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SOME DISCRETE INEQUALITIES FOR CONVEX FUNCTIONS
DEFINED ON LINEAR SPACES

SILVESTRU SEVER DRAGOMIR!:?

ABSTRACT. In this paper we provide some discrete inequalities related to the Hermite-
Hadamard result for convex functions defined on convex subsets in a linear space. Ap-
plications for norms and univariate real functions with an example for the logarithm,
are also given.

1. INTRODUCTION

Let X be a real linear space, a, b € X, a # band let [a,b] := {(1 — X)a+ b, A € [0,1]}
be the segment generated by a and b. We consider the function f : [a,b] — R and the
attached function g (a,b) : [0,1] = R, g (a,b) (¢) := f[(1 —t)a+tb], t € [0,1].

It is well known that f is convex on [a, b] iff g (a,b) is convex on [0, 1], and the following
lateral derivatives exist and satisfy

() g2 (a,0) (s) = (V£ F[(1 = 5)a+ sb]) (b —a), s €[0,1)
(i) g4 (a,0) (0) = (V+f( ) (b—a)

(iii) g~ (a,0) (1) = (V- (b)) (b —a)
)

) =
where (V4 f (z)) (y) are the Gdteaux lateral derivatives, we recall that

(Vaf @) () : = lim [f (z+ hz}? —f <x>] |
(V-f@)(y) : = lim [f<w+kz£ —f(w)y b ex

The following inequality is the well-known Hermite-Hadamard integral inequality for
convex functions defined on a segment [a,b] C X :

f(“+b) /f 1—t)a+tb]dt<w, (HH)

which easily follows by the classical Hermite-Hadamard inequality for the convex function
g(a,b):[0,1] - R

9(a,b) (;) < [sanous o) 0)+se) (1)

For other related results see the monograph on line [4].
We have the following result [2] related to the first Hermite-Hadamard inequality in
(HH):
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Theorem 1. Let X be a linear space, a,b € X, a #b and f : [a,b] C X — R be a convex
function on the segment [a,b]. Then for any s € (0,1) one has the inequality

(=9 (VoS 1= 9)a+ ) (b—a) = (V- f[(1=s)a+ ) b—a)] (1)

N —

g/1f[(1—t)a+tb}dt—f[(1—s)a+sb]
< [0 @ T 6-a) - (T4 f @) (b-a).

The constant % is sharp in both inequalities. The second inequality also holds for s =0
ors=1.

If f:[a,b] — R is as in Theorem 1 and Géateaux differentiable in ¢ := (1 — X) a + Ab,
A € (0,1) along the direction b — a, then we have the inequality:

(3-2) wreno-a /f (1= t)yat e/ (c). 2)
If f is as in Theorem 1, then
< [vef () -0 -vr () 0o 3)
1f[<1—t>a+tb]dt—f(“‘;b)
(T-F ) (b~ a) — (7 (@) (b )]

IN

IN
oo\»—tC\ oo\»—A

The constant é is sharp in both inequalities.
Also we have the following result [3] related to the second Hermite-Hadamard inequality
n (HH):

Theorem 2. Let X be a linear space, a,b € X, a #b and f : [a,b] C X — R be a convex
function on the segment [a,b]. Then for any s € (0,1) one has the inequality

[(1—s>2<mf[<1—s>a+sb1><b—a>—52<v_f[<1—s)a+sb]><b—a>} (4)

N —

IN

(1—s) f(a)+sf (b /f (1—t)a+th] dt

=P @ F ) - 0) (7 (@) (0—a)].

IN
I\

The constant % is sharp in both inequalities. The second inequality also holds for s =0
ors=1.

If f:[a,b] - R is as in Theorem 2 and Géateaux differentiable in ¢ := (1 — X) a + Ab,
A € (0,1) along the direction b — a, then we have the inequality:

(3-2) s @ e-w<a-07@ a0~ [ F0-aruma @
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If f is as in Theorem 2, then

o< |v +f< S )e-a-vr () 0=
gf /f t)a +tb)dt
< é (71 B) (b= a) = (7 @) (b~ )]

The constant % is sharp in both inequalities.

2. THE RESULTS

103

Let f : C C X — R be a convex function on C. We define the function Fy : C xC —+ R

by

Fr(z,y) ::/O F(Q—=1t)z+ty)dt.

(7)

Theorem 3. Let f:C C X — R be a convex function on C. Then the function Fy is
convez on C'x C and if z;, y; € C and p; > 0 fori=1,...,n with Y ., p; = 1, then we

have the inequalities

n 1 1 n n
Sooi [ F-vmr e f((lwzpixmzpiyi) it
i=1 0 0 i=1 i=1

> f (;pi (W)) ;

sz<m> Zpl/f (1= t) & + ty;) dt
() (5 (42

=1

SRS

f ((1 — 1)y piw; +t2piyi> dt
i=1 i=1

and

v

IV
S~

(®)

(10)



104 S. S. DRAGOMIR

Proof. Let (z,y), (u,v) € C x C and «, > 0 with o+ § = 1. Then
Fy (a(z,y) + B (u,v)) = Fy (az + fu, ay + fv)

1
:/0 F((1=1t)(ax+ Bu) +t(ay + Pv))dt
:/0 Flall—t)z+tyl+ B[(1—t)u+tv]) dt

< [ laf (= 0a )+ 87 (1= u+ o) de
0
1

=« f((l—t)a:+ty)dt—|—ﬂ/01f((1—t)u+tv)dt

0
= aFy (z,y) + 6Fy (u,v),

which proves the joint convexity of the function F.
By Jensen’s inequality for the convex function F¢ we have

ZPiFf (i, yi) 2 Fy (ZP: (%J/z)) =Fy <Zpi$ia szyz) )
i=1 i=1

i=1 i=1
which is equivalent to the first inequality in (8).
By Hermite-Hadamard inequality (HH) we have

1 n n ZTL o n .
1 DiT; + § :‘: DPiYi

1—t¢ T+t i | dt > i=1 =1 dt
/0f<( )i§:1px+ ;_lpy> _f< 5 >

()

i=1

and the second part of (8) is proved.
From (HH) we also have for each i € {1,...,n} that

O T0) 5 [ fla -+ a5 (252)).

If we multiply this inequality by p; > 0 and sum over ¢ from 1 to n we get the first and
second inequality in (9).

The last part in (9) follows by Jensen’s inequality.

Let w := Y 1 piz; and v := . | p;y;. By Hermite-Hadamard inequality (HH) we

also have 1
M 2/0 (1=t u+to]dt,

which produces the second inequality in (10).
By Jensen’s inequality for f we have

Zpif (x3) > f (ZPM‘Z)

and . .
Zpif(yi) > f (Zm%) '
i=1 i=1

If we sum these two inequalities and divide by 2 we get the first inequality in (10). O
The following result also holds:
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Theorem 4. With the assumptions of Theorem 3 we have

é [sz (V+f (96Z +yl) (yi — xz)>
_;pi (vf (ngy) (s _xi)ﬂ
= él’i/olf[(l —t)xi—ktyi]dt_g;pif <x1;yz)

< é [sz (V-f i) (yi —xi) — Zpi (V+f () (yi — xi)] . (11)

i=1

and

é LE;Z% (V+f (xlgyl) (i —fﬂi))
*im <V—f (x eri) (i x))]
< ipi (M> sz/ U =t) @i + ty;) dt

i=1

[sz V- i) (yi — i) — Z (V+f(ffz))(yz—$z)] (12)
i=1

OO\)—‘

We also have

o< Hoer (S (252)) (S0
ot (S (251 (S|
Dl el )
< (55 (L)) (St
(o) o]
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"
o<t our (Sn (252)) (L)
) e
= [ (zm,> it (zpzy) s ( 1- zmﬁtzpzyz)
o) e
ol ] »
) tht

Proof. From the inequality (3) we have for a = x; and b = y;, where i € {1
T +y i+ Yi
- z) (yi —x) —v-f (121> (yi — l‘i)]

Ti +Y;
2

0<1[ +f<
g/o f[(l—t)$i+tyi]dt_f<
z;) = (V+ f () (yi

< S 19 f ) (s - — ),

oy}
If we multiply this inequality by p; > 0 and sum over ¢ from 1 to n, then we get

for any ¢ € {1,.
l';‘i‘ 7 l‘i+ 7
y)(yi—%)—Vf( Qy)(yi—wi)]

Oﬁéiz: [ +f(
<ipz‘/olf[(l—t)$i+tyi]dt—§:1pi <$l;yz>
z;) = (V4 f (@) (i — 23)],

pi (V£ (y:)) (yi —

0| =
INgE

<

=1

which is equivalent to (11).
The inequality (12) follows in a similar way by employing the inequality (6)
The inequalities (13) and (14) follow by taking a = Y. p;z; and b = > | p;y; in
]

the inequalities (3) and (6)
3. EXAMPLES FOR NORMS
Now, assume that (X, ||-]|) is a normed linear space. The function fy(s) = %||x||2,

x € X is convex and thus the following limits exist
— — ||y+m\|2—\|yu2} .
= (Vifo () (@) = lim | Lot olol®]

(iv) (@.9),
(V- fo () (@) = Tim

- [Hy+swll2—|\yll2] :
: - 2s ,
for any z, y € X. They are called the lower and upper semi-inner products associated

(v) (@,9);

to the norm ||-|.
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For the sake of completeness we list here some of the main properties of these mappings
that will be used in the sequel (see for example [1] or [5]), assuming that p, ¢ € {s,i} and

pF

(a
(aa

T,T), = ||z||? for all z € X;
ox ,ﬁy> =ap(z,y),ifa, 8>0and z, y € X;

) (

)

) [

(av) (asc—l—y, > = oz, x)
) (—=
) (
)

aaa

pH (Y2, ifz,ye X and a € R;
) (x,y)Qforallx,yGX;
oy 2)p <zl 2] + (g, 2),, for all z, y, z € X;
The mapping (-,-), is continuous and subadditive (superadditive) in the first
variable for p = s (or p = 1);
(vaaa) The normed linear space (X, ||-||) is smooth at the point zo € X\ {0} if and only
if (y,xz0), = (y, xo); for all y € X; in general (y,z), < (y,z), for all z, y € X;
(ax) If the norm ||-|| is induced by an inner product (-, -) , then (y,z), = (y,z) = (y, z),
for all z, y € X.

(v
(va

(vaa

Applying inequality (HH) for the convex function f, (z) = ||z||", 7 > 1 one may deduce
the inequality

Tty
2

] gllyll (15)

T 1
< [l-varulds
0

for any z,y € X.

Let (X, ||-]|) be a normed linear space and z = (x1,...,x,), ¥y = (Y1, ..., Yn) be n-tuples
of vectors in X, then for the probability distribution p = (p1,...,pn) and r > 1 we have
by Theorem 3 for the convex function f (z) = ||z|" that

n 1 1 n n r
Zpi/ ||(1—t)$i+tyi||rdt2/ (L=6)> piwi+tY_ pui|| dt
i=1 V0 0 i=1 i=1

- Ti +Yi
2P T

(16)

>

)
1=1

e ; [ 0=k a an

i=1

-'If'z""yz

| \%

and

T

> pi <”xi| ;||y¢|| > 2% [ > pimil| + Y
=1 i=1

i=1
1 n n T
2/ (1=6)> piwi+tY_ puyi|| dt
0 i=1 i=1

If we use Theorem 4 for the convex function f(z) = 1 |#||* then for z = (21, ..., zn),
y = (Y1, -.., Yn) n-tuples of vectors in X and for the probability distribution p = (p1, ..., pn)

] (18)
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we have
1 Tk + Yk xk+yk
gdzpk@xk, R N R
k=1 S K]
n T +y 2
< 1—t tyr || dt — A A
_;pk/o 11— )+t Zpk !

[Zpk Yk — Ths Yk); ZP <yk_33ka$k>sl7 (19)

=1

»JM»—‘

i T + T+
[ Dk <yk—xk, : yk> Zpk <yk k2yk>1
k=1 s ‘
SZ“(II el + lly ) ZP / (1= 1) 2 + byl dt
lZpk (Y — Tho Uk); — D Dk <yk_xk7mk>s]' (20)
k=1

k=1

»lk\'—‘

We also have

szk Yk — Tk) Zpk (mk+yk)>
<Zpk yk*ka Zpk <xk+yk)>]
1 n n 2
S/O (1*t);pkxk+t;myk k(CEkQ—WC H
< % [<Zpk (Y —Ik)azpkyk> - <Zpk (yk_xk)vzpk$k> ] (21)
=1 =1 k=1 s

4 k=1

%\*—‘

dt —

(e ()

k=1 k=1
T +
<Zpk yk*xk Zpk< k yk)>]
i
n 1 n n 2
Zpkffk —/ (1 —t)Zkak +tZPkyk
0 k=1 k=1

i KZIM Yk — Tg) Zpkyk> - <zn:pk (yk—l‘k),zn:pkxk> ] . (22)

%

1
- dt
2
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4. EXAMPLES FOR FUNCTIONS OF A REAL VARIABLE
. n
ony with Y70 1 p =1

If f: I — R is convex on the interval I and p; > 0, 7 € {1

then .
n 1 1 n
Zpl/ f 1—tml+tyi)dt2/ f((l—t)Zpixi—i-thiyi)dt (23)

(
x;) + i
sz <ny> sz/ f 1 - t xz =+ tyz) dt. (24)
If f: 1 — R is convex and differentiable on the interior of I then for all z; € I and
.,n} with Y27 | p; =1, then by (11) and (12) we get
T + y1> (25)

PZZOalg{l
n 1
0< i 17t$1+t1dt7 i
<Yomi [ J10- 0w+ ) gp ("3
1 n , ,
Sg pi [f" (yi) = £/ (@)] (yi — @),
i=1
and
- f(@i) + f (i) - /1
< i| —————— | — i 1—1)x; i 2
0_2p< : ;p (=)t ) dt (26)
< Ssz v = 1 @) s — ).
If f(t) = 1 with ¢ > 0, then for y; # x;, i € {1,...,n} we have
. ! 1 Iny; — Inz;
1—#) 2y + ty;) dt = _
/ P =t + i) db /0 (1_t)$i+tyidt Yi — Ty
and
-1 n n
dt — In (32 pirs) —In (32, piyi)
E?zl Pi%i — Z?:l DPiYi ’

/0 <(1 —1) Zpifﬂi +t2piyi>

pI‘OVided Z?:l DiT; 7£ Z?:l DilYi
From (23) we get
y; — Inx; S In (327 pazi) —In (327 piyi)
- Z?:l DPiYi

n
Soptt
i1 ’ Yi — T4 Z?:lpixi_

- 1
) ST PiTi = PiYi ]

that is equivalent to
- Yi—x4 R . .
m (] (y> > In (Z;—lpm
el Z; Zizl DiYi
and to y .
ﬁ (yz > o > (Z?—l pixz‘) i PiTi 2o Pivi
i1 \Ti T\ X piyi '
From (24) we get in a similar way that
n Ti+ Ui Lo T
% 7 7 v
ex i > —
o[ ()21

(27)

(28)



110

S. S. DRAGOMIR

from (25) we get

Pq

1< - <exp| < Zpi (s + yz)Q(y; zi) (29)
exp {2?21 Di (%ﬂh)} 8 i=1 LiYi
and from (26) we get
exp [ZL pi (—”‘jy)] 1 ) (s — )2
1< —— e (Y om SR DIk 1 (30)

_Pi 2,2
Hn yi \ Vi@ o1 T3Y;
=1\ z;

The interested reader may apply some of the above inequalities for other instances of

convex functions such as f (t) = —Int, tlnt, expt etc... and we omit the details.
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