space (X,M,N, ∗,♦) is said to be complete
if and only if every cauchy sequence in X is convergent. It is called compact if every
sequence contains a convergent subsequence.

Remark 4. [1] Since ∗ and ♦ are continuous, the limit is uniquely determined from (13)
and (19), respectively.

Definition 6. [34] A pair (A,S) of self-mappings of an intuitionistic fuzzy metric space
(X,M,N, ∗,♦) is said to be semi-compatible if limn→∞M(ASxn, Sz, t) = 1, and
limn→∞N(ASxn, Sz, t) = 0, for all t > 0, whenever {xn} is a sequence in X such that
limn→∞Axn = limn→∞Sxn = z for some z ∈ X.

Definition 7. [32]A pair (A,S) of self-mappings of an intuitionistic fuzzy metric space
(X,M,N, ∗,♦) is said to satisfy (E.A) property if there exists a sequence {xn} in X
suchthat limn→∞Axn = limn→∞Sxn = z for some z ∈ X.

Definition 8. Two pairs (A,S) and (B, T ) of self-mappings of an intuitionistic fuzzy met-
ric space (X,M,N, ∗,♦) are said to share the common property (E.A) if there exists two
sequences {xn} and {yn}in X suchthat limn→∞Bxn = limn→∞Txn = limn→∞Ayn =
limn→∞Syn = z for some z ∈ X.
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Definition 9. [1]Two self-maps A and S on set X are said to be weakly compatible if
they commute at their coincidence point.

Definition 10. [33] Two self maps f and g of a set X are called occasionally weakly
compatible iff there is a point x ∈ X which is coincidence point of f and g at which f and
g commute.

Definition 11. [36] Let Ψ be the class of all non decreasing mappings ψ : [0, 1]× [0, 1]→
[0, 1] and η : [0, 1]× [0, 1]→ [0, 1] such that

lim→∞ψ
n(s) = 1,∀s ∈ (0, 1] (22)

ψ(s) > s,∀s ∈ (0, 1) (23)

ψ(1) = 1, (24)

lim→∞η
n(r) = 0,∀r ∈ [0, 1) (25)

η(r) < r,∀r ∈ (0, 1) (26)

η(0) = 0. (27)

For examples, we refer to [36].

3. Main results

Theorem 1. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy metric space. Let A,B, S and
T be mappings from X into itself such that

M(Ax,By, t) ≥ ψ[min{M(Sx, Ty, t),M(Sx,Ax, t),M(Sx,By, t),M(Ty,Ax, t)}] (28)

and

N(Ax,By, t) ≤ η[max{N(Sx, Ty, t), N(Sx,Ax, t), N(Sx,By, t), N(Ty,Ax, t)}] (29)

for all x, y ∈ X, where ψ, η ∈ Ψ. Also, suppose the pair (A,S) and (B, T ) share the
common property (E.A), and S(X) and T (X) are closed subsets of X, then the pair
(A,S) as well as (B, T ) have a coincidence point. Further, A,B, S and T have a unique
common fixed point provided the pair (A,S) is semi-compatible and (B, T ) is occasionally
weakly compatible.

Proof. Since the pair (A,S) and (B, T ) satisfies the property (E.A). Then there exists two
sequences {xn} and {yn} in X such that limn→∞Axn = limn→∞Sxn = limn→∞Byn =
limn→∞Tyn = z, for some z ∈ X. Since S(X) is closed subset ofX , therefore limn→∞Sxn =
z ∈ S(X) and there is a point u in X such that Su = z.
Now, we claim that Au = z. If not, then by using (28) and (29), we have

M(Au,Byn, t) ≥ ψ[min{M(Su, Tyn, t),M(Su,Au, t),M(Su,Byn, t),M(Tyn, Au, t)}],

N(Au,Byn, t) ≤ η[max{N(Su, Tyn, t), N(Su,Au, t), N(Su,Byn, t), N(Tyn, Au, t)}]

Letting n→∞ , we have

M(Au, z, t) ≥ ψ[min{M(z, z, t),M(z,Au, t),M(z, z, t),M(z,Au, t)}] = ψ[M(z,Au, t)] >
M(z,Au, t),

N(Au, z, t) ≤ η[max{N(z, z, t), N(z,Au, t), N(z, z, t), N(z,Au, t)}] = η[(z,Au, t)] <
N(z,Au, t),
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which are contradictions. Hence Au = z. Thus, we have Au = Su i.e. u is coincidence
point of the pair (A,S).
Since T (X) is a closed subset of X, therefore limn→∞Tyn = z ∈ T (X) and there is a
point w ∈ X such that Tw = z. Again using (28) and (29), we obtain

M(Axn, Bw, t) ≥ ψ[min{M(Sxn, Tw, t),M(Sxn, Axn, t),M(Sxn, Bw, t),M(Tw,Axn, t)}],

N(Axn, Bw, t) ≤ η[max{N(Sxn, Tw, t), N(Sxn, Axn, t), N(Sxn, Bw, t), N(Tw,Axn, t)}]

Letting n→∞ , we have

M(z,Bw, t) ≥ ψ[min{M(z, z, t),M(z, z, t),M(z,Bw, t),M(z, z, t)}] = ψ[M(z,Bw, t)] >
M(z,Bw, t),

N(z,Bw, t) ≤ η[max{N(z, z, t), N(z, z, t), N(z,Bw, t), N(z, z, t)}] = η[(z,Bw, t)] <
N(z,Bw, t),

which are contradictions. Hence Bw = z. Thus, we have Bw = Tw i.e. w is coinci-
dence point of the pair (B, T ).
Since, the pair (A,S) is semicompatible , so limn→∞ASxn = Sz and limn→∞ASxn = Az.
Also, the limit in an intuitionistic fuzzy metric space is unique, therefore Az = Sz.
Next, we’ll show that z is a common fixed point of the pair (A,S).
By using (28) and (29), we have

M(Az,Bw, t) ≥ ψ[min{M(Sz, Tw, t),M(Sz,Az, t),M(Sz,Bw, t),M(Tw,Az, t)}],

N(Az,Bw, t) ≤ η[max{N(Sz, Tw, t), N(Sz,Az, t), N(Sz,Bw, t), N(Tw,Az, t)}]

Letting n→∞ , we have

M(Az, z, t) ≥ ψ[min{M(Az, z, t),M(Az,Az, t),M(Az, z, t),M(z,Az, t)}] = ψ[M(Az, z, t)] >
M(Az, z, t),

N(Az, z, t) ≤ η[max{N(Az, z, t), N(Az,Az, t), N(Az, z, t), N(z,Az, t)}] = η[(Az, z, t)] <
N(Az, z, t).
This gives Az = z. Thus Az = z = Sz. Since w is a coincidence point of B and T
and the pair (B, T ) is occasionally weakly compatible, so we have BTw = TBw implies
Bz = Tz = z.

For uniqueness, Let v be anothe fixed point of A,B, S and T . Set x = z and y = v in
(28) and (29), we have

M(Az,Bv, t) ≥ ψ[min{M(Sz, Tv, t),M(Sz,Az, t),M(Sz,Bv, t),M(Tv,Az, t)}],

N(Az,Bv, t) ≤ η[max{N(Sz, Tv, t), N(Sz,Az, t), N(Sz,Bv, t), N(Tv,Az, t)}]

Letting n→∞ , we have
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M(z, v, t) ≥ ψ[min{M(z, v, t),M(z, z, t),M(z, v, t),M(v, z, t)}] = ψ[M(z, v, t)] > M(z, v, t),

N(z, v, t) ≤ η[max{N(z, v, t), N(z, z, t), N(z, v, t), N(v, z, t)}] = η[N(z, v, t)] < N(z, v, t),

this implies z = v. Thus z is a unique common fixed point of A,B, S and T . �

Theorem 2. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy metric space . Let A,B, S
and T be mappings from X into itself such that for all x, y ∈ X, a, b, c ≥ 0, q > 0 and
q < a+ b+ c ,

qM(Ax,By, t) ≥ aM(Ty, Sx, t) + bM(Sx,By, t) + cM(Ax,By, t) (30)

+max{ M(Ax, Sx,t), M( By,Ty, t)} and

qN(Ax,By, t) ≤ aN(Ty, Sx, t) + bN(Sx,By, t) + cN(Ax,By, t) (31)

+min{ N(Ax, Sx,t), N( By,Ty, t)}
Also, suppose the pair (A,S) and (B, T ) share the common property (E.A), and S(X) and
T (X) are closed subsets of X, then the pair (A,S) as well as (B, T ) have a coincidence
point. Further, A,B, S and T have a unique common fixed point provided the pair (A,S)
is semi-compatible and (B, T ) is occasionally weakly compatible.

Proof. Since the pair (A,S) and (B, T ) satisfies the property (E.A). Then there exists two
sequences {xn} and {yn} in X such that limn→∞Axn = limn→∞Sxn = limn→∞Byn =
limn→∞Tyn = z, for some z ∈ X. Since S(X) is closed subset ofX , therefore limn→∞Sxn =
z ∈ S(X) and there is a point u in X such that Su = z.
Now, we claim that Au = z. If not, then by using (30) and (31), we have,

qM(Au,Byn, t) ≥ aM(Tyn, Su, t)+bM(Su,Byn, t)+cM(Au,Byn, t)+max{M(Au, Su, t),
M(Byn, Tyn, t)}

qN(Au,Byn, t) ≤ aN(Tyn, Su, t)+bN(Su,Byn, t)+cN(Au,Byn, t)+min{N(Au, Su, t),
N(Byn, T yn, t)}.

Letting n→∞

qM(Au, z, t) ≥ aM(z, z, t) + bM(z, z, t) + cM(Au, z, t) +max{M(Au, z, t),M(z, z, t)}

qN(Au, z, t) ≤ aN(z, z, t) + bN(z, z, t) + cN(Au, z, t) +min{N(Au, z, t), N(z, z, t)},

(q − c)M(Au, z, t) ≥ (a+ b)M(z, z, t) + 1 > (a+ b)M(z, z, t),

(q − c)N(Au, z, t) ≤ (a+ b)N(z, z, t) + 0 ≤ 0,

which gives

M(Au, z, t) > (a+b)
(q−c) > 1 and N(Au, z, t) ≤ 0, for all t > 0, this implies that Au = z.

Hence Au = Su i.e. u is a coincidence point of (A,S). Since, T (X) is a closed subset of
X, there exists a point w in X such that Tw = z. Set x = xn , y = w in (30) and (31),
we have

qM(Axn, Bw, t) ≥ aM(Tw, Sxn, t)+bM(Sxn, Bw, t)+cM(Axn, Bw, t)+max{M(Axn, Sxn, t),
M(Bw, Tw, t)},
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qN(Axn, Bw, t) ≤ aN(Tw, Sxn, t)+bN(Sxn, Bw, t)+cN(Axn, Bw, t)+min{N(Axn, Sxn, t),
N(Bw, Tw, t)}.

Letting n→∞

qM(z,Bw, t) ≥ aM(z, z, t)+bM(z,Bw, t)+cM(z,Bw, t)+max{M(z, z, t),M(Bw, z, t)}

qN(z,Bw, t) ≤ aN(z, z, t)+bN(z,Bw, t)+cN(z,Bw, t)+min{N(z, z, t), N(Bw, z, t)},

(q − b− c)M(z,Bw, t) ≥ aM(z, z, t) + 1 > aM(z, z, t),

(q − b− c)N(z,Bw, t) ≤ aN(z, z, t) + 0 ≤ 0,

which gives

M(z,Bw, t) > (a)
(b−q−c) > 1 and N(z,Bw, t) ≤ 0, for all t > 0, this implies that Bw = z.

Hence Bw = Tw i.e. w is a coincidence point of (B, T ). Since, the pair (A,S) is semi-
compatible , so limn→∞ASxn = Sz and limn→∞ASxn = Az. Also, the limit in an
intuitionistic fuzzy metric space is unique, therefore Az = Sz.
Next, we’ll show that z is a common fixed point of the pair (A,S).
By setting x = z, y = w in (30) and (31), we have

qM(Az,Bw, t) ≥ aM(Tw, Sz, t)+bM(Sz,Bw, t)+cM(Az,Bw, t)+max{M(Az, Sz, t),
M(Bw, Tw, t)},

qN(Az,Bw, t) ≤ aN(Tw, Sz, t) + bN(Sz,Bw, t) + cN(Az,Bw, t) +min{N(Az, Sz, t),
N(Bw, Tw, t)}.

Letting n→∞

qM(Az, z, t) ≥ aM(z,Az, t)+bM(Az, z, t)+cM(Az, z, t)+max{M(Az,Az, t),M(z, z, t)}

qN(Az, z, t) ≤ aN(z,Az, t)+bN(Az, z, t)+cN(Az, z, t)+min{N(Az,Az, t), N(z, z, t)},

(q − a− b− c)M(Az, z, t) ≥ 1,
(q − a− b− c)N(Az, z, t) ≤ 0,

which gives
M(Au, z, t) > 1

(q−a−b−c) > 1 and N(Au, z, t) ≤ 0, for all t > 0, this implies that Az = z.

Hence Az = z = Sz i.e. z is a fixed point of (A,S). Since w is a coincidence point of B
and T and the pair (B, T ) is occasionally weakly compatible, so we have BTw = TBw
implies Bz = Tz = z. Therefore in all Az = Sz = Bz = Tz = z i.e. z is a common fixed
point of A,B, S and T. The uniqueness of a common fixed point is an easy consequence
of the inequalities (30) and (31). �

4. Applications

Theorem 3. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy metric space. Let A,B, S and
T be mappings from X into itself such that∫ M(Ax,By,(t)

0

φ(t)dt ≥
∫ ψ[m(x,y,t)]

0

φ(t)dt, (32)
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0

φ(t)dt ≤
∫ η[n(x,y,t)]

0

φ(t)dt, (33)

for all x, y ∈ X, where ψ, η ∈ Ψ,

m(x, y, t) = min{M(Sx, Ty, t),M(Sx,Ax, t),M(Sx,By, t),M(Ty,Ax, t)},

n(x, y, t) = max{N(Sx, Ty, t), N(Sx,Ax, t), N(Sx,By, t), N(Ty,Ax, t)}, and φ : R+ →
R+ is a Lebesgue integrable and summable function such that for each ε > 0,

∫ ε
0
φ(t)dt > 0.

Also, suppose the pair (A,S) and (B, T ) share the common property (E.A), and S(X) and
T (X) are closed subsets of X, then the pair (A,S) as well as (B, T ) have a coincidence
point. Further, A,B, S and T have a unique common fixed point provided the pair (A,S)
is semi-compatible and (B, T ) is occasionally weakly compatible.

Proof. Since the pair (A,S) and (B, T ) satisfies the property (E.A). Then there exists two
sequences {xn} and {yn} in X such that limn→∞Axn = limn→∞Sxn = limn→∞Byn =
limn→∞Tyn = z, for some z ∈ X. Since S(X) is closed subset ofX , therefore limn→∞Sxn =
z ∈ S(X) and there is a point u in X such that Su = z. Now, we claim that Au = z. If
not, then by using (32) and (33), we have,∫M(Au,Byn,(t)

0
φ(t)dt ≥

∫ ψ[m(u,yn,t)]

0
φ(t)dt,∫ N(Au,Byn,(t)

0
φ(t)dt ≤

∫ η[n(u,yn,t)]
0

φ(t)dt,
where
ψ[m(x, y, t)] = ψ[min{M(Su, Tyn, t),M(Su,Au, t),M(Su,Byn, t),M(Tyn, Au, t)}],

η[n(u, yn, t)] = η[max{N(Su, Tyn, t), N(Su,Au, t), N(Su,Byn, t), N(Tyn, Au, t)}].

So,
∫M(Au,z,t)

0
φ(t)dt ≥

∫ ψ[m(u,z,t)]

0
φ(t)dt,∫ N(Au,z,(t)

0
φ(t)dt ≤

∫ η[n(u,z,t)]
0

φ(t)dt,

where
ψ[m(u, z, t)] = ψ[min{M(z, z, t),M(z,Au, t),M(z, z, t),M(z,Au, t)}]
= ψ[M(z,Au, t)] > M(z,Au, t),

η[n(u, z, t)] = η[max{N(z, z, t), N(z,Au, t), N(z, z, t), N(z,Au, t)}]
= η[N(z,Au, t)] < N(z,Au, t).

i.e.,
∫M(Au,z,t)

0
φ(t)dt ≥

∫M(Au,z,t)

0
φ(t)dt,∫ N(Au,z,t)

0
φ(t)dt ≤

∫ N(Au,u,t)

0
φ(t)dt, which are contradictions, these implies Au = z.

Hence Au = Su i.e. u is a coincidence point of (A,S). Since, T (X) is a closed subset of
X, then limn→∞ Tyn = z ∈ T (X) and there exists a point w in X such that Tw = z. Set
x = xn , y = w in (32) and (33), we have∫M(Axn,Bw,t)

0
φ(t)dt ≥

∫ ψ[m(xn,w,t)]

0
φ(t)dt,∫ N(Axn,Bw,t)

0
φ(t)dt ≤

∫ η[n(xn,w,t)]

0
φ(t)dt,∫M(z,Bw,(t)

0
φ(t)dt ≥

∫ ψ[m(z,w,t)]

0
φ(t)dt,
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0
φ(t)dt ≤

∫ η[n(z,w,t)]
0

φ(t)dt,

where

ψ[m(z, w, t)] = ψ[min{M(z, z, t),M(z, z, t),M(z,Bw, t),M(z, z, t)}]
= ψ[M(z,Bw, t)] > M(z,Bw, t),

η[n(z, w, t)] = η[max{N(z, z, t), N(z, z, t), N(z,Bw, t), N(z, z, t)}]
= η[N(z,Bw, t)] < N(z,Bw, t).

i.e.
∫M(z,Bw,t)

0
φ(t)dt ≥

∫M(z,Bw,t)

0
φ(t)dt,∫ N(z,Bw,t)

0
φ(t)dt ≤

∫ N(z,Bw,t)

0
φ(t)dt.

This gives, Bw = z. Hence Tw = Bw = z or w is a coincidence point of the pair (B, T ).
Since, the pair (A,S) is semicompatible , so limn→∞ASxn = Sz and limn→∞ASxn = Az.
Also, the limit in the intuitionistic fuzzy metric space is unique, therefore Az = Sz.
Next, we’ll show that z is a common fixed point of the pair (A,S).
By setting x = z, y = w in (32) and (33), we have∫M(Az,Bw,(t)

0
φ(t)dt ≥

∫ ψ[m(z,w,t)]

0
φ(t)dt,∫ N(Az,Bw,(t)

0
φ(t)dt ≤

∫ η[n(z,w,t)]
0

φ(t)dt,

where

ψ[m(z, w, t)] = ψ[min{M(Az, z, t),M(Az,Az, t),M(Az, z, t),M(z,Az, t)}]

= ψ[M(Az, z, t)] > M(Az, z, t),

η[n(z, w, t)] = η[max{N(Az, z, t), N(Az,Az, t), N(Az, z, t), N(z,Az, t)}]

= η[N(Az, z, t)] < N(Az, z, t).

i.e.
∫M(Az,z,t)

0
φ(t)dt ≥

∫M(Az,z,t)

0
φ(t)dt,∫ N(Az,z,t)

0
φ(t)dt ≤

∫ N(Az,z,t)

0
φ(t)dt.

This implies that Az = z. Hence Az = z = Sz i.e. z is a fixed point of (A,S). Since w
is a coincidence point of B and T and the pair (B, T ) is occasionally weakly compatible,
so we have BTw = TBw implies Bz = Tz = z. Therefore in all Az = Sz = Bz = Tz = z
i.e. z is a common fixed point of A,B, S and T. The uniqueness of a common fixed point
is an easy consequence of the inequalities (32) and (33).

�

Theorem 4. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy metric space. Let A,B, S and
T be mappings from X into itself such that

q

∫ M(Ax,By,t)

0

φ(t)dt ≥ a
∫ M(Ty,Sx,t)

0

φ(t)dt+ b

∫ M(Sx,By,t)

0

φ(t)dt (34)
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+c
∫M(Ax,By,t)

0
φ(t)dt+

∫max{M(Ax,Sx,t),M(By,Ty,t)}
0

φ(t)dt,

q

∫ N(Ax,By,t)

0

φ(t)dt ≤ a
∫ N(Ty,Sx,t)

0

φ(t)dt+ b

∫ N(Sx,By,t)

0

φ(t)dt (35)

+c
∫ N(Ax,By,t)

0
φ(t)dt+

∫min{N(Ax,Sx,t),N(By,Ty,t)}
0

φ(t)dt,

for all x, y ∈ X, where a, b, c ≥ 0, q > 0, q < a + b + c and ψ : R+ → R+ is a
Lebesgue integrable and summable function such that for each ε > 0,

∫ ε
0
φ(t)dt > 0. Also,

suppose the pair (A,S) and (B, T ) share the common property (E.A.), and S(X) and
T (X) are closed subsets of X, then the pair (A,S) as well as (B, T ) have a coincidence
point. Further, A,B, S and T have a unique common fixed point provided the pair (A,S)
is semi-compatible and (B, T ) is occasionally weakly compatible.

Proof. The proof follows easily on the lines of Theorem 3.
�
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