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A FINITE DIFFERENCE METHOD FOR SOLUTION OF NONLINEAR

TWO POINT BOUNDARY VALUE PROBLEM WITH A NEUMANN

BOUNDARY CONDITIONS

PRAMOD KUMAR PANDEY, FAISAL AL-SHOWAIKH

Abstract. A finite difference scheme for the solution of two point boundary value

problem in ordinary differential equations subject to the Neumann boundary condi-
tions presented in this article. The propose scheme is tested on linear and non-linear

problems. The solution of the discretized problems was solved by iterative methods,

i.e. Gauss-Seidel and Newton-Raphson method. The computational results demon-
strate reliability and efficiency of the developed finite difference method. Moreover,

numerical results confirm that scheme has second order accuracy.

1. Introduction

Two point boundary value problems occur in all branches of engineering and science.
In these problems the boundary conditions are specified at two points. In general the
governing differential equation of such problems is nonlinear and often conveniently solved
with finite difference methods using a uniform mesh spacing h. We consider the general
second order nonlinear differential equation

y′′ = f(x, y, y′) (1)

subject to the boundary conditions

y′(a) = α, y′(b) = β (2)

Here α and β are finite constants, −∞ < a ≤ x ≤ b <∞. We assume that, for a ≤ x ≤ b
and −∞ < y, y′ <∞.

In general with different boundary conditions other than (2) if
(i) f(x, y, y′) is continuous
(ii) ∂f/∂y and ∂f/∂y′ exist and are continuous, and
(iii) ∂f/∂y > 0 and |∂f/∂y′| ≤W , for some positive constant W
then the problem (1) posses a unique solution [1]. In this article it is assumed that the
unique solution of equation (1) exists and the specific restrictions on f to ensure the
existence and uniqueness will not be considered [2].

An O(h4) difference scheme for the general problem (1) with mixed boundary condi-
tions proposed in [3]. However, in practice it is often required to consider well-suited
schemes for different types of nonlinear problems. For example, the simple O(h2), O(h4)
or higher order methods reported there in [4–7] and arbitrary accurate order difference
schemes [8] for two point boundary value problem with Dirichlet boundary conditions.
Recently a difference schemes of high order accuracy for the problem (1) with mixed
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boundary conditions reported in [9].

The objective of this article is to develop an economical O(h2) difference scheme that is
well suited for particular types of nonlinear problems. The computational complexity of
the scheme increases with the desired level of accuracy, so for one evaluation of f(x, y, y′)
is required at each mesh point in the O(h2) scheme.

In making an evaluation of the performance of method, there is a balance between
the level of accuracy achieved and computational efficiency of the method. An impor-
tant practical consideration in the solution of nonlinear problems is the choice of an
efficient method, but often the particular equation or test problem to be solved will
restrict the choices among the methods. The Newton-Raphson iterative method, it con-
verges quadratically applied to test problems to get its solution. In section 2 we describe
the finite difference method. In section 3 we discuss the derivation of the method and
also obtain the local truncation error. In section 4 consider test problems to illustrate the
method and its convergence. A summary of the result and conclusion is given in section 5.

2. The finite difference method

Let N be a positive integer, mesh spacing h = (b−a)/N and xi = a+ih, i = 0, 1, · · · , N .
The values of exact solution y(x) at mesh point xi are denoted by yi, similarly y′i =
y′(xi), y

′′
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′
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Let

ˆ̂y 1
2

= ŷ 1
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and finally set
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Following the idea in [10], at each xi+ 1
2

we propose the following discretization of the

differential equation (1),
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The non-linear (N−2)×(N−2) system obtained from (10) in unknown y 3
2
, . . . yN− 3

2
, can

be solved using the Newton-Raphson method. Let ui+ 1
2

be approximate value of yi+ 1
2
,

i = 1, . . . , N − 2. Using these approximate values, by second order interpolation, we have
an approximate value ui−1 of yi−1, i = 1, . . . , N + 1.
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Note that in (11) u 1
2

and uN− 1
2

are approximate values of ŷ 1
2

and ŷN− 1
2

respectively.

3. Derivation of the finite difference scheme

In this section we discuss the derivation of finite difference method and the local trun-
cation error associated with it. We need O(h4)-approximation for y 1

2
.
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of terms in (12), comparing the coefficients of hp, p =

0, 1, 2 both sides and solving the system of equations, we have
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Thus (12) can be rewritten as
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Thus we can write (15) as
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With the help (14) and (17) we find that
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Similarly we can find O(h4)-approximation for yN− 1
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Further let
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By Taylor expansion, from (22) we fined that if
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By Taylor expansion, using (20) and (23), from (24) we find that if

(A0, A1, A2, B0) = (1,−2, 1, 1)

then

−2y3/2 + y5/2 = −ˆ̂y1/2 + h2 · f3/2 + θ1(h) (25)

Similarly we can discretize the differential equation (1) at each xi+ 1
2

and obtain
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where θi(h) = O(h4), i = 1, 2, . . . , N − 2.

Thus we define the discretization (10) for differential equation (1) and with the help
of (25), (26) and (27) estimate local truncation error associated with (10). The emphasis
here is on the actual formulae required for computation, the lengthy details concerning
complete expansions for the local truncation errors θi(h) and formal bounds on errors are
left out of this section in the interest of shortness.
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4. Illustrations

In this section we have considered linear and nonlinear model problems to illustrate
the method (10) presented in this article. We have solved each of the model problems
for N = 8, 16, . . . , 256. In computation of maximum absolute error MAE between the
analytical solution y(xi) and computed numerical solution yi of the problem, we have
used the following formula,

MAE = max
1≤i≤N

|y(xi)− yi|

In the tables we have presented MAE using computer notation, i.e. .164797e − 2 for
.164797× 10−2 and computed order of the method. We have respectively applied Gauss-
Seidel and Newton-Raphson method to solve the system of linear and nonlinear equations
those arise from the method (10). The iteration is continued until either the maximum
difference between two successive iterates is less than 10−8 or the number of iterations
reached 105. All computations were performed on a Windows 2007 Ultimate operating
system in the GNU FORTRAN environment version 99 compiler (2.95 of gcc) on Intel
Core i3-2330M, 2.20 Ghz PC.

MAU = max
i
|y(xi)− yi| , i = 0, 1, . . . , N

Problem 1. Consider the model linear boundary value problem

y′′ = −2(1− 2x2)y, 1 < x < 2

subject to boundary conditions

y′(0) = 0 and y′(1) =
−2

exp(1)

The analytical solution is y(x) = exp (−x2). The numerical results are given in table 1.
Problem 2. Consider the nonlinear diffusion equation in biology and reported in [11],

y′′ =
y

1 + y
+ f(x), 0 < x < 1

subject to boundary conditions

y′(0) = 0 and y′(1) =
exp(1)− 1

exp(1)

and f(x) calculated so that analytical solution is y(x) = exp (−x) +x− 1. The numerical
results are given in table 2.
Problem 3. Consider the model nonlinear boundary value problem

y′′ = y2y′ + f(x), 0 < x < 1

subject to boundary conditions

y′(0) = 1 and y′(1) =
exp(1) + exp(−1)

2

and f(x) calculated so that analytical solution is y(x) = sinh(x). The numerical results
are given in table 3.
Problem 4. Consider the model nonlinear boundary value problem

y′′ = y′ − sin(y)− y2 + f(x), 0 < x < 1

subject to boundary conditions

y′(0) = 1 and y′(1) =
1

4
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and f(x) calculated so that analytical solution is y(x) = −1
1+x . The numerical results are

given in table 4.

Table 1. Maximum absolute error and order (Problem 1).

N

8 16 32 64 128 256

MAE .164797e-2.146400e-3.458975e-4.133228e-4.371701e-5.144364e-5

Order – 3.4972 1.6734 1.7845 1.8416 1.3644

Table 2. Maximum absolute error and order (Problem 2).

N

8 16 32 64 128 256

MAE .224702e-1.597457e-2.154729e-2.394165e-3.994576e-4.244385e-4

Order – 1.9111 1.9490 1.9728 1.9866 2.0249

Table 3. Maximum absolute error and order (Problem 3).

N

8 16 32 64 128 256

MAE .416058e-2.577071e-3.851308e-4.163014e-4.550293e-5.155248e-5

Order – 2.8499 2.7609 2.3846 1.5667 1.8256

Table 4. Maximum absolute error and order (Problem 4).

N

8 16 32 64 128 256

MAE .193296e-1.554621e-2.146570e-2.375294e-3.948464e-4.238187e-4

Order – 1.8012 1.9199 1.9654 1.9843 1.9934

We have considered second order boundary value problems in ordinary differential
equation to test the computational efficiency of the proposed finite difference method
(10). We observed in numerical experiment for different values of N presented in tables,
as N increases, i.e. h decreases, then maximum absolute error in computed solution
decrease. It is evident from the tabulated results that method (10) is convergent and
order of accuracy is at least quadratic in problems 2 and 4.
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5. Conclusion

We introduced a second-order finite-difference method for a general two point non-
linear second-order boundary value problems with Neumann boundary conditions. The
proposed method (10) is economical as it requires only one function evaluation at each
nodal point. The numerical results verify the second-order convergence of the method.
The proposed method is useful for complicated non-linear equations and improvement in
proposed finite difference method is possible. Work in this direction is in progress.
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