SOME DISCRETE INEQUALITIES FOR CONVEX FUNCTIONS DEFINED ON LINEAR SPACES

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. In this paper we provide some discrete inequalities related to the Hermite-Hadamard result for convex functions defined on convex subsets in a linear space. Applications for norms and univariate real functions with an example for the logarithm, are also given.

1. Introduction

Let X be a real linear space, $a, b \in X$, $a \neq b$ and let $[a, b] := \{(1 - \lambda) a + \lambda b, \lambda \in [0, 1]\}$ be the segment generated by a and b. We consider the function $f:[a,b]\to\mathbb{R}$ and the attached function $g(a, b) : [0, 1] \to \mathbb{R}, g(a, b)(t) := f[(1 - t) a + tb], t \in [0, 1].$

It is well known that f is convex on [a, b] iff q(a, b) is convex on [0, 1], and the following lateral derivatives exist and satisfy

$$\begin{array}{ll} \text{(i)} & g'_{\pm}\left(a,b\right)\left(s\right) = \left(\bigtriangledown_{\pm}f\left[\left(1-s\right)a+sb\right]\right)\left(b-a\right),\, s \in [0,1) \\ \text{(ii)} & g'_{+}\left(a,b\right)\left(0\right) = \left(\bigtriangledown_{+}f\left(a\right)\right)\left(b-a\right) \\ \text{(iii)} & g'_{-}\left(a,b\right)\left(1\right) = \left(\bigtriangledown_{-}f\left(b\right)\right)\left(b-a\right) \end{array}$$

(ii)
$$g'_{+}(a,b)(0) = (\nabla_{+}f(a))(b-a)$$

(iii)
$$q'_{-}(a,b)(1) = (\nabla_{-}f(b))(b-a)$$

where $(\nabla_{\pm} f(x))(y)$ are the Gâteaux lateral derivatives, we recall that

$$(\nabla_{+} f(x))(y) := \lim_{h \to 0+} \left[\frac{f(x+hy) - f(x)}{h} \right],$$
$$(\nabla_{-} f(x))(y) := \lim_{k \to 0-} \left[\frac{f(x+ky) - f(x)}{k} \right], x, y \in X.$$

The following inequality is the well-known Hermite-Hadamard integral inequality for convex functions defined on a segment $[a, b] \subset X$:

$$f\left(\frac{a+b}{2}\right) \le \int_0^1 f\left[\left(1-t\right)a + tb\right]dt \le \frac{f\left(a\right) + f\left(b\right)}{2},\tag{HH}$$

which easily follows by the classical Hermite-Hadamard inequality for the convex function $g(a,b):[0,1]\to\mathbb{R}$

$$g\left(a,b\right)\left(\frac{1}{2}\right) \leq \int_{0}^{1} g\left(a,b\right)\left(t\right) dt \leq \frac{g\left(a,b\right)\left(0\right) + g\left(a,b\right)\left(1\right)}{2}.$$

For other related results see the monograph on line [4].

We have the following result [2] related to the first Hermite-Hadamard inequality in (HH):

¹⁹⁹¹ Mathematics Subject Classification. 26D15, 46B25.

Key words and phrases. Convex functions, Linear spaces, Jensen's inequality, Hermite-Hadamard inequality, Norm inequalities.

Theorem 1. Let X be a linear space, $a, b \in X$, $a \neq b$ and $f : [a, b] \subset X \to \mathbb{R}$ be a convex function on the segment [a, b]. Then for any $s \in (0, 1)$ one has the inequality

$$\frac{1}{2} \left[(1-s)^2 \left(\bigtriangledown_+ f \left[(1-s) \, a + sb \right] \right) (b-a) - s^2 \left(\bigtriangledown_- f \left[(1-s) \, a + sb \right] \right) (b-a) \right]$$

$$\leq \int_0^1 f \left[(1-t) \, a + tb \right] dt - f \left[(1-s) \, a + sb \right]$$

$$\leq \frac{1}{2} \left[(1-s)^2 \left(\bigtriangledown_- f \left(b \right) \right) (b-a) - s^2 \left(\bigtriangledown_+ f \left(a \right) \right) (b-a) \right].$$
(1)

The constant $\frac{1}{2}$ is sharp in both inequalities. The second inequality also holds for s = 0 or s = 1.

If $f:[a,b]\to\mathbb{R}$ is as in Theorem 1 and Gâteaux differentiable in $c:=(1-\lambda)\,a+\lambda b$, $\lambda\in(0,1)$ along the direction b-a, then we have the inequality:

$$\left(\frac{1}{2} - \lambda\right) \left(\nabla f\left(c\right)\right) \left(b - a\right) \le \int_{0}^{1} f\left[\left(1 - t\right)a + tb\right] dt - f\left(c\right). \tag{2}$$

If f is as in Theorem 1, then

$$0 \leq \frac{1}{8} \left[\nabla_{+} f\left(\frac{a+b}{2}\right) (b-a) - \nabla_{-} f\left(\frac{a+b}{2}\right) (b-a) \right]$$

$$\leq \int_{0}^{1} f\left[(1-t) a + tb \right] dt - f\left(\frac{a+b}{2}\right)$$

$$\leq \frac{1}{8} \left[(\nabla_{-} f(b)) (b-a) - (\nabla_{+} f(a)) (b-a) \right].$$

$$(3)$$

The constant $\frac{1}{8}$ is sharp in both inequalities.

Also we have the following result [3] related to the second Hermite-Hadamard inequality in (HH):

Theorem 2. Let X be a linear space, $a, b \in X$, $a \neq b$ and $f : [a, b] \subset X \to \mathbb{R}$ be a convex function on the segment [a, b]. Then for any $s \in (0, 1)$ one has the inequality

$$\frac{1}{2} \left[(1-s)^2 \left(\bigtriangledown_+ f \left[(1-s) \, a + sb \right] \right) (b-a) - s^2 \left(\bigtriangledown_- f \left[(1-s) \, a + sb \right] \right) (b-a) \right]$$

$$\leq (1-s) \, f (a) + s f (b) - \int_0^1 f \left[(1-t) \, a + tb \right] dt$$

$$\leq \frac{1}{2} \left[(1-s)^2 \left(\bigtriangledown_- f (b) \right) (b-a) - s^2 \left(\bigtriangledown_+ f (a) \right) (b-a) \right].$$
(4)

The constant $\frac{1}{2}$ is sharp in both inequalities. The second inequality also holds for s=0 or s=1.

If $f:[a,b]\to\mathbb{R}$ is as in Theorem 2 and Gâteaux differentiable in $c:=(1-\lambda)\,a+\lambda b$, $\lambda\in(0,1)$ along the direction b-a, then we have the inequality:

$$\left(\frac{1}{2} - \lambda\right) \left(\nabla f\left(c\right)\right) \left(b - a\right) \le \left(1 - \lambda\right) f\left(a\right) + \lambda f\left(b\right) - \int_{0}^{1} f\left[\left(1 - t\right) a + tb\right] dt. \tag{5}$$

If f is as in Theorem 2, then

$$0 \leq \frac{1}{8} \left[\nabla_{+} f\left(\frac{a+b}{2}\right) (b-a) - \nabla_{-} f\left(\frac{a+b}{2}\right) (b-a) \right]$$

$$\leq \frac{f(a)+f(b)}{2} - \int_{0}^{1} f\left[(1-t) a + tb \right] dt$$

$$\leq \frac{1}{8} \left[\left(\nabla_{-} f(b) \right) (b-a) - \left(\nabla_{+} f(a) \right) (b-a) \right].$$

$$(6)$$

The constant $\frac{1}{8}$ is sharp in both inequalities.

2. The Results

Let $f: C \subset X \to \mathbb{R}$ be a convex function on C. We define the function $F_f: C \times C \to \mathbb{R}$ by

$$F_f(x,y) := \int_0^1 f((1-t)x + ty) dt.$$
 (7)

Theorem 3. Let $f: C \subset X \to \mathbb{R}$ be a convex function on C. Then the function F_f is convex on $C \times C$ and if $x_i, y_i \in C$ and $p_i \geq 0$ for i = 1, ..., n with $\sum_{i=1}^n p_i = 1$, then we have the inequalities

$$\sum_{i=1}^{n} p_{i} \int_{0}^{1} f((1-t)x_{i} + ty_{i}) dt \ge \int_{0}^{1} f\left((1-t)\sum_{i=1}^{n} p_{i}x_{i} + t\sum_{i=1}^{n} p_{i}y_{i}\right) dt$$

$$\ge f\left(\sum_{i=1}^{n} p_{i}\left(\frac{x_{i} + y_{i}}{2}\right)\right),$$
(8)

$$\sum_{i=1}^{n} p_i \left(\frac{f(x_i) + f(y_i)}{2} \right) \ge \sum_{i=1}^{n} p_i \int_0^1 f((1-t)x_i + ty_i) dt$$

$$\ge \sum_{i=1}^{n} p_i f\left(\frac{x_i + y_i}{2} \right) \ge f\left(\sum_{i=1}^{n} p_i \left(\frac{x_i + y_i}{2} \right) \right)$$
(9)

and

$$\sum_{i=1}^{n} p_{i} \left(\frac{f(x_{i}) + f(y_{i})}{2} \right) \ge \frac{1}{2} \left[f\left(\sum_{i=1}^{n} p_{i} x_{i} \right) + f\left(\sum_{i=1}^{n} p_{i} y_{i} \right) \right] \\
\ge \int_{0}^{1} f\left((1 - t) \sum_{i=1}^{n} p_{i} x_{i} + t \sum_{i=1}^{n} p_{i} y_{i} \right) dt. \tag{10}$$

Proof. Let (x,y), $(u,v) \in C \times C$ and $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$. Then $F_f(\alpha(x,y) + \beta(u,v)) = F_f(\alpha x + \beta u, \alpha y + \beta v)$

$$= \int_{0}^{1} f((1-t)(\alpha x + \beta u) + t(\alpha y + \beta v)) dt$$

$$= \int_{0}^{1} f(\alpha [(1-t)x + ty] + \beta [(1-t)u + tv]) dt$$

$$\leq \int_{0}^{1} [\alpha f((1-t)x + ty) + \beta f((1-t)u + tv)] dt$$

$$= \alpha \int_{0}^{1} f((1-t)x + ty) dt + \beta \int_{0}^{1} f((1-t)u + tv) dt$$

$$= \alpha F_{f}(x, y) + \beta F_{f}(u, v),$$

which proves the joint convexity of the function F_f .

By Jensen's inequality for the convex function F_f we have

$$\sum_{i=1}^{n} p_{i} F_{f}(x_{i}, y_{i}) \ge F_{f}\left(\sum_{i=1}^{n} p_{i}(x_{i}, y_{i})\right) = F_{f}\left(\sum_{i=1}^{n} p_{i} x_{i}, \sum_{i=1}^{n} p_{i} y_{i}\right),$$

which is equivalent to the first inequality in (8).

By Hermite-Hadamard inequality (HH) we have

$$\int_{0}^{1} f\left((1-t)\sum_{i=1}^{n} p_{i}x_{i} + t\sum_{i=1}^{n} p_{i}y_{i}\right) dt \ge f\left(\frac{\sum_{i=1}^{n} p_{i}x_{i} + \sum_{i=1}^{n} p_{i}y_{i}}{2}\right) dt$$

$$= f\left(\sum_{i=1}^{n} p_{i}\left(\frac{x_{i} + y_{i}}{2}\right)\right)$$

and the second part of (8) is proved.

From (HH) we also have for each $i \in \{1, ..., n\}$ that

$$\frac{f(x_i) + f(y_i)}{2} \ge \int_0^1 f[(1 - t) x_i + t y_i] dt \ge f\left(\frac{x_i + y_i}{2}\right).$$

If we multiply this inequality by $p_i \geq 0$ and sum over i from 1 to n we get the first and second inequality in (9).

The last part in (9) follows by Jensen's inequality. Let $u := \sum_{i=1}^{n} p_i x_i$ and $v := \sum_{i=1}^{n} p_i y_i$. By Hermite-Hadamard inequality (HH) we also have

$$\frac{f(u) + f(v)}{2} \ge \int_0^1 f[(1-t)u + tv] dt,$$

which produces the second inequality in (10).

By Jensen's inequality for f we have

$$\sum_{i=1}^{n} p_i f(x_i) \ge f\left(\sum_{i=1}^{n} p_i x_i\right)$$

and

$$\sum_{i=1}^{n} p_i f(y_i) \ge f\left(\sum_{i=1}^{n} p_i y_i\right).$$

If we sum these two inequalities and divide by 2 we get the first inequality in (10).

The following result also holds:

Theorem 4. With the assumptions of Theorem 3 we have

$$0 \leq \frac{1}{8} \left[\sum_{i=1}^{n} p_{i} \left(\nabla_{+} f\left(\frac{x_{i} + y_{i}}{2}\right) (y_{i} - x_{i}) \right) - \sum_{i=1}^{n} p_{i} \left(\nabla_{-} f\left(\frac{x_{i} + y_{i}}{2}\right) (y_{i} - x_{i}) \right) \right]$$

$$\leq \sum_{i=1}^{n} p_{i} \int_{0}^{1} f\left[(1 - t) x_{i} + t y_{i} \right] dt - \sum_{i=1}^{n} p_{i} f\left(\frac{x_{i} + y_{i}}{2}\right)$$

$$\leq \frac{1}{8} \left[\sum_{i=1}^{n} p_{i} (\nabla_{-} f(y_{i})) (y_{i} - x_{i}) - \sum_{i=1}^{n} p_{i} (\nabla_{+} f(x_{i})) (y_{i} - x_{i}) \right], \quad (11)$$

and

$$0 \leq \frac{1}{8} \left[\sum_{i=1}^{n} p_{i} \left(\nabla_{+} f\left(\frac{x_{i} + y_{i}}{2}\right) (y_{i} - x_{i}) \right) - \sum_{i=1}^{n} p_{i} \left(\nabla_{-} f\left(\frac{x_{i} + y_{i}}{2}\right) (y_{i} - x_{i}) \right) \right]$$

$$\leq \sum_{i=1}^{n} p_{i} \left(\frac{f(x_{i}) + f(y_{i})}{2} \right) - \sum_{i=1}^{n} p_{i} \int_{0}^{1} f((1 - t) x_{i} + t y_{i}) dt$$

$$\leq \frac{1}{8} \left[\sum_{i=1}^{n} p_{i} (\nabla_{-} f(y_{i})) (y_{i} - x_{i}) - \sum_{i=1}^{n} p_{i} (\nabla_{+} f(x_{i})) (y_{i} - x_{i}) \right]. \quad (12)$$

We also have

$$0 \leq \frac{1}{8} \left[\nabla_{+} f \left(\sum_{i=1}^{n} p_{i} \left(\frac{x_{i} + y_{i}}{2} \right) \right) \left(\sum_{i=1}^{n} p_{i} \left(y_{i} - x_{i} \right) \right) - \nabla_{-} f \left(\sum_{i=1}^{n} p_{i} \left(\frac{x_{i} + y_{i}}{2} \right) \right) \left(\sum_{i=1}^{n} p_{i} \left(y_{i} - x_{i} \right) \right) \right]$$

$$\leq \int_{0}^{1} f \left((1 - t) \sum_{i=1}^{n} p_{i} x_{i} + t \sum_{i=1}^{n} p_{i} y_{i} \right) dt - f \left(\sum_{i=1}^{n} p_{i} \left(\frac{x_{i} + y_{i}}{2} \right) \right)$$

$$\leq \frac{1}{8} \left[\left(\nabla_{-} f \left(\sum_{i=1}^{n} p_{i} y_{i} \right) \right) \left(\sum_{i=1}^{n} p_{i} \left(y_{i} - x_{i} \right) \right) - \left(\nabla_{+} f \left(\sum_{i=1}^{n} p_{i} x_{i} \right) \right) \left(\sum_{i=1}^{n} p_{i} \left(y_{i} - x_{i} \right) \right) \right]$$

$$(13)$$

and

$$0 \leq \frac{1}{8} \left[\nabla_{+} f \left(\sum_{i=1}^{n} p_{i} \left(\frac{x_{i} + y_{i}}{2} \right) \right) \left(\sum_{i=1}^{n} p_{i} \left(y_{i} - x_{i} \right) \right) - \nabla_{-} f \left(\sum_{i=1}^{n} p_{i} \left(\frac{x_{i} + y_{i}}{2} \right) \right) \left(\sum_{i=1}^{n} p_{i} \left(y_{i} - x_{i} \right) \right) \right]$$

$$\leq \frac{1}{2} \left[f \left(\sum_{i=1}^{n} p_{i} x_{i} \right) + f \left(\sum_{i=1}^{n} p_{i} y_{i} \right) \right] - \int_{0}^{1} f \left((1 - t) \sum_{i=1}^{n} p_{i} x_{i} + t \sum_{i=1}^{n} p_{i} y_{i} \right) dt$$

$$\leq \frac{1}{8} \left[\left(\nabla_{-} f \left(\sum_{i=1}^{n} p_{i} y_{i} \right) \right) \left(\sum_{i=1}^{n} p_{i} \left(y_{i} - x_{i} \right) \right) - \left(\nabla_{+} f \left(\sum_{i=1}^{n} p_{i} x_{i} \right) \right) \left(\sum_{i=1}^{n} p_{i} \left(y_{i} - x_{i} \right) \right) \right]. \quad (14)$$

Proof. From the inequality (3) we have for $a = x_i$ and $b = y_i$, where $i \in \{1, ..., n\}$ that

$$0 \leq \frac{1}{8} \left[\nabla_{+} f\left(\frac{x_{i} + y_{i}}{2}\right) (y_{i} - x_{i}) - \nabla_{-} f\left(\frac{x_{i} + y_{i}}{2}\right) (y_{i} - x_{i}) \right]$$

$$\leq \int_{0}^{1} f\left[(1 - t) x_{i} + t y_{i} \right] dt - f\left(\frac{x_{i} + y_{i}}{2}\right)$$

$$\leq \frac{1}{8} \left[(\nabla_{-} f(y_{i})) (y_{i} - x_{i}) - (\nabla_{+} f(x_{i})) (y_{i} - x_{i}) \right],$$

for any $i \in \{1, ..., n\}$.

If we multiply this inequality by $p_i \geq 0$ and sum over i from 1 to n, then we get

$$0 \leq \frac{1}{8} \sum_{i=1}^{n} p_{i} \left[\bigtriangledown_{+} f\left(\frac{x_{i} + y_{i}}{2}\right) (y_{i} - x_{i}) - \bigtriangledown_{-} f\left(\frac{x_{i} + y_{i}}{2}\right) (y_{i} - x_{i}) \right]$$

$$\leq \sum_{i=1}^{n} p_{i} \int_{0}^{1} f\left[(1 - t) x_{i} + t y_{i} \right] dt - \sum_{i=1}^{n} p_{i} f\left(\frac{x_{i} + y_{i}}{2}\right)$$

$$\leq \frac{1}{8} \sum_{i=1}^{n} p_{i} \left[(\bigtriangledown_{-} f(y_{i})) (y_{i} - x_{i}) - (\bigtriangledown_{+} f(x_{i})) (y_{i} - x_{i}) \right],$$

which is equivalent to (11).

The inequality (12) follows in a similar way by employing the inequality (6). The inequalities (13) and (14) follow by taking $a = \sum_{i=1}^{n} p_i x_i$ and $b = \sum_{i=1}^{n} p_i y_i$ in the inequalities (3) and (6).

3. Examples for Norms

Now, assume that $(X, \|\cdot\|)$ is a normed linear space. The function $f_0(s) = \frac{1}{2} \|x\|^2$, $x \in X$ is convex and thus the following limits exist

$$\begin{split} & (\mathrm{iv}) \ \left\langle x,y\right\rangle_s := \left(\bigtriangledown_+ f_0\left(y\right)\right)\left(x\right) = \lim_{t\to 0+} \left[\frac{\|y+tx\|^2 - \|y\|^2}{2t}\right]; \\ & (\mathrm{v}) \ \left\langle x,y\right\rangle_i := \left(\bigtriangledown_- f_0\left(y\right)\right)\left(x\right) = \lim_{s\to 0-} \left[\frac{\|y+sx\|^2 - \|y\|^2}{2s}\right]; \end{split}$$

$$(\mathbf{v}) \ \left\langle x,y\right\rangle_i := \left(\bigtriangledown_- f_0\left(y\right)\right)\left(x\right) = \lim_{s\to 0-} \left[\frac{\|y+sx\|^2 - \|y\|^2}{2s}\right];$$

for any $x, y \in X$. They are called the lower and upper semi-inner products associated to the norm $\|\cdot\|$.

For the sake of completeness we list here some of the main properties of these mappings that will be used in the sequel (see for example [1] or [5]), assuming that $p, q \in \{s, i\}$ and

- $\begin{array}{ll} \text{(a)} \ \langle x,x\rangle_p = \left\|x\right\|^2 \text{ for all } x \in X;\\ \text{(aa)} \ \langle \alpha x,\beta y\rangle_p = \alpha\beta \left\langle x,y\right\rangle_p \text{ if } \alpha,\,\beta \geq 0 \text{ and } x,\,y \in X; \end{array}$
- $\begin{array}{l} \text{(aaa)} \ \left| \langle x,y \rangle_p \right| \leq \|x\| \, \|y\| \text{ for all } x,\, y \in X; \\ \text{(av)} \ \left< \alpha x + y, x \right>_p = \alpha \, \left< x, x \right>_p + \left< y, x \right>_p \text{ if } x,\, y \in X \text{ and } \alpha \in \mathbb{R}; \\ \text{(v)} \ \left< -x, y \right>_p = \left< x, y \right>_q \text{ for all } x,\, y \in X; \\ \text{(va)} \ \left< x + y, z \right>_p \leq \|x\| \, \|z\| + \left< y, z \right>_p \text{ for all } x,\, y,\, z \in X; \\ \end{array}$
- (vaa) The mapping $\langle \cdot, \cdot \rangle_p$ is continuous and subadditive (superadditive) in the first variable for p = s (or p = i);
- (vaaa) The normed linear space $(X, \|\cdot\|)$ is smooth at the point $x_0 \in X \setminus \{0\}$ if and only if $\langle y, x_0 \rangle_s = \langle y, x_0 \rangle_i$ for all $y \in X$; in general $\langle y, x \rangle_i \leq \langle y, x \rangle_s$ for all $x, y \in X$;
 - (ax) If the norm $\|\cdot\|$ is induced by an inner product $\langle\cdot,\cdot\rangle$, then $\langle y,x\rangle_i=\langle y,x\rangle=\langle y,x\rangle_s$ for all $x, y \in X$.

Applying inequality (HH) for the convex function $f_r(x) = ||x||^r$, $r \ge 1$ one may deduce the inequality

$$\left\| \frac{x+y}{2} \right\|^r \le \int_0^1 \left\| (1-t) x + ty \right\|^r dt \le \frac{\left\| x \right\|^r + \left\| y \right\|^r}{2} \tag{15}$$

for any $x, y \in X$.

Let $(X, \|\cdot\|)$ be a normed linear space and $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$ be n-tuples of vectors in X, then for the probability distribution $p = (p_1, ..., p_n)$ and $r \ge 1$ we have by Theorem 3 for the convex function $f(x) = ||x||^r$ that

$$\sum_{i=1}^{n} p_{i} \int_{0}^{1} \left\| (1-t) x_{i} + t y_{i} \right\|^{r} dt \ge \int_{0}^{1} \left\| (1-t) \sum_{i=1}^{n} p_{i} x_{i} + t \sum_{i=1}^{n} p_{i} y_{i} \right\|^{r} dt \qquad (16)$$

$$\ge \left\| \sum_{i=1}^{n} p_{i} \left(\frac{x_{i} + y_{i}}{2} \right) \right\|^{r},$$

$$\sum_{i=1}^{n} p_{i} \left(\frac{\|x_{i}\|^{r} + \|y_{i}\|^{r}}{2} \right) \geq \sum_{i=1}^{n} \int_{0}^{1} p_{i} \|(1-t) x_{i} + t y_{i}\|^{r} dt$$

$$\geq \sum_{i=1}^{n} p_{i} \left\| \frac{x_{i} + y_{i}}{2} \right\|^{r} \geq \left\| \sum_{i=1}^{n} p_{i} \left(\frac{x_{i} + y_{i}}{2} \right) \right\|^{r}$$

$$(17)$$

and

$$\sum_{i=1}^{n} p_{i} \left(\frac{\|x_{i}\|^{r} + \|y_{i}\|^{r}}{2} \right) \ge \frac{1}{2} \left[\left\| \sum_{i=1}^{n} p_{i} x_{i} \right\|^{r} + \left\| \sum_{i=1}^{n} p_{i} y_{i} \right\|^{r} \right]$$

$$\ge \int_{0}^{1} \left\| (1-t) \sum_{i=1}^{n} p_{i} x_{i} + t \sum_{i=1}^{n} p_{i} y_{i} \right\|^{r} dt.$$

$$(18)$$

If we use Theorem 4 for the convex function $f(x) = \frac{1}{2} \|x\|^2$ then for $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$ n-tuples of vectors in X and for the probability distribution $p = (p_1, ..., p_n)$

we have

$$0 \leq \frac{1}{4} \left[\sum_{k=1}^{n} p_{k} \left\langle y_{k} - x_{k}, \frac{x_{k} + y_{k}}{2} \right\rangle_{s} - \sum_{k=1}^{n} p_{k} \left\langle y_{k} - x_{k}, \frac{x_{k} + y_{k}}{2} \right\rangle_{i} \right]$$

$$\leq \sum_{k=1}^{n} p_{k} \int_{0}^{1} \left\| (1 - t) x_{k} + t y_{k} \right\|^{2} dt - \sum_{k=1}^{n} p_{k} \left\| \frac{x_{k} + y_{k}}{2} \right\|^{2}$$

$$\leq \frac{1}{4} \left[\sum_{k=1}^{n} p_{k} \left\langle y_{k} - x_{k}, y_{k} \right\rangle_{i} - \sum_{k=1}^{n} p_{k} \left\langle y_{k} - x_{k}, x_{k} \right\rangle_{s} \right], \quad (19)$$

and

$$0 \leq \frac{1}{4} \left[\sum_{k=1}^{n} p_{k} \left\langle y_{k} - x_{k}, \frac{x_{k} + y_{k}}{2} \right\rangle_{s} - \sum_{k=1}^{n} p_{k} \left\langle y_{k} - x_{k}, \frac{x_{k} + y_{k}}{2} \right\rangle_{i} \right]$$

$$\leq \sum_{k=1}^{n} p_{k} \left(\frac{\|x_{k}\|^{2} + \|y_{k}\|^{2}}{2} \right) - \sum_{k=1}^{n} p_{k} \int_{0}^{1} \|(1 - t) x_{k} + t y_{k}\|^{2} dt$$

$$\leq \frac{1}{4} \left[\sum_{k=1}^{n} p_{k} \left\langle y_{k} - x_{k}, y_{k} \right\rangle_{i} - \sum_{k=1}^{n} p_{k} \left\langle y_{k} - x_{k}, x_{k} \right\rangle_{s} \right]. \quad (20)$$

We also have

$$0 \leq \frac{1}{4} \left[\left\langle \sum_{k=1}^{n} p_{k} \left(y_{k} - x_{k} \right), \sum_{k=1}^{n} p_{k} \left(\frac{x_{k} + y_{k}}{2} \right) \right\rangle_{s} - \left\langle \sum_{k=1}^{n} p_{k} \left(y_{k} - x_{k} \right), \sum_{k=1}^{n} p_{k} \left(\frac{x_{k} + y_{k}}{2} \right) \right\rangle_{i} \right]$$

$$\leq \int_{0}^{1} \left\| (1 - t) \sum_{k=1}^{n} p_{k} x_{k} + t \sum_{k=1}^{n} p_{k} y_{k} \right\|^{2} dt - \left\| \sum_{k=1}^{n} p_{k} \left(\frac{x_{k} + y_{k}}{2} \right) \right\|^{2}$$

$$\leq \frac{1}{4} \left[\left\langle \sum_{k=1}^{n} p_{k} \left(y_{k} - x_{k} \right), \sum_{k=1}^{n} p_{k} y_{k} \right\rangle_{i} - \left\langle \sum_{k=1}^{n} p_{k} \left(y_{k} - x_{k} \right), \sum_{k=1}^{n} p_{k} x_{k} \right\rangle_{i} \right]$$

$$(21)$$

and

$$0 \leq \frac{1}{4} \left[\left\langle \sum_{k=1}^{n} p_{k} \left(y_{k} - x_{k} \right), \sum_{k=1}^{n} p_{k} \left(\frac{x_{k} + y_{k}}{2} \right) \right\rangle_{s} - \left\langle \sum_{k=1}^{n} p_{k} \left(y_{k} - x_{k} \right), \sum_{k=1}^{n} p_{k} \left(\frac{x_{k} + y_{k}}{2} \right) \right\rangle_{i} \right]$$

$$\leq \frac{1}{2} \left[\left\| \sum_{k=1}^{n} p_{k} x_{k} \right\|^{2} + \left\| \sum_{k=1}^{n} p_{k} y_{k} \right\|^{2} \right] - \int_{0}^{1} \left\| (1 - t) \sum_{k=1}^{n} p_{k} x_{k} + t \sum_{k=1}^{n} p_{k} y_{k} \right\|^{2} dt$$

$$\leq \frac{1}{4} \left[\left\langle \sum_{k=1}^{n} p_{k} \left(y_{k} - x_{k} \right), \sum_{k=1}^{n} p_{k} y_{k} \right\rangle_{i} - \left\langle \sum_{k=1}^{n} p_{k} \left(y_{k} - x_{k} \right), \sum_{k=1}^{n} p_{k} x_{k} \right\rangle_{s} \right]. \quad (22)$$

4. Examples for Functions of a Real Variable

If $f: I \to \mathbb{R}$ is convex on the interval I and $p_i \geq 0, i \in \{1, ..., n\}$ with $\sum_{i=1}^n p_i = 1$, then

$$\sum_{i=1}^{n} p_{i} \int_{0}^{1} f((1-t)x_{i} + ty_{i}) dt \ge \int_{0}^{1} f\left((1-t)\sum_{i=1}^{n} p_{i}x_{i} + t\sum_{i=1}^{n} p_{i}y_{i}\right) dt$$
 (23)

$$\sum_{i=1}^{n} p_i \left(\frac{f(x_i) + f(y_i)}{2} \right) \ge \sum_{i=1}^{n} p_i \int_0^1 f((1-t)x_i + ty_i) dt.$$
 (24)

If $f: I \to \mathbb{R}$ is convex and differentiable on the interior of \mathring{I} then for all $x_i \in \mathring{I}$ and $p_i \geq 0, i \in \{1, ..., n\}$ with $\sum_{i=1}^n p_i = 1$, then by (11) and (12) we get

$$0 \leq \sum_{i=1}^{n} p_{i} \int_{0}^{1} f\left[(1-t) x_{i} + t y_{i}\right] dt - \sum_{i=1}^{n} p_{i} f\left(\frac{x_{i} + y_{i}}{2}\right)$$

$$\leq \frac{1}{8} \sum_{i=1}^{n} p_{i} \left[f'\left(y_{i}\right) - f'\left(x_{i}\right)\right] \left(y_{i} - x_{i}\right),$$

$$(25)$$

and

$$0 \le \sum_{i=1}^{n} p_{i} \left(\frac{f(x_{i}) + f(y_{i})}{2} \right) - \sum_{i=1}^{n} p_{i} \int_{0}^{1} f((1-t)x_{i} + ty_{i}) dt$$

$$\le \frac{1}{8} \sum_{i=1}^{n} p_{i} \left[f'(y_{i}) - f'(x_{i}) \right] (y_{i} - x_{i}).$$

$$(26)$$

If $f(t) = \frac{1}{t}$ with t > 0, then for $y_i \neq x_i$, $i \in \{1, ..., n\}$ we have

$$\int_0^1 f((1-t)x_i + ty_i) dt = \int_0^1 \frac{1}{(1-t)x_i + ty_i} dt = \frac{\ln y_i - \ln x_i}{y_i - x_i}$$

and

$$\int_0^1 \left((1-t) \sum_{i=1}^n p_i x_i + t \sum_{i=1}^n p_i y_i \right)^{-1} dt = \frac{\ln \left(\sum_{i=1}^n p_i x_i \right) - \ln \left(\sum_{i=1}^n p_i y_i \right)}{\sum_{i=1}^n p_i x_i - \sum_{i=1}^n p_i y_i},$$

provided $\sum_{i=1}^{n} p_i x_i \neq \sum_{i=1}^{n} p_i y_i$. From (23) we get

$$\sum_{i=1}^{n} p_i \frac{\ln y_i - \ln x_i}{y_i - x_i} \ge \frac{\ln \left(\sum_{i=1}^{n} p_i x_i\right) - \ln \left(\sum_{i=1}^{n} p_i y_i\right)}{\sum_{i=1}^{n} p_i x_i - \sum_{i=1}^{n} p_i y_i}$$

that is equivalent to

$$\ln \left(\prod_{i=1}^{n} \left(\frac{y_i}{x_i} \right)^{\frac{p_i}{y_i - x_i}} \right) \ge \ln \left[\left(\frac{\sum_{i=1}^{n} p_i x_i}{\sum_{i=1}^{n} p_i y_i} \right)^{\frac{1}{\sum_{i=1}^{n} p_i x_i - \sum_{i=1}^{n} p_i y_i}} \right]$$

and to

$$\prod_{i=1}^{n} \left(\frac{y_i}{x_i} \right)^{\frac{p_i}{y_i - x_i}} \ge \left(\frac{\sum_{i=1}^{n} p_i x_i}{\sum_{i=1}^{n} p_i y_i} \right)^{\frac{1}{\sum_{i=1}^{n} p_i x_i - \sum_{i=1}^{n} p_i y_i}} .$$
(27)

From (24) we get in a similar way that

$$\exp\left[\sum_{i=1}^{n} p_i \left(\frac{x_i + y_i}{2x_i y_i}\right)\right] \ge \prod_{i=1}^{n} \left(\frac{y_i}{x_i}\right)^{\frac{p_i}{y_i - x_i}},\tag{28}$$

from (25) we get

$$1 \le \frac{\prod_{i=1}^{n} \left(\frac{y_i}{x_i}\right)^{\frac{p_i}{y_i - x_i}}}{\exp\left[\sum_{i=1}^{n} p_i \left(\frac{2}{x_i + y_i}\right)\right]} \le \exp\left(\frac{1}{8} \sum_{i=1}^{n} p_i \frac{\left(x_i + y_i\right) \left(y_i - x_i\right)^2}{x_i^2 y_i^2}\right)$$
(29)

and from (26) we get

$$1 \le \frac{\exp\left[\sum_{i=1}^{n} p_{i}\left(\frac{x_{i}+y_{i}}{2x_{i}y_{i}}\right)\right]}{\prod_{i=1}^{n}\left(\frac{y_{i}}{x_{i}}\right)^{\frac{p_{i}}{y_{i}-x_{i}}}} \le \exp\left(\frac{1}{8}\sum_{i=1}^{n} p_{i}\frac{(x_{i}+y_{i})(y_{i}-x_{i})^{2}}{x_{i}^{2}y_{i}^{2}}\right).$$
(30)

The interested reader may apply some of the above inequalities for other instances of convex functions such as $f(t) = -\ln t$, $t \ln t$, exp t etc... and we omit the details.

References

- I. Ciorănescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
- [2] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure & Appl. Math., Volume 3, Issue 2, Article 31, 2002. [Online https://www.emis.de/journals/JIPAM/article183.html?sid=183].
- [3] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure & Appl. Math. Volume 3, Issue 3, Article 35, 2002. [Online https://www.emis.de/journals/JIPAM/article187.html?sid=187].
- [4] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. [Online https://rgmia.org/monographs/hermite_hadamard.html].
- [5] S. S. Dragomir, Semi-inner Products and Applications. Nova Science Publishers, Inc., Hauppauge, NY, 2004. x+222 pp. ISBN: 1-59033-947-9

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au

 URL : http://rgmia.org/dragomir

 2 DST-NRF Centre of Excellence, in the Mathematical and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa