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OPIAL TYPE INEQUALITIES FOR CONFORMABLE FRACTIONAL

INTEGRALS VIA CONVEXITY

MEHMET ZEKI SARIKAYA AND CANDAN CAN BILISIK

Abstract. The main target addressed in this article are presenting Opial type in-

equalities for Katugampola conformable fractional integral. In accordance with this

purpose we try to use more general type of function in order to make a generalization.
Thus our results cover the previous published studies for Opial type inequalities.

1. Introduction & Preliminaries

In the year 1960, Opial established the following interesting integral inequality[13]:

Theorem 1. Let x(t) ∈ C(1) [0, h] be such that x(0) = x(h) = 0, and x(t) > 0 in (0, h) .
Then, the following inequality holds

h∫
0

|x(t)x′(t)| dt ≤ h

4

h∫
0

(x′(t))
2
dt (1)

The constant h/4 is best possible

Opial’s inequality and its generalizations, extensions and discretizations, play a fun-
damental role in establishing the existence and uniqueness of initial and boundary value
problems for ordinary and partial differential equations as well as difference equations.
Over the last twenty years a large number of papers have been appeared in the literature
which deals with the simple proofs, various generalizations and discrete analogues of Opial
inequality and its generalizations, see [4]-[6], [14]-[22].

The purpose of this paper is to establish some generalizations of Opial type inequalities
for conformable integral. The structure of this paper is as follows:. Firstly, we give the
definitions of the conformable derivatives and conformable integral and introduce several
useful notations conformable integral used our main results. Later, the main results are
presented.

In light of recent developments in mathematics, fractional calculus is becoming ex-
tremely popular in a lot of application areas such as control theory, computational analy-
sis and engineering [11], see also [12]. Together with these developments a number of new
definitions have been introduced in academia to provide the best method for fractional
calculus. For instance in more recent times a new local, limit-based definition of a con-
formable derivative has been introduced in [1], [8], [10], with several follow-up papers [2],
[3], [7]-[9]. In this study, we use the Katugampola derivative formulation of conformable
derivative of order for α ∈ (0, 1] and t ∈ [0,∞) given by

Dα (f) (t) = lim
ε→0

f
(
teεt

−α
)
− f (t)

ε
, Dα (f) (0) = lim

t→0
Dα (f) (t) , (2)
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Key words and phrases. Opial inequality, Hölder’s inequality, confromable fractional integrals.

163



164 MEHMET ZEKI SARIKAYA AND CANDAN CAN BILISIK

provided the limits exist (for detail see, [8]). If f is fully differentiable at t, then

Dα (f) (t) = t1−α
df

dt
(t) . (3)

A function f is α-differentiable at a point t ≥ 0 if the limit in (2) exists and is finite. This
definition yields the following results;

Theorem 2. Let α ∈ (0, 1] and f, g be α-differentiable at a point t > 0. Then
i. Dα (af + bg) = aDα (f) + bDα (g) , for all a, b ∈ R,
ii. Dα (λ) = 0, for all constant functions f (t) = λ,
iii. Dα (fg) = fDα (g) + gDα (f) ,

iv.Dα

(
f

g

)
=
fDα (g)− gDα (f)

g2

v. Dα (tn) = ntn−α for all n ∈ R
vi. Dα (f ◦ g) (t) = f ′ (g (t))Dα (g) (t) for f is differentiable at g(t).

Definition 1 (Conformable fractional integral). Let α ∈ (0, 1] and 0 ≤ a < b. A function
f : [a, b]→ R is α-fractional integrable on [a, b] if the integral∫ b

a

f (x) dαx :=

∫ b

a

f (x)xα−1dx

exists and is finite. All α-fractional integrable on [a, b] is indicated by L1
α ([a, b]) .

Remark 1.

Iaα (f) (t) = Ia1
(
tα−1f

)
=

∫ t

a

f (x)

x1−α
dx,

where the integral is the usual Riemann improper integral, and α ∈ (0, 1].

We will also use the following important results, which can be derived from the results
above.

Lemma 1. Let the conformable differential operator Dα be given as in (2), where α ∈
(0, 1] and t ≥ 0, and assume the functions f and g are α-differentiable as needed. Then

i. Dα (ln t) = t−α for t > 0

ii. Dα

[∫ t
a
f (t, s) dαs

]
= f(t, t) +

∫ t
a
Dα [f (t, s)] dαs

iii.
∫ b
a
f (x)Dα (g) (x) dαx = fg|ba −

∫ b
a
g (x)Dα (f) (x) dαx.

Theorem 3 (Jensen Inequality). [2] Let α ∈ (0, 1], a, b, c, d ∈ [0,∞). If Let w : R → R
and g : R → (c, d) are nonnegative, continuous functions with

∫ b
a
p(t)dαt > 0, and

F : (c, d)→ R is continuous and convex function. Then, we have

F

(∫ b
a
w(t)g(t)dαt∫ b
a
w(t)dαt

)
≤
∫ b
a
w(t)F (g(t)) dαt∫ b
a
w(t)dαt

.

Theorem 4 (Taylor Formula). [2] Let α ∈ (0, 1] and n ∈ N. Suppose f is n + 1 times
α− fractional differentiable on [0,∞) , and s, t ∈ [0,∞) . Then we have

f(t) =

n∑
k=0

1

k!

(
tα − sα

α

)k
Dk
αf(s) +

1

n!

t∫
s

(
tα − τα

α

)n
Dn+1
α f(τ)dατ.

Using the Taylor’s Theorem, we define tthe remainder function by

R−1,f (., s) := f(s),
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and for n > −1,

Rn,f (t, s) : = f(s)−
n∑
k=0

1

k!

(
tα − sα

α

)k
Dk
αf(s)

=
1

n!

t∫
s

(
tα − τα

α

)n
Dn+1
α f(τ)dατ.

Opial inequality can be represented for conformable fractional integral forms as follows
[20]:

Theorem 5. Let α ∈ (0, 1], u : [a, b]→ R be an α- fractional differentiable function, and
u(a) = 0. Then, we have the following inequality

∫ b

a

|u(x)| |Dαu(x)| dαx ≤
bα − aα

2α

∫ b

a

(|Dαu(x|)2dαx. (4)

Now, we present the main results:

2. Opial type inequalities for conformable fractional integral

Theorem 6. Let α ∈ (0, 1], p be a continuous and positive such that Dα (p(t)) > 0 and
g, F be convex and increasing functions on [0,∞). If u : [a, b] → R be an α- fractional
differentiable function, and u(a) = 0. Then, we have the following inequality

∫ b

a

Dαp(t)g

(
|Dαu(t)|
Dαp(t)

)
F ′
(
p(t)g

(
|u(t)|
p(t)

))
dαt (5)

≤ F

(∫ b

a

Dαp(t)g

(
|Dαu(t)|
Dαp(t)

)
dαt

)
.

If F is concave, then inequality (5) is reversed.

Proof. We consider y(t) =
∫ t
a
|Dαu(s)| dαs such that Dαy(t) = |Dαu(t)| and y(t) ≥ |u(t)| .

Since g is increasing, by using the Jensen inequality for conformable fractional integral,
we get

g

(
|u(t)|
p(t)

)
≤ g

(
y(t)

p(t)

)
= g

∫ ta Dαp(s)
|Dαu(s)|
Dαp(s) dαs∫ t

a
Dαp(s)dαs


≤ 1

p(t)

∫ t

a

Dαp(s)g

(
|Dαu(s)|
Dαp(s)

)
dαs

=
1

p(t)

∫ t

a

Dαp(s)g

(
Dαy(s)

Dαp(s)

)
dαs. (6)
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Thus, since F is a convex function, by using inequality (6) and with the help of the (vi)
property in Theorem 2, we have∫ b

a

Dαp(t)g

(
|Dαu(t)|
Dαp(t)

)
F ′
(
p(t)g

(
|u(t)|
p(t)

))
dαt

≤
∫ b

a

Dαp(t)g

(
|Dαu(t)|
Dαp(t)

)
F ′
(∫ t

a

Dαp(s)g

(
Dαy(s)

Dαp(s)

)
dαs

)
dαt

≤
∫ b

a

DαF

(∫ t

a

Dαp(s)g

(
Dαy(s)

Dαp(s)

)
dαs

)
dαt

= F

(∫ b

a

Dαp(s)g

(
Dαy(s)

Dαp(s)

)
dαs

)

= F

(∫ b

a

Dαp(t)g

(
|Dαu(t)|
Dαp(t)

)
dαt

)
which completes the proof. �

Corollary 1. Under the hypotheses of Theorem 6, if we choose g(s) = s, we have∫ b

a

|Dαu(t)|F ′ (|u(t)|) dαt ≤ F

(∫ b

a

|Dαu(t)| dαt

)
. (7)

Remark 2. If we take F (s) = s2

2 in Corollary 1, the inequality (7) reduces to the in-
equality ∫ b

a

|u(t)| |Dαu(t)| dαt ≤
1

2

(∫ b

a

|Dαu(t)| dαt

)2

.

By using the Cauchy-Schwarz inequality for conformable integral, it follows that∫ b

a

|u(t)| |Dαu(t)| dαt ≤
1

2

(∫ b

a

|Dαu(t)| dαt

)2

≤ bα − aα

2α

∫ b

a

(|Dαu(t)|)2dαx

which is proved by Sarikaya and Bilisik in [20].

Corollary 2. Under the hypotheses of Theorem 6, if we choose g(s) = s and F (s) = sn+1

n+1

for n ≥ 0, we have∫ b

a

|Dαu(t)|F ′ (|u(t)|) dαt ≤
(bα − aα)

n

αn (n+ 1)

∫ b

a

|Dαu(t)|n+1
dαt.

Proof. By applying Hölder’s inequality with indices n+ 1, n+1
n such that 1

n+1 + n
n+1 = 1,

we have∫ b

a

|Dαu(t)|F ′ (|u(t)|) dαt ≤
1

n+ 1

(∫ b

a

|Dαu(t)| dαt

)n+1

≤ 1

n+ 1

(∫ b

a

dαt

)n(∫ b

a

|Dαu(t)|n+1
dαt

)
which completes the proof. �
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Theorem 7. Let α ∈ (0, 1], p be a continuous and positive with p(0) = 0 and φ is convex
and increasing function on [0,∞) such that φ(0) = 0. Also, suppose that g, F be convex
and increasing functions on [0,∞) and define

z(t) =

∫ t

0

Dαp(s)g

(
|Dαu(s)|
Dαp(s)

)
dαs

such that

Dα (F ◦ z) (t)φ

(
1

Dαz(t)

)
≤ F (z(b))

z(b)
φ′
(

t

z(b)

)
. (8)

If u : [a, b] → R be an α- fractional differentiable function, and u(0) = 0. Then, we have
the following inequality∫ b

0

ψ

(
Dαp(t)g

(
|Dαu(t)|
Dαp(t)

))
F ′
(
p(t)g

(
|u(t)|
p(t)

))
dαt

≤ Φ

(∫ b

0

Dαp(t)g

(
|Dαu(t)|
Dαp(t)

)
dαt

)

where ψ(r) = rh
(
φ
(
1
r

))
and Φ(r) = F (r)h

(
φ
(
b
r

))
where h is a concav and increasing

function on [0,∞).

Proof. Consider y(t) =
∫ t
a
|Dαu(s)| dαs. Then Dαy(t) = |Dαu(t)| and y(t) ≥ |u(t)| . Since

g is increasing, by using the Jensen inequality for conformable fractional integral, we get

p(t)g

(
|u(t)|
p(t)

)
≤ p(t)g

(
y(t)

p(t)

)
= p(t)g

∫ t0 Dαp(s)
|Dαu(s)|
Dαp(s)

dαs∫ t
0
Dαp(s)dαs


≤

∫ t

0

Dαp(s)g

(
|Dαu(s)|
Dαp(s)

)
dαs = z(t). (9)

Then, since F is a convex function, by using inequality (9) and with the help of the (vi)
property in Theorem 2, we have∫ b

0

ψ

(
Dαp(t)g

(
|Dαu(t)|
Dαp(t)

))
F ′
(
p(t)g

(
|u(t)|
p(t)

))
dαt

≤
∫ b

0

ψ (Dαz(t))F
′ (z(t)) dαt

=

∫ b

0

Dαz(t)h

(
φ

(
1

Dαz(t)

))
F ′ (z(t)) dαt

=

∫ b
0
Dα (F ◦ z) (t)h

(
φ
(

1
Dαz(t)

))
dαt∫ b

0
Dα (F ◦ z) (t)dαt

∫ b

0

Dα (F ◦ z) (t)dαt

≤ h

∫ b0 Dα (F ◦ z) (t)φ
(

1
Dαz(t)

)
dαt∫ b

0
Dα (F ◦ z) (t)dαt

F (z(b))

≤ h

∫ b0 F (z(b))
z(b) φ′

(
t

z(b)

)
dαt

F (z(b))

F (z(b)) .
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Since φ is convex, by applying (5) and by using increasing h function, we obtain that∫ b

0

ψ

(
Dαp(t)g

(
|Dαu(t)|
Dαp(t)

))
F ′
(
p(t)g

(
|u(t)|
p(t)

))
dαt

≤ h

∫ b0 F (z(b))
z(b) φ′

(
t

z(b)

)
dαt

F (z(b))

F (z(b))

≤ F (z(b))h

(
φ

(
b

z(b)

))
= Φ(z(b))

= Φ

(∫ b

0

Dαp(t)g

(
|Dαu(t)|
Dαp(t)

)
dαt

)
.

This completes the proof. �

Theorem 8. Let α ∈ (0, 1], p be a continuous and positive such that Dα (p(t)) > 0 and
g, F be convex and increasing functions on [0,∞). If u : [a, b] → R be an n-times α-
fractional differentiable function, and u(a) = Dαu(a) = ... = Dn−1

α u(a) = 0. Then, we
have the inequality∫ b

a

Dαp(t)g

(
1

(n− 1)!

(
tα − aα

α

)n−1 |Dn
αu(t)|

Dαp(t)

)
F ′
(
p(t)g

(
|u(t)|
p(t)

))
dαt (10)

≤ 1

b− a

∫ b

a

F

[
(b− a)Dαp(t)g

(
1

(n− 1)!

(
tα − aα

α

)n−1 |Dn
αu(t)|

Dαp(t)

)]
dαt.

Proof. Assume that

y(t) =

∫ t

a

∫ tn−1

a

...

∫ t1

a

|Dn
αu(x)| dαt1...dαtn−1dαx.

In this case, Dαy(t), ..., Dn−1
α y(t) ≥ 0 and Dn

αy(t) = |Dn
αu(t)| ≥ 0, y(t) ≥ |u(t)| . From

the Taylor’s formula

y(t) ≤ 1

(n− 1)!

t∫
a

(
tα − sα

α

)n−1
Dn
αy(s)dαs

≤ 1

(n− 1)!

(
tα − aα

α

)n−1 t∫
a

Dn
αy(s)dαs.

Since g is increasing, by using the Jensen inequality for conformable fractional integral,
we get

g

(
|u(t)|
p(t)

)
≤ g

(
y(t)

p(t)

)
= g


1

(n−1)!
(
tα−aα
α

)n−1 t∫
a

Dαp(s)
Dnαy(s)
Dαp(s)

dαs∫ t
a
Dαp(s)dαs


≤ 1

p(t)

∫ t

a

Dαp(s)g

(
1

(n− 1)!

(
tα − aα

α

)n−1
Dn
αy(s)

Dαp(s)

)
dαs. (11)
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Thus, since F is a convex function, by using inequality (11) and with the help of the (vi)
property in Theorem 2, we have∫ b

a

Dαp(t)g

(
1

(n− 1)!

(
tα − aα

α

)n−1 |Dn
αu(t)|

Dαp(s)

)
F ′
(
p(t)g

(
|u(t)|
p(t)

))
dαt

≤
∫ b

a

Dαp(t)g

(
1

(n− 1)!

(
tα − aα

α

)n−1 |Dn
αu(t)|

Dαp(s)

)

×F ′
(∫ t

a

Dαp(s)g

(
1

(n− 1)!

(
tα − aα

α

)n−1
Dn
αy(s)

Dαp(s)

)
dαs

)
dαt.

By applying (5), and by using Jensen’s inequality, we obtain that∫ b

a

Dαp(t)g

(
1

(n− 1)!

(
tα − aα

α

)n−1 |Dn
αu(t)|

Dαp(s)

)
F ′
(
p(t)g

(
|u(t)|
p(t)

))
dαt

≤
∫ b

a

Dα

[
F ◦

(∫ t

a

Dαp(s)g

(
1

(n− 1)!

(
tα − aα

α

)n−1
Dn
αy(s)

Dαp(s)

)
dαs

)]
dαt

= F ◦

(∫ b

a

Dαp(t)g

(
1

(n− 1)!

(
tα − aα

α

)n−1
Dn
αy(t)

Dαp(t)

)
dαt

)

= F ◦

(
1

b− a

∫ b

a

(b− a)Dαp(t)g

(
1

(n− 1)!

(
tα − aα

α

)n−1
Dn
αy(t)

Dαp(t)

)
dαt

)

≤ 1

b− a

∫ b

a

F

[
(b− a)Dαp(t)g

(
1

(n− 1)!

(
tα − aα

α

)n−1
Dn
αy(t)

Dαp(t)

)]
dαt

This completes the proof of the inequality (10). �

Theorem 9. Let α ∈ (0, 1], p be a continuous and positive such that Dα (p(t)) > 0 and
g, F be convex and increasing functions on [0,∞). If u : [a, b] → R be an α- fractional
differentiable function, and u(a) = 0. Then, we have the following inequality∫ b

a

Dαp(t)g

(
|Dαu(t)|
Dαp(t)

)
F ′
(
p(t)g

(
|u(t)|
p(t)

))
dαt

≤ 1

b− a

∫ b

a

F

(
(b− a)Dαp(t)g

(
|Dαu(t)|
Dαp(t)

))
dαt.

Proof. The proof of the Theorem follows immediately from the inequality (5) by applying
Jensen’s inequality. �
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