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EXPONENTIALLY GENERAL CONVEX FUNCTIONS

MUHAMMAD ASLAM NOOR AND KHALIDA INAYAT NOOR

Abstract. In this paper, we define and introduce some new classes of the exponen-
tially convex functions involving an arbitrary function, which is called the exponen-

tially general convex function. We investigate several properties of the exponentially

general convex functions and discuss their relations with convex functions. Optimality
conditions are characterized by a class of variational inequalities, which is called the

exponentially general variational inequality. Several new results characterizing the

exponentially general convex functions are obtained. Results obtained in this paper
can be viewed as significant improvement of previously known results.

1. Introduction

Convexity theory describes a broad spectrum of very interesting developments involving
a link among various fields of mathematics, physics, economics and engineering sciences.
The development of convexity theory can be viewed as the simultaneous pursuit of two
different lines of research. It have been shown that the minimum of the differentiable
convex functions on the convex set can be characterized by the variational inequalities.
Variational inequalities, the origin of which can be raced back to Bernoulli’s brothers, Eu-
ler and Lagrange, provide us a power tool to discuss the behaviour of solutions (regarding
its existence, uniqueness and regularity) to important classes of problems. Variational
inequality theory also enables us to develop highly efficient and powerful new numerical
methods to solve nonlinear problems, see [4, 12, 13, 14, 16, 17, 18, 19, 23, 27]. In recent
years, various extensions and generalizations of convex functions and convex sets have
been considered and studied using innovative ideas and techniques. It is known that
more accurate and inequalities can be obtained using the logarithmically convex func-
tions than the convex functions. Closely related to the log-convex functions, we have the
concept of exponentially convex(concave) functions, which have important applications
in information theory, big data analysis, machine learning and statistic. Exponentially
convex functions have appeared as significant generalization of the convex functions, the
origin of which can be traced back to Bernstein[6]. Avriel[3, 4] introduced the concept
of r-convex functions. Antczak [2] considered the (r, p) convex functions and discussed
their applications in mathematical programming and optimization theory. Awan et al
[3] also introduced a new class of exponentially convex functions. It worth mentioning
that Noor and Noor [17, 18, 19, 20, 21] shown that the r-convex functions are equivalent
to the exponentially convex functions. This alternative equivalent form has important
applications in various fields of pure and applied sciences and has inspired much interest.
It is worth mentioning that all these classes of exponentially convex functions have im-
portant applications in information sciences, data mining and statistics, see, for example,
[1, 2, 3, 4, 5, 6, 7, 9, 17, 18, 19, 20, 21, 23, 26, 30] and the references therein.
It is known that a set may not be convex set. However, a set can be made convex set
with respect to an arbitrary function. Motivated by this fact, Noor [24] introduced the
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concept of general convex sets involving an arbitrary function. It has been shown that
the minimum of a differentiable general convex function on the general convex set can
be characterized by the general variational inequalities, which were introduced by Noor
[11] in 1988. The technique of the general variational inequalities can be used to consider
the nonsymmetric, odd-order obstacle boundary values problems. Cristescu at al [8] have
investigated algebraic and topological properties of the g-convex sets defined by Noor
[14] in order to deduce their shape. They are a subclass of star-shaped sets, which have
also a Youness [29] type convexity. A representation theorem based on extremal points
is given for the class of bounded g-convex sets. Examples showing that this convexity
is a frequent property in connection with a wild range of applications are given. For
the formulation, applications, numerical methods,sensitivity analysis and other aspects of
general variational inequalities, see [11, 12, 13, 14, 16, 22, 27] and the references es therein.

We would like to point out that the general convex functions and exponentially convex
functions are two distinct generalizations of the convex functions, which have played a
crucial and significant role in the development of various branches of pure and applied
sciences. It is natural to unify these concepts. Motivated by these facts and observations,
we now introduce a new class of convex functions, which is called exponentially general
convex functions. We discuss the basic properties of the general exponentially convex
functions. It is has been shown that the general exponentially convex(concave) have nice
nice properties which convex functions enjoy. Several new concepts have been introduced
and investigated. We show that the local minimum of the general exponentially convex
functions is the global minimum. The optimal conditions of the differentiable exponen-
tially convex functions are characterized by a class of variational inequalities, which is
itself an interesting problem. The difference (sum) of the exponentially convex function
and exponentially affine convex function is again a exponentially convex function. The
ideas and techniques of this paper may be starting point for further research in these
areas.

2. Preliminary Results

Let K be a nonempty closed set in a real Hilbert space H. We denote by 〈·, ·〉 and ‖ · ‖
be the inner product and norm, respectively. We recall the well known facts and basic
concepts.

Definition 1. [4].The set K in H is said to be a convex set, if

u+ t(v − u) ∈ K, ∀u, v ∈ K, t ∈ [0, 1].

Definition 2. A function F is said to be convex function, if

F ((1− t)u+ tv) ≤ (1− t)F (u) + tF (v), ∀u, v ∈ K, t ∈ [0, 1]. (1)

If the convex function F is differentiable, then u ∈ K is the minimum of the F, if and
only if, u ∈ K satisfies the inequality

〈F ′(u), v − u〉 ≥ 0, ∀v ∈ K. (2)

The inequalities of the type (2) are called the variational inequalities, which were in-
troduced and studied by Stampacchia [27] in 1964. For the applications, formulation,
sensitivity, dynamical systems, generalizations, and other aspects of the variational in-
equalities, see [4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 22, 27] and the references therein.

We now define the exponentially convex functions, which are mainly due to Noor and
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Noor [17, 18, 19, 20, 21, 23].

Definition 3. A function F is said to be exponentially convex function, if

eF ((1−t)u+tv) ≤ (1− t)eF (u) + teF (v), ∀u, v ∈ K, t ∈ [0, 1],

which can be written in the equivalent form

Definition 4. A function F is said to be exponentially convex function, if

F ((1− t)a+ tb) ≤ log[(1− t)eF (a) + teF (b)], ∀a, b ∈ K, t ∈ [0, 1], (3)

which is mainly due to Avriel [3, 4]. Antczak [2] discussed the applications of expo-
nentially convex functions in the mathematical programming and optimization theory.
A function is called the exponentially concave function f , if −f is exponentially convex
function. For the properties, generalizations and applications of the exponentially convex
functions, see [1, 2, 3, 4, 5, 17, 25].
Noor [17] and Noor and Noor [18] proved that the minimum of a differentiable exponen-
tially convex functions can be characterized by the inequality

〈eF (u)F ′(u), v − u〉 ≥ 0, ∀v ∈ K, (4)

which is called exponentially variational inequality. For more details, see [18].
For the applications of the exponentially convex functions in the mathematical pro-

gramming and information theory, see Antczak [2], Alirezaei and Mathar[1] and Pal and
Wong [25].

Definition 5. [4].The set Kg in H is said to be general convex set, if there exists an
arbitrary function g, such that

(1− t)u+ tg(v) ∈ Kg, ∀u, v ∈ H : u, g(v) ∈ Kg, t ∈ [0, 1].

We now discuss some special cases of the general convex sets.

(
¯
I). If g = I, the identity operator, then general convex set reduces to the classical

convex set. Clearly every convex set is a general convex set, but the converse is not true.
Cristescu et al[8] discussed various applications of the general convex sets related to the
necessity of adjusting investment or development projects out of environmental or social
reasons. For example, the easiest manner of constructing this kind of convex sets comes
from the problem of modernizing the railway transport system. Shape properties of the
general convex sets with respect to a projection are investigated.

(II). If g(v) = mv, m ∈ [0.1], then the general convex set becomes the m-convex
set, which is mainly due to Toader[28].

Definition 6. [25] The set Km is said to be m-convex set, if

(1− t)u+ tmv ∈ Km, ∀u, v ∈ Km, t ∈ [0, 1].

For the sake of simplicity, we always assume that ∀u, v ∈ H : u, g(v) ∈ Kg, unless
otherwise.

Definition 7. A function F is said to be general convex(g-convex) function, if there
exists an arbitrary non-negative function g, such that

F ((1− t)u+ tg(v)) ≤ (1− t)F (u) + tF (g(v)), ∀u, g(v) ∈ Kg, t ∈ [0, 1]. (5)



144 M. A. NOOR AND K. I. NOOR

The general convex functions were introduced by Noor [14]. Noor [12, 13, 14, 23] proved
that the minimum u ∈ H : g(u) ∈ Kg of the differentiable general convex functions F can
be characterized by the class of variational inequalities of the type:

〈F ′(u), g(v)− u〉 ≥ 0, ∀v ∈ H : g(v) ∈ Kg, (6)

which is known as general variational inequalities. For the applications of the general
variational inequalities in various branches of pure and applied sciences, see [11, 12, 13,
14, 16, 17, 22, 29, 30] and the references therein.

We now introduce some new concepts of exponentially general convex functions, which
is the main motivation of this paper.

Definition 8. A function F is said to be exponentially general convex function with
respect to an arbitrary non-negative function g, if

eF ((1−t)u+tg(v)) ≤ (1− t)eF (u) + teF (g(v)), ∀u, g(v) ∈ Kg, t ∈ [0, 1]. (7)

or equivalently

Definition 9. A function F is said to be exponentially general convex function with
respect to an arbitrary non-negative function g, if,

F ((1− t)u+ tg(v)) ≤ log[(1− t)eF (u) + teF (g(v))], ∀u, g(v) ∈ Kg, t ∈ [0, 1]. (8)

A function is called the exponentially general concave function f , if −f is an exponen-
tially general convex function.

Definition 10. A function F is said to be exponentially general affine convex function
with respect to an arbitrary non-negative function g, if

eF ((1−t)u+tg(v)) = (1− t)eF (u) + teF (g(v)), ,∀u, g(v) ∈ Kg, t ∈ [0, 1]. (9)

If g = I, the identity operator, then exponentially general convex functions reduce to:
the exponentially convex functions. For the properties and applications of the exponen-
tially convex functions, see [17, 18, 19, 20, 21].

If g(v) = mv, m ∈ [0, 1], then Definition 10 reduces to:

Definition 11. A function F is said to be exponentially m-convex function, if

eF ((1−t)u+tmv) ≤ (1− t)eF (u) + teF (mv), ∀u, v ∈ K, t ∈ [0, 1], (10)

which can be rewritten in the following equivalent form.

Definition 12. A function F is said to be an exponentially m-convex function, if

F ((1− t)u+ tmv) ≤ log[(1− t)eF (u) + teF (mv)], ∀u, v ∈ K, t ∈ [0, 1]. (11)

For the properties of the exponentially m-convex functions, see Noor and Noor [17, 18,
19, 20, 21].

Definition 13. The function F on the general convex set Kg is said to be exponentially
general quasi convex, if

eF (u+t(g(v)−u)) ≤ max{eF (u), eF (g(v))}, ∀u, g(v) ∈ Kg, t ∈ [0, 1].

Definition 14. The function F on the general convex set Kg is said to be exponentially
general log-convex, if

eF (u+t(g(v)−u)) ≤ (eF (u)1−t(eF (g(v)))t, ∀u, g(v) ∈ Kg, t ∈ [0, 1],

where F (·) > 0.
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From the above definitions, we have

eF (u+t(g(v)−u) ≤ (eF (u)1−t(eF (g(v)))t

≤ (1− t)eF (u) + teF (g(v)))

≤ max{eF (u), eF ((v))}.
This shows that every exponentially general log-convex function is a exponentially general
convex function and every exponentially general convex function is a exponentially general
quasi-convex function. However, the converse is not true.
We now define the exponentially general convex functions on the interval
Kg = Ig = [a, g(b)].

Definition 15. Let Ig = [a, g(b)]. Then F is exponentially general convex function, if
and only if, ∣∣∣∣∣∣

1 1 1
a x g(b)

eF (a) eF (x) eF (g(b))

∣∣∣∣∣∣ ≥ 0; a ≤ x ≤ g(b).

One can easily show that the following are equivalent:

(1) F is exponentially convex function.

(2) eF (x) ≤ eF (a) + eF (g(b))−eF (a)

g(b)−a (x− a).

(3) eF (x)−eF (a)

x−a ≤ eF (g(b))−eF (a)

g(b)−a .

(4) (g(b)− x)eF (a) + (a− g(b))eF (x) + (x− a)eF (g(b)) ≥ 0.

(5) eF (a)

(g(b)−a)(a−x) + eF (x)

(x−g(b))(a−x) + eF (g(b))

(g(b)−a)(x−g(b)) ≤ 0,

where x = (1− t)a+ tg(b) ∈ [a, g(b)].

3. Main Results

In this section, we consider some basic properties of exponentially general convex func-
tions.

Theorem 1. Let F be a strictly exponentially general convex function. Then any local
minimum of F is a global minimum.

Proof. Let the strictly exponentially convex function F have a local minimum at u ∈ Kg.
Assume the contrary, that is, F (g(v)) < F (u) for some g(v) ∈ Kg. Since F is strictly
exponentially general convex function, so

eF (u+t(g(v)−u)) < teF (g(v)) + (1− t)eF (u), for 0 < t < 1.

Thus

eF (u+t(g(v)−u)) − eF (u) < −t[eF (g(v)) − eF (u)] < 0,

from which it follows that

eF (u+t(g(v)−u) < eF (u),

for arbitrary small t > 0, contradicting the local minimum. �

Theorem 2. If the function F on the general convex set Kg is exponentially general
convex, then the level set

Lα = {u ∈ Kg : eF (u) ≤ α, α ∈ R}
is a general convex set.
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Proof. Let u, g(v) ∈ Lα. Then eF (u) ≤ α and eF (g(v)) ≤ α. Now, ∀t ∈ (0, 1),
g(w) = u+ t(g(v)−u) ∈ Kg, since Kg is a convex set. Thus, by the exponentially general
convexity of F, we have

Fe(u+t(g(v)−u) ≤ (1− t)eF (u) + teF (g(v)) ≤ (1− t)α+ tα = α,

from which it follows that u+ t(g(v)− u) ∈ Lα Hence Lα is a general convex set. �

Theorem 3. The function F is exponentially general convex function, if and only if,

epi(F ) = {u, α) : u ∈ Kg : eF (u) ≤ α, α ∈ R}

is a general convex set.

Proof. Assume thatF is exponentially general convex function. Let

(u, α), (g(v), β) ∈ epi(F ).

Then it follows that eF (u) ≤ α and eF (g(v)) ≤ β. Hence, we have

eF (u+t(g(v)−u)) ≤ (1− t)eF (u) + teF (g(v)) ≤ (1− t)α+ tβ,

which implies that

((1− t)u+ tg(v)), (1− t)α+ tβ) ∈ epi(F ).

Thus epi(F ) is a general convex set. Conversely, let epi(F ) be a general convex set. Let
u, g(v) ∈ Kg. Then (u, eF (u) ∈ epi(F ) and (g(v, eF (g(v))) ∈ epi(F ). Since epi(F ) is a
general convex set, we must have

(u+ t(g(v)− u), (1− t)eF (u) + teF (g(v)) ∈ epi(F ),

which implies that

eF ((1−t)u+tg(v)) ≤ (1− t)eF (u) + teF (g(v)).

This shows that F is an exponentially general convex function. �

Theorem 4. The function F is exponentially general quasi convex, if and only if, the
level set

Lα = {u ∈ Kg, α ∈ R : eF (u) ≤ α}
is a general convex set.

Proof. Let u, g(v) ∈ Lα. Then u, g(v) ∈ Kg and max(eF (u), eF (g(v))) ≤ α. Now for t ∈
(0, 1), g(w) = u+ t(g(v)− u) ∈ Kg. We have to prove that u+ t(g(v)− u) ∈ Lα. By the
exponentially general convexity of F, we have

eF (u+t(g(v)−u)) ≤ max (eF (u), eF (g(v))) ≤ α,

which implies that u+ t(g(v)−u) ∈ Lα, showing that the level set Lα is indeed a general
convex set.

Conversely, assume that Lα is a general convex set. Then, ∀ u, g(v) ∈ Lα, t ∈ [0, 1],
u+ t(g(v)− u) ∈ Lα. Let u, g(v) ∈ Lα for

α = max(eF (u), eF (g(v))) and eF (g(v)) ≤ eF (u).

Then from the definition of the level set Lα, it follows that

eF (u+t(g(v)−u) ≤ max (eF (u), eF (g(v))) ≤ α.

Thus F is an exponentially general quasi convex function. This completes the proof. �
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Theorem 5. Let F be an exponentially general convex function. Let µ = infu∈K F (u).
Then the set

E = {u ∈ Kg : eF (u) = µ}
is a general convex set of Kg. If F is strictly exponentially general convex function , then
E is a singleton.

Proof. Let u, g(v) ∈ E. For 0 < t < 1, let g(w) = u+t(g(v)−u). Since F is a exponentially
general convex function, then

F (g(w)) = eF (u+t(g(v)−u)

≤ (1− t)eF (u) + teF (g(v)) = tµ+ (1− t)µ = µ,

which implies g(w) ∈ E. and hence E is a general convex set. For the second part,
assume to the contrary that F (u) = F (g(v)) = µ. Since K is a general convex set, then
for 0 < t < 1, u + t(g(v) − u) ∈ Kg. Further, since F is strictly exponentially general
convex function, so

eF (u+t(g(v)−u)) < (1− t)eF (u) + teF (g(v)) = (1− t)µ+ tµ = µ.

This contradicts the fact that µ = infu∈Kg F (u) and hence the result follows. �

Theorem 6. If the function F is exponentially general convex such that

eF (g(v)) < eF (u),∀u, g(v) ∈ Kg,

then F is a strictly exponentially general quasi function.

Proof. By the exponentially general convexity of the function F, we have

eF (u+t(g(v)−u)) ≤ (1− t)eF (u) + teF (g(v)),∀u, g(v) ∈ Kg, t ∈ [0, 1]

< eF (u),

since eF (g(v)) < eF (u), which shows that the function F is strictly exponentially general
quasi convex. �

We now show that the difference of exponentially convex function and exponentially
affine convex function is again an exponentially general convex function.

Theorem 7. Let f be a exponentially general affine convex function. Then F is a
exponentially general convex function, if and only if, H = F− is a exponentially convex
function.

Proof. Let f be exponentially general affine convex function. Then

ef((1−t)u+tg(v)) = (1− t)ef(u) + tef(g(v)), ∀u, g(v) ∈ Kg, t ∈ [0, 1]. (12)

From the exponentially general convexity of F, we have

eF ((1−t)u+tg(v)) ≤ (1− t)eF (u) + teF (g(v)), ∀u, g(v) ∈ Kg, t ∈ [0, 1]. (13)

From (12 ) and (13), we have

eF ((1−t)u+tg(v)) − ef((1−t)u+tg(v))

≤ (1− t)(eF (u) − ef(u)) + t(eF (g(v)) − ef(g(v))), (14)

from which it follows that

eH((1−t)u+tg(v)) = eF ((1−t)u+tg(v))) − ef((1−t)f(u)+tf(g(v))

≤ (1− t)(eF (g(u)) − ef(g(u))) + t(eF (g(v)) − ef(g(v))),
which show that H = F − f is an exponentially general convex function.
The inverse implication is obvious. �
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Definition 16. A function F is said to be a exponentially general pseudo convex func-
tion, if there exists a strictly positive bifunction b(., .), such that

eF (g(v)) < eF (u)

⇒
eF (u+t(g(v)−u)) < eF (g(u)) + t(t− 1)b(g(v), u), ∀u, g(v) ∈ Kg, t ∈ [0, 1].

Theorem 8. If the function F is exponentially general convex function such that

eF (g(v)) < eF (u),

then the function F is an exponentially general pseudo convex function.

Proof. Since eF (g(v)) < eF (u) and F is exponentially general convex function, then
∀u, g(v) ∈ Kg, t ∈ [0, 1], we have

eF (u+(1−t)(g(v)−u)) ≤ eF (u) + t(eF (g(v)) − eF (u))

< eF (u) + t(1− t)(eF (g(v)) − eF (u))

= eF (u) + t(t− 1)(eF (u) − eF (g(v))))

< eF (u) + t(t− 1)b(u, g(v)),

where b(u, g(v)) = eF (u) − eF (g(v)) > 0. This shows that the function F is exponentially
general pseudo convex function. �

We now study some properties of the differentiable exponentially general convex func-
tions.

Theorem 9. Let F be a differentiable function on the general convex set Kg. Then the
function F is exponentially general convex function, if and only if,

eF (g(v)) − eF (u) ≥ 〈eF (u)F ′(g(u)), g(v)− u〉, ∀g(v), u ∈ Kg. (15)

Proof. Let F be a exponentially general convex function. Then

eF (u+t(g(v)−u)) ≤ (1− t)eF (u) + teF (g(v)), ∀u, g(v) ∈ Kg,

which can be written as

eF (g(v)) − eF (u) ≥ lim
t→0
{e

F (u+t(g(v)−u)) − eF (u)

t
} = 〈eF (u)F ′(u), g(v)− u)〉,

which is (15), the required result.

Conversely, let (15) hold. Then ∀u, g(v) ∈ Kg, t ∈ [0, 1],

g(vt) = u+ t(g(v)− u) ∈ Kg,

we have

eF (g(v)) − eF (g(vt)) ≥ 〈eF (g(vt))F ′(g(vt)), g(v)− g(vt))〉
= (1− t)〈eF (g(vt))F ′(g(vt)), g(v)− u〉. (16)

In a similar way, we have

eF (u) − eF (g(vt)) ≥ 〈eF (g(vt))F ′(g(vt)), u− g(vt))〉
= −t〈eF (g(vt))F ′(g(vt)), g(v)− u〉. (17)

Multiplying (16) by t and (17) by (1− t) and adding the resultant, we have

eF (u+t(g(v)−u)) ≤ (1− t)eF (u) + teF (g(v)),
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showing that F is a exponentially general convex function. �

Remark 1. From (15), we have

eF (g(v))−F (u) − 1 ≥ 〈F ′(u), g(v)− u〉, ∀g(v), u ∈ Kg,

which can be written as

F (g(v))− F (u) ≥ log{1 + 〈F ′(u), g(v)− u〉, } ∀g(v), u ∈ Kg, (18)

Changing the role of u and v in (18), we also

F (u)− F (g(v)) ≥ log{1 + 〈F ′(g(v)), u− g(v)〉, } ∀g(v), u ∈ Kg, (19)

Adding (18) and (19), we have

〈F ′(u)− F ′(g(v)), u− g(v)〉 ≥ (〈F ′(u), u− g(v)〉)(F ′(g(v)), u− g(v)〉)
which express the monotonicity of the differential F ′(.) of the exponentially general convex
function.

Theorem 9 enables us to introduce the concept of the exponentially monotone opera-
tors, which appears to be new ones.

Definition 17. The differential F ′(.) is said to be exponentially general monotone, if

〈eF (u)F ′(u)− eF (g(v))F ′(g(v)), u− g(v)〉 ≥ 0, ∀u, v ∈ H.

Definition 18. The differential F ′(.) is said to be exponentially general pseudo-monotone,
if

〈eF (u)F ′(u), g(v)− u〉 ≥ 0,

⇒
〈eF (g(v))F ′(g(v)), g(v)− u〉 ≥ 0, ∀u, v ∈ H.

From these definitions, it follows that exponentially general monotonicity implies ex-
ponentially general pseudo-monotonicity, but the converse is not true.

Theorem 10. Let F be differentiable exponentially general convex function. Then, (15)
holds, if and only if, F ′ satisfies

〈eF (u)F ′(u)− eF (g(v))F ′(g(v)), u− g(v)〉 ≥ 0, ∀u, g(v) ∈ Kg. (20)

Proof. Let F be a exponentially general convex function. Then, from Theorem 9, we have

eF (g(v)) − eF (u) ≥ 〈eF (u)F ′(u), g(v)− u〉, ∀u, g(v) ∈ Kg. (21)

Changing the role of u and v in (21), we have

eF (u − eF (g(v)) ≥ 〈eF (g(v))F ′(g(v)), u− g(v))〉, ∀u, g(v) ∈ Kg. (22)

Adding (21) and (22), we have

〈eF (u)F ′(u)− eF (g(v))F ′(g(v)), u− g(v)〉 ≥ 0,

which shows that F ′ is exponentially general monotone.

Conversely, from (20), we have

〈eF (g(v)F ′(g(v)), u− g(v)〉 ≤ 〈eF (u)F ′(u), u− g(v))〉. (23)

Since Kg is a general convex set, ∀u, g(v) ∈ Kg, t ∈ [0, 1],

g(vt) = u+ t(g(v)− u) ∈ Kg.
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Taking g(v) = g(vt) in (23), we have

〈eF (g(vt))F ′(g(vt)), u− g(vt)〉 ≤ 〈eF (u)F ′(u), u− g(vt)〉
= −t〈eF (u)F ′(u), g(v)− u〉,

which implies that

〈eF (g(vt))F ′(g(vt)), g(v)− u〉 ≥ 〈eF (u)F ′(u), g(v)− u〉. (24)

Consider the auxiliary function

g(t) = eF (u+t(g(v)−u),

from which, we have

g(1) = eF (g(v)), g(0) = eF (u).

Then, from (24), we have

g′(t) = 〈eF (g(vt))F ′(g(vt)), g(v)− u〉 ≥ 〈eF (u)F ′(u), g(v)− u〉. (25)

Integrating (25) between 0 and 1, we have

g(1)− g(0) =

∫ 1

0

g′(t)dt ≥ 〈eF (u)F ′(u), g(v)− u〉.

Thus it follows that

eF (g(v)) − eF (u) ≥ 〈eF (u)F ′(u), g(v)− u〉,
which is the required (15). �

We now give a necessary condition for exponentially general pseudo-convex function.

Theorem 11. Let F ′ be exponentially general pseudomonotone. Then F is a exponen-
tially general pseudo-convex function.

Proof. Let F ′ be a exponentially general pseudomonotone. Then, ∀u, g(v) ∈ Kg,

〈eF (u)F ′(u), g(v)− u〉 ≥ 0.

implies that

〈eF (g(v))F ′(g(v)), g(v)− u〉 ≥ 0. (26)

Since Kg is a general convex set, ∀u, g(v) ∈ Kg, t ∈ [0, 1],

g(vt) = u+ t(g(v)− u) ∈ Kg.

Taking g(v) = g(vt) in (26), we have

〈eF (g(vt))F ′(g(vt)), g(v)− u〉 ≥ 0. (27)

Consider the auxiliary function

g(t) = eF (u+t(g(v)−u)) = eF (g(vt)), ∀u, g(v) ∈ Kg, t ∈ [0, 1],

which is differentiable, since F is differentiable function. Then, using (27), we have

g′(t) = 〈eF (g(vt))F ′(g(vt)), g(v)− u)〉 ≥ 0.

Integrating the above relation between 0 to 1, we have

g(1)− g(0) =

∫ 1

0

g′(t)dt ≥ 0,

that is,

eF (g(v)) − eF (u) ≥ 0,
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showing that F is a exponentially general pseudo-convex function. �

Definition 19. The function F is said to be sharply exponentially general pseudo convex,
if there exists a constant µ > 0 such that

〈eF (u)F ′(u), g(v)− u〉 ≥ 0

⇒
F (g(v)) ≥ eF (g(v)+t(u−g(v))), ∀u, g(v) ∈ Kg, t ∈ [0, 1].

Theorem 12. Let F be a sharply exponentially general pseudo convex function. Then

〈eF (g(v))F ′(g(v)), u− g(v)〉 ≥ 0, ∀u, g(v) ∈ Kg.

Proof. Let F be a sharply exponentially general pseudo convex function. Then

eF (g(v)) ≥ eF (g(v)+t(u−g(v))), ∀u, g(v) ∈ Kg, t ∈ [0, 1].

from which we have

0 ≤ lim
t→0
{e

F (g(v)+t(u−g(v))) − eF (g(v))

t
} = 〈eF (g(v))F ′(g(v)), u− g(v)〉,

the required result. �

We now discuss the optimality condition for the differentiable exponentially convex
functions, which is the main motivation of our next result.

Theorem 13. Let F be a differentiable general exponentially convex function. Then
u ∈ Kg is the minimum of the function F, if and only if, u ∈ Kg satisfies the inequality

〈eF (u)F ′(u), g(v)− u〉 ≥ 0, ∀u, g(v) ∈ Kg. (28)

Proof. Let u ∈ Kg be a minimum of the function F. Then

F (u) ≤ F (g(v)),∀v ∈ H : g(v) ∈ Kg.

from which, we have

eF (u) ≤ eF (g(v)),∀g(v) ∈ Kg. (29)

Since Kg is a general convex set, so, ∀u, g(v) ∈ Kg, t ∈ [0, 1],

g(vt) = (1− t)u+ tg(v) ∈ Kg.

Taking g(v) = g(vt) in (29), we have

0 ≤ lim
t→0
{e

F (u+t(g(v)−u)) − eF (u)

t
} = 〈eF (u)F ′(u), g(v)− u〉. (30)

Since F is an exponentially general convex function, so

eF (u+t(g(v)−u)) ≤ eF (u) + t(eF (g(v)) − eF (u), u, g(v) ∈ Kg, t ∈ [0, 1],

from which, using (30), we have

eF (g(v)) − eF (u) ≥ lim
t→0
{e

F (u+t(g(v)−u)) − eF (u)

t
}

= 〈eF (u)F ′(u), g(v)− u〉 ≥ 0.

This implies that

F (u) ≤ F (g(v)).

This shows that u ∈ Kg is the minimum of a differentiable exponentially general convex
function, the required result. �
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Remark 2. The inequality of the type (28) is called the general exponentially varia-
tional inequality, which has been introduced and studied by Noor [16]. It is an interesting
problem to develop some numerical methods for solving general exponentially variational
inequalities.

Conclusion

In this paper, we have introduced and studied a new class of convex functions which
is called the exponentially general convex function. It has been shown that the exponen-
tially general convex functions contain m-convex functions as a special case. It has been
shown that exponentially general convex functions enjoy several properties which convex
functions have. We have shown that the minimum of an differentiable expedientially
general convex functions can be characterized by a new class of variational inequalities,
which is called the general exponential variational inequality. The ideas and techniques
of this paper may stimulate further research.
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