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A NOTE ON NUMERICAL COMPARISON OF SOME

MULTIPLICATIVE BOUNDS RELATED TO WEIGHTED

ARITHMETIC AND GEOMETRIC MEANS

SILVESTRU SEVER DRAGOMIR AND ALASDAIR MCANDREW

Abstract. In this note we provided some numerical comparison for the upper and

lower bounds in some recent inequalities related to the famous Young’s inequality for
two positive numbers. We drew the conclusion that neither of the inequalities below

is always best.

1. Introduction

We consider the weighted Arithmetic and Geometric means defined by

Aν (a, b) := (1− ν) a+ νb, Gν (a, b) := a1−νbν ,

where a, b > 0 and ν ∈ [0, 1] . If ν = 1
2 we denote A (a, b) := a+b

2 and G (a, b) :=
√
ab, for

simplicity.
The following inequality

Gν (a, b) ≤ Aν (a, b) (1)

is well known in literature as either weighted Arithmetic mean-Geometric mean inequality
or as Young’s inequality.

We recall that Specht’s ratio is defined by

S (h) :=


h

1
h−1

e ln

(
h

1
h−1

) if h ∈ (0, 1) ∪ (1,∞) ,

1 if h = 1.

It is well known that limh→1 S (h) = 1, S (h) = S
(
1
h

)
> 1 for h > 0, h 6= 1. The function

is decreasing on (0, 1) and increasing on (1,∞) .
The following inequality provides a refinement and a multiplicative reverse for Young’s

inequality (1)

S
((a

b

)r)
≤ Aν (a, b)

Gν (a, b)
≤ S

(a
b

)
, (2)

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν}.
The second inequality in (2) is due to Tominaga [9] while the first one is due to Furuichi

[6].
We consider the Kantorovich’s ratio defined by

K (h) :=
(h+ 1)

2

4h
, h > 0. (3)
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The function K is decreasing on (0, 1) and increasing on [1,∞) , K (h) ≥ 1 for any h > 0
and K (h) = K

(
1
h

)
for any h > 0.

The following multiplicative refinement and reverse of Young inequality in terms of
Kantorovich’s ratio holds [

K
(a
b

)]r
≤ Aν (a, b)

Gν (a, b)
≤
[
K
(a
b

)]R
(4)

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν} and R = max {1− ν, ν} .
The first inequality in (4) was obtained by Zou et al. in [10] while the second by Liao

et al. [7].
In [10] the authors also showed that

S (hr) ≤ Kr (h) for h > 0 and r ∈
[
0,

1

2

]
implying that the lower bound in (4) is better than the lower bound from (2).

In the recent paper [2] Dragomir obtained for any a, b > 0, ν ∈ [0, 1],

Aν (a, b)

Gν (a, b)
≤ exp

[
4ν (1− ν)

(
K
(a
b

)
− 1
)]
, (5)

while in [3] the first author obtained for any a, b > 0, ν ∈ [0, 1],

exp

[
1

2
ν (1− ν)

(b− a)
2

max2 {a, b}

]
≤ Aν (a, b)

Gν (a, b)
(6)

≤ exp

[
1

2
ν (1− ν)

(b− a)
2

min2 {a, b}

]
,

see also the equivalent result from [1] that has been stated only for a < b.
In [5] the following asymmetric bound has been proven for any a, b > 0, ν ∈ [0, 1]

Aν (a, b)

Gν (a, b)
≤ min


(

exp
(
b
a − 1

)
b
a

)ν
,

 b
a

exp
(

1− 1
b
a

)
1−ν

 . (7)

It is therefore a natural question to compare the upper and lower bounds provided

above for the quotient Aν(a,b)
Gν(a,b)

.

In this note we provide some numerical comparison for the upper and lower bounds in
the above inequalities related to the famous Young’s inequality for two positive numbers.

2. Numerical Comparison for Weighted Bounds

In order to compare the upper bounds provided by the inequalities (4) and (5) we
consider the difference

D1 (b, ν) := (K (b))
max{ν,1−ν}

− exp [4ν (1− ν) (K (b)− 1)]

for b > 0 and v ∈ [0, 1] .
The plot of this difference in the [0, 2] × [0, 0.4] is depicted in Figure 1 showing that

neither of the upper bounds in (4) and (5) is better always.
For the inequalities (4) and (6) we consider the difference

D2 (b, ν) := (K (b))
max{ν,1−ν}

− exp

[
1

2
ν (1− ν)

(b− 1)
2

min2 {1, b}

]
for b > 0 and v ∈ [0, 1] .
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Figure 1

Figure 2

The plot of this difference in [1, 2]×[0, 0.5] is presented in Figure 2 showing that neither
of the upper bounds in (4) and (6) is better always.

Now, if we want to compare the upper bounds provided by (4) and (7) we need to
consider the difference

D3 (b, ν) := (K (b))
max{ν,1−ν}

−min


(

exp (b− 1)

b

)ν
,

(
b

exp
(
1− 1

b

))1−ν


for b > 0 and v ∈ [0, 1] .
The graph of this difference in the box [0, 2]× [0, 1] is incorporated in Figure 3 proving

that neither of the upper bounds in (4) and (7) is better always.
Now, for the inequalities (5) and (6) consider the difference

D4 (b, ν) := exp [4ν (1− ν) (K (b)− 1)]− exp

[
1

2
ν (1− ν)

(b− 1)
2

min2 {1, b}

]
for b > 0 and v ∈ [0, 1] .
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Figure 3

Figure 4

The graph of this difference in the box [0, 0.2]× [0, 0.4] is incorporated in Figure 4 and
shows that neither of the upper bounds in (5) and (6) is always best.

Further, we consider for the inequalities (6) and (7) the difference

D5 (b, ν) := exp [4ν (1− ν) (K (b)− 1)]

−min


(

exp (b− 1)

b

)ν
,

(
b

exp
(
1− 1

b

))1−ν


for b > 0 and v ∈ [0, 1] .
If we plot this difference on the box [0, 10]× [0, 0.1] , see Figure 5, then we can conclude

that neither of the upper bounds in (6) and (7) is always best.
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Figure 5

Figure 6

Moreover, consider the difference

D6 (b, ν) := exp

[
1

2
ν (1− ν)

(b− 1)
2

min2 {1, b}

]

−min


(

exp (b− 1)

b

)ν
,

(
b

exp
(
1− 1

b

))1−ν


for b > 0 and v ∈ [0, 1] .
The plot of this difference on the box [0, 5] × [0, 0.1] is incorporated in Figure 6 and

shows that neither of the upper bounds in (5) and (7) is better always.
For the lower bounds, we need to study the differences

D7 (b, ν) := S
(
bmin{ν,1−ν}

)
− exp

[
1

2
ν (1− ν)

(b− 1)
2

max2 {1, b}

]
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Figure 7

Figure 8

and

D8 (b, ν) := (K (b))
min{ν,1−ν} − exp

[
1

2
ν (1− ν)

(b− 1)
2

max2 {1, b}

]
for b > 0 and v ∈ [0, 1] .

The plot of the difference D7 (b, ν) in the box [0, 1] × [0, 1] is depicted in Figure 7
showing that neither of the lower bounds in (2) and (6) is always best.

Finally, if we plot the difference D8 (b, ν) on the box [0, 1] × [0, 1] , see Figure 8, we
conclude that neither of the lower bounds from (4) and (6) is always best.

3. Numerical Comparison with Tominaga’s Bound

In this section we provide a numerical comparison of the weighted upper bounds from
(4), (5), (6) and (7) with Tominaga’s upper bound (2) which does not depend on the
weight ν ∈ [0, 1] .

Consider the difference D9 (b, ν) defined by

D9 (b, ν) := (K (b))
max{ν,1−ν}

− S (b)
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Figure 9

Figure 10

for b > 0 and ν ∈ [0, 1] .
The plot of D9 (b, ν) in the box [0, 0.5] × [0, 1] is depicted in Figure 9 and shows that

neither of the upper bounds (4) and (2) is always best.
Now, consider the difference D10 (b, ν) defined by

D10 (b, ν) := exp [4ν (1− ν) (K (b)− 1)]− S (b)

for b > 0 and ν ∈ [0, 1] .
The graph of the difference D10 (b, ν) in the box [0, 0.1]× [0, 1] is incorporated in Figure

10 showing that neither of the bounds (5) and (2) is always best.
Further, consider the difference

D11 (b, ν) := exp

[
1

2
ν (1− ν)

(b− 1)
2

min2 {1, b}

]
− S (b)

for b > 0 and ν ∈ [0, 1] .
The plot of D11 (b, ν) in the box [1, 2]× [0, 0.3] is depicted in Figure 11 and shows that

neither of the upper bounds (6) and (2) is always best.
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Figure 11

Figure 12

Finally, define the difference

D12 (b, ν) := min


(

exp (b− 1)

b

)ν
,

(
b

exp
(
1− 1

b

))1−ν
− S (b)

for b > 0 and ν ∈ [0, 1] .
The plot of this difference in the box [0, 0.5]×[0.5, 1] from Figure 12 proves that neither

of the upper bounds (7) and (2) is always best.
We can draw the final conclusion that: Neither of the upper and lower bounds from

the inequalities (2), (4), (5), (6) and (7) is always best.
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