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POSITIVE PERIODIC SOLUTIONS FOR SECOND-ORDER NEUTRAL

DIFFERENCE EQUATIONS WITH VARIABLE COEFFICIENTS

ABDELOUAHEB ARDJOUNI AND AHCENE DJOUDI

Abstract. In this article, we obtain sufficient conditions for the existence of pos-

itive periodic solutions for a second-order neutral difference equation with variable

coefficients. The main tool employed here is the Krasnoselskii fixed point theorem
dealing with a sum of two mappings, one is a contraction and the other is a completely

continuous.

1. Introduction

Due to their importance in numerous applications, for example, physics, population
dynamics, industrial robotics, and other areas, many authors are studying the existence,
uniqueness, stability and positivity of solutions for delay differential and difference equa-
tions, see the references [1]–[17], [19]–[22], [24]–[27] and the references therein.

In this paper, we are interested in the analysis of qualitative theory of positive peri-
odic solutions of delay difference equations. Motivated by the papers [1]–[17], [19]–[22],
[24]–[27] and the references therein, we concentrate on the existence of positive periodic
solutions for the second-order neutral difference equation

42 (x (t)− c (t)x (t− τ)) = a (t)x (t+ 1)− f (t, x (t− τ)) , (1)

where a and τ are positive ω-periodic sequences, c : Z → R is ω-periodic sequence and
f : Z × R → [0,∞) is continuous in x and ω-periodic in t with ω is a positive integer
constant. Throughout this paper 4 denotes the forward difference operator 4x (t) =
x (t+ 1) − x (t) for any sequence {x (t) , t ∈ Z}. For more on the calculus of difference
equations, we refer the reader to [18].

The purpose of this paper is to use Krasnoselskii’s fixed point theorem to show the
existence of positive periodic solutions for equation (1) with 1 < c (t) <∞, −∞ < c (t) <
−1, 0 ≤ c (t) < 1 and −1 < c (t) ≤ 0 as four different ranges for the variable coefficient c.
To apply Krasnoselskii’s fixed point theorem we need to construct two mappings, one is
a contraction and the other is a completely continuous.

The organization of this paper is as follows. In Section 2, we introduce some notations
and lemmas, and state some preliminary results needed in later sections, then we give the
Green’s function of (1), which plays an important role in this paper. Also, we present the
inversion of (1), and Krasnoselskii’s fixed point theorem. For details on Krasnoselskii’s
theorem we refer the reader to [23]. In Sections 3 and 4, we present our main results on
existence of positive periodic solutions of (1).

2. Preliminaries

Let ω be an integer such that ω ≥ 1. Define Cω = {x ∈ C (Z,R) : x (t+ ω) = x (t)}
where C (Z,R) is the space of all real valued functions. Then (Cω, ‖.‖) is a Banach space
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with the maximum norm

‖x‖ = max
t∈[0,ω−1]∩Z

|x (t)| .

Define

C+
ω = {x ∈ Cω : x > 0} , C−ω = {x ∈ Cω : x < 0} .

Denote

M = max {a (t) : t ∈ [0, ω − 1] ∩ Z} , m = min {a (t) : t ∈ [0, ω − 1] ∩ Z} , β =
√
M.

Lemma 1 ([1]). The equation

42y (t)−My (t+ 1) = h (t) , h ∈ C−ω ,

has a ω-periodic solution

y (t) =

t+ω−1∑
s=t

G (t, s) (−h (s)) , G (t, s) =
r2t+ω + r2s+2

rt+s (r2 − 1) (rω − 1)
,

where

r =
1

2

(
2 + β2 + β

√
β2 + 4

)
.

Lemma 2. G (t, s) > 0 and
t+ω−1∑
s=t

G (t, s) =
1

M
for all t ∈ [0, ω − 1] ∩ Z and s ∈

[t, t+ ω − 1] ∩ Z.

Proof. By the definition of G (t, s), it is clear that G (t, s) > 0 and

t+ω−1∑
s=t

G (t, s) =

t+ω−1∑
s=t

r2t+ω + r2s+2

rt+s (r2 − 1) (rω − 1)

=
1

(r2 − 1) (rω − 1)

t+ω−1∑
s=t

(
rt−s+ω + r−t+s+2

)
=

1

(r2 − 1) (rω − 1)

{
rt+ω

t+ω−1∑
s=t

(
1

r

)s
+ r−t+2

t+ω−1∑
s=t

(r)
s

}

=
1

(r2 − 1) (rω − 1)

{
r (rω − 1)

r − 1
+
r2 (rω − 1)

r − 1

}
=

r

(r − 1) (r2 − 1)
+

r2

(r − 1) (r2 − 1)

=
r

(r − 1)
2 =

1

β2
=

1

M
.

�

Corollary 1. G (t+ τ, s) > 0 and
t+τ+ω−1∑
s=t+τ

G (t+ τ, s) =
1

M
for all t ∈ [0, ω − 1]∩Z and

s ∈ [t+ τ, t+ τ + ω − 1] ∩ Z.

Lemma 3. The equation

42y (t)− a (t) y (t+ 1) = h (t) , h ∈ C−ω , (2)

has a positive ω-periodic solution

y (t) = (Ph) (t) = (I − TB)
−1
Th (t) ,
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where

(Th) (t) =

t+ω−1∑
s=t

G (t, s) (−h (s)) , (By) (t) = [−M + a (t)] y (t+ 1) .

Proof. Clearly T and B are completely continuous, (Th) (t) > 0 for h (t) < 0 and ‖B‖ ≤
(M −m). By Lemma 1, the solution of (2) can be written in the form

y (t) = (Th) (t) + (TBy) .

Since

‖TB‖ ≤ ‖T‖ ‖B‖ ≤ 1

M
(M −m) = 1− m

M
< 1,

then
y (t) = (I − TB)

−1
(Th) (t) = (Ph) (t) .

It is obvious that y is a positive ω-periodic solution of (2) for any h ∈ C−ω . �

Lemma 4. P is completely continuous and satisfies

0 < (Th) (t) ≤ (Ph) (t) ≤ M

m
‖Th‖ , h ∈ C−ω .

Proof. By Neumann expansions of P , we have

P = (I − TB)
−1
T

=
(
I + TB + (TB)

2
+ · · ·+ (TB)

n
+ · · ·

)
T

= T + TBT + (TB)
2
T + · · ·+ (TB)

n
T + · · · . (3)

Since T and B are completely continuous, so is P . Moreover, by (3), and recalling that
‖TB‖ ≤ 1− m

M and (Th) (t) > 0 for h (t) < 0, we get

(Th) (t) ≤ (Ph) (t) ≤ M

m
‖Th‖ , h ∈ C−ω .

�

The following lemma is essential for our results on existence of positive periodic solution
of (1).

Lemma 5. If x ∈ Cω then x is a solution of equation (1) if and only if

x (t) = c (t)x (t− τ) + P (−f (t, x (t− τ)) + a (t) c (t+ 1)x (t+ 1− τ)) . (4)

Proof. Let x ∈ Cω be a solution of (1). Rewrite (1) as

42 (x (t)− c (t)x (t− τ))−M (x (t+ 1)− c (t+ 1)x (t+ 1− τ))

= (−M + a (t)) (x (t+ 1)− c (t+ 1)x (t+ 1− τ))

− f (t, x (t− τ)) + a (t) c (t+ 1)x (t+ 1− τ)

= B (x (t)− c (t)x (t− τ))− f (t, x (t− τ)) + a (t) c (t+ 1)x (t+ 1− τ) .

From Lemma 1, we have

x (t)− c (t)x (t− τ) = TB (x (t)− c (t)x (t− τ))

+ T (−f (t, x (t− τ)) + a (t) c (t+ 1)x (t+ 1− τ)) .

This yields

(I − TB) (x (t)− c (t)x (t− τ))

= T (−f (t, x (t− τ)) + a (t) c (t+ 1)x (t+ 1− τ)) .
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Therefore

x (t)− c (t)x (t− τ)

= (I − TB)
−1
T (−f (t, x (t− τ)) + a (t) c (t+ 1)x (t+ 1− τ))

= P (−f (t, x (t− τ)) + a (t) c (t+ 1)x (t+ 1− τ)) .

Obviously

x (t) = c (t)x (t− τ) + P (−f (t, x (t− τ)) + a (t) c (t+ 1)x (t+ 1− τ)) .

This completes the proof. �

Corollary 2. Suppose that c (t) 6= 0 for all t ∈ Z. If x ∈ Cω then x is a solution of
equation (1) if and only if

x (t) =
x (t+ τ)

c (t+ τ)
+

1

c (t+ τ)
P (−f (t+ τ, x (t)) + a (t+ τ) c (t+ τ + 1)x (t+ 1)) . (5)

Lastly in this section, we state Krasnoselskii’s fixed point theorem which enables us to
prove the existence of positive periodic solutions to (1). For its proof we refer the reader
to [23].

Theorem 1 (Krasnoselskii). Let D be a closed bounded convex nonempty subset of a
Banach space (B, ‖.‖). Suppose that A and B map D into B such that

(i) x, y ∈ D, implies Ax+ By ∈ D,
(ii) A is completely continuous,
(iii) B is a contraction mapping.

Then there exists z ∈ D with z = Az + Bz.

3. Existence of positive periodic solutions in the case |c (t)| > 1

To apply Theorem 1, we need to define a Banach space B, a closed convex subset D
of B and construct two mappings, one is a contraction and the other is a completely
continuous. So, we let (B, ‖.‖) = (Cω, ‖.‖) and D = {ϕ ∈ B : L ≤ ϕ ≤ K}, where L and
K are positive constants. In this section we obtain the existence of a positive periodic
solution of (1) by considering the two cases; 1 < c (t) < ∞ and −∞ < c (t) < −1 for all
t ∈ Z.

In the case 1 < c (t) <∞, we assume that there exist positive constants c1 and c2 such
that

c1 ≤ c (t) ≤ c2, for all t ∈ [0, ω − 1] ∩ Z, (6)

c1 > 1, (7)

and for all t ∈ [0, ω − 1] ∩ Z, x ∈ D,

(c2 − 1)ML ≤ f (t+ τ, x (t))− a (t+ τ) c (t+ τ + 1)x (t+ 1) ≤ (c1 − 1)mK. (8)

We express equation (5) as

ϕ (t) = (B1ϕ) (t) + (A1ϕ) (t) := (H1ϕ) (t) ,

where A1,B1 : D→ B are defined by

(A1ϕ) (t) =
1

c (t+ τ)
P (−f (t+ τ, ϕ (t)) + a (t+ τ) c (t+ τ + 1)ϕ (t+ 1)) , (9)

and

(B1ϕ) (t) =
ϕ (t+ τ)

c (t+ τ)
. (10)
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Lemma 6. Suppose that (6) and (7) hold. If B1 is given by (10), then B1 : D → B is a
contraction.

Proof. Let B1 be defined by (10). It is easy to show that (B1ϕ) (t+ ω) = (B1ϕ) (t). So,
for any ϕ,ψ ∈ D, we have

|(B1ϕ) (t)− (B1ψ) (t)| ≤
∣∣∣∣ϕ (t+ τ)

c (t+ τ)
− ψ (t+ τ)

c (t+ τ)

∣∣∣∣ ≤ 1

c1
‖ϕ− ψ‖ .

Then ‖B1ϕ− B1ψ‖ ≤
1

c1
‖ϕ− ψ‖. Thus B1 : D→ B is a contraction by (7). �

Besides, by the complete continuity of P , it is easy to verify the following lemma.

Lemma 7. Suppose that the conditions (6)-(8) hold. Then A1 : D → B is completely
continuous.

Theorem 2. Suppose (6)-(8) hold. Then equation (1) has a positive ω-periodic solution
x in the subset D.

Proof. By Lemma 6, the operator B1 : D→ B is a contraction. Also, from Lemma 7, the
operator A1 : D→ B is completely continuous. Moreover, we claim that B1ψ +A1ϕ ∈ D
for all ϕ,ψ ∈ D. Since

f (t+ τ, ϕ (t))− a (t+ τ) c (t+ τ + 1)ϕ (t+ 1) ≥ (c2 − 1)ML > 0

which implies

−f (t+ τ, ϕ (t)) + a (t+ τ) c (t+ τ + 1)ϕ (t+ 1) < 0,

then for any ϕ,ψ ∈ D, by Lemma 2 and Lemma 4, we have

(B1ψ) (t) + (A1ϕ) (t)

=
ψ (t+ τ)

c (t+ τ)
+

1

c (t+ τ)
P (−f (t+ τ, ϕ (t)) + a (t+ τ) c (t+ τ + 1)ϕ (t+ 1))

≤ 1

c1
ψ (t+ τ) +

M

c1m
‖T (−f (t+ τ, ϕ (t)) + a (t+ τ) c (t+ τ + 1)ϕ (t+ 1))‖

≤ K

c1
+

M

c1m
max

t∈[0,ω−1]∩Z

∣∣∣∣∣
t+τ+ω−1∑
s=t+τ

G (t+ τ, s) (f (s+ τ, ϕ (s))

−a (s+ τ) c (s+ τ + 1)ϕ (s+ 1))|

≤ K

c1
+

M

c1m
max

t∈[0,ω−1]∩Z

t+τ+ω−1∑
s=t+τ

G (t+ τ, s) (f (s+ τ, ϕ (s))

−a (s+ τ) c (s+ τ + 1)ϕ (s+ 1))

≤ K

c1
+

M

c1m

t+τ+ω−1∑
s=t+τ

G (t+ τ, s) (c1 − 1)mK

=
K

c1
+

M

c1m
(c1 − 1)mK

1

M
= K.
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On the other hand, Lemma 2 and Lemma 4,

(B1ψ) (t) + (A1ϕ) (t)

=
ψ (t+ τ)

c (t+ τ)
+

1

c (t+ τ)
P (−f (t+ τ, ϕ (t)) + a (t+ τ) c (t+ τ + 1)ϕ (t+ 1))

≥ 1

c2
ψ (t+ τ) +

1

c2

t+τ+ω−1∑
s=t+τ

G (t+ τ, s) (f (s+ τ, ϕ (s))− a (s+ τ) c (s+ τ + 1)ϕ (s+ 1))

≥ L

c2
+

1

c2

t+τ+ω−1∑
s=t+τ

G (t+ τ, s) (c2 − 1)ML

=
L

c2
+

1

c2
(c2 − 1)ML

1

M
= L.

Then B1ψ + A1ϕ ∈ D for all ϕ,ψ ∈ D. Clearly, all the hypotheses of the Krasnoselskii
theorem are satisfied. Thus there exists a fixed point x ∈ D such that x = A1x + B1x.
By Lemma 5 this fixed point is a solution of (1) and the proof is complete. �

In the case −∞ < c (t) < −1, we substitute conditions (6)-(8) with the following
conditions respectively. We assume that there exist negative constants c3 and c4 such
that

c3 ≤ c (t) ≤ c4, for all t ∈ [0, ω − 1] ∩ Z, x ∈ D, (11)

c4 < −1, (12)

and for all t ∈ [0, ω − 1] ∩ Z, x ∈ D(
−c3L+

c3
c4
K

)
M ≤ −f (t+ τ, x (t)) + a (t+ τ) c (t+ τ + 1)x (t+ 1) ≤ −c4mK. (13)

We express equation (5) as

ϕ (t) = (B2ϕ) (t) + (A2ϕ) (t) := (H2ϕ) (t) ,

where A2,B2 : D→ B are defined by

(A2ϕ) (t) =
−1

c (t+ τ)
P (f (t+ τ, ϕ (t))− a (t+ τ) c (t+ τ + 1)ϕ (t+ 1)) , (14)

and

(B2ϕ) (t) =
ϕ (t+ τ)

c (t+ τ)
. (15)

Lemma 8. Suppose that (11) and (12) hold. If B2 is given by (15), then B2 : D→ B is
a contraction.

Proof. Let B2 be defined by (15). It is easy to show that (B2ϕ) (t+ ω) = (B2ϕ) (t). So,
for any ϕ,ψ ∈ D, we have

|(B2ϕ) (t)− (B2ψ) (t)| ≤
∣∣∣∣ϕ (t+ τ)

c (t+ τ)
− ψ (t+ τ)

c (t+ τ)

∣∣∣∣ ≤ −1

c4
‖ϕ− ψ‖ .

Then ‖B2ϕ− B2ψ‖ ≤
−1

c4
‖ϕ− ψ‖. Thus B2 : D→ B is a contraction by (12). �

Besides, by the complete continuity of P , it is easy to verify the following lemma.

Lemma 9. Suppose that the conditions (11)-(13) hold. Then A2 : D → B is completely
continuous.
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Theorem 3. Suppose (11)-(13) hold. Then equation (1) has a positive ω-periodic solution
x in the subset D.

Proof. By Lemma 8, the operator B2 : D→ B is a contraction. Also, from Lemma 9, the
operator A2 : D→ B is completely continuous. Moreover, we claim that B2ψ +A2ϕ ∈ D
for all ϕ,ψ ∈ D. In fact, for any ϕ,ψ ∈ D, by Lemma 2 and Lemma 4, we have

(B2ψ) (t) + (A2ϕ) (t)

=
ψ (t+ τ)

c (t+ τ)
− 1

c (t+ τ)
P (f (t+ τ, ϕ (t))− a (t+ τ) c (t+ τ + 1)ϕ (t+ 1))

≤ − M

c4m
‖T (f (t+ τ, ϕ (t))− a (t+ τ) c (t+ τ + 1)ϕ (t+ 1))‖

≤ − M

c4m
max

t∈[0,ω−1]∩Z

∣∣∣∣∣
t+τ+ω−1∑
s=t+τ

G (t+ τ, s) (−f (s+ τ, ϕ (s))

+a (s+ τ) c (s+ τ + 1)ϕ (s+ 1))|

≤ − M

c4m

t+τ+ω−1∑
s=t+τ

G (t+ τ, s) (−f (s+ τ, ϕ (s)) + a (s+ τ) c (s+ τ + 1)ϕ (s+ 1))

≤ − M

c4m

t+τ+ω−1∑
s=t+τ

G (t+ τ, s) (−c4mK)

= − M

c4m
(−c4mK)

1

M
= K.

On the other hand, Lemma 2 and Lemma 4,

(B2ψ) (t) + (A2ϕ) (t)

=
ψ (t+ τ)

c (t+ τ)
− 1

c (t+ τ)
P (f (t+ τ, ϕ (t))− a (t+ τ) c (t+ τ + 1)ϕ (t+ 1))

≥ K

c4
− 1

c3

t+τ+ω−1∑
s=t+τ

G (t+ τ, s) (−f (t+ τ, ϕ (t)) + a (t+ τ) c (t+ τ + 1)ϕ (t+ 1))

≥ K

c4
− 1

c3

t+τ+ω−1∑
s=t+τ

G (t+ τ, s)

(
−c3L+

c3
c4
K

)
M

=
K

c4
− 1

c3

(
−c3L+

c3
c4
K

)
M

1

M

= L.

Then B2ψ + A2ϕ ∈ D for all ϕ,ψ ∈ D. Clearly, all the hypotheses of the Krasnoselskii
theorem are satisfied. Thus there exists a fixed point x ∈ D such that x = A2x + B2x.
By Lemma 5 this fixed point is a solution of (1) and the proof is complete. �

4. Existence of positive periodic solutions in the case |c (t)| < 1

In this section we obtain the existence of a positive periodic solution of (1) by consid-
ering the two cases; 0 ≤ c (t) < 1 and −1 < c (t) ≤ 0 for all t ∈ Z.

In the case 0 ≤ c (t) < 1, we assume that there exists positive constant c5 such that

0 ≤ c (t) ≤ c5, for all t ∈ [0, ω − 1] ∩ Z, (16)
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c5 < 1, (17)

and for all t ∈ [0, ω − 1] ∩ Z, x ∈ D

ML ≤ f (t, x (t− τ))− a (t) c (t+ 1)x (t+ 1− τ) ≤ (1− c5)mK. (18)

We express equation (4) as

ϕ (t) = (B3ϕ) (t) + (A3ϕ) (t) := (H3ϕ) (t) ,

where A3,B3 : D→ B are defined by

(A3ϕ) (n) = P (−f (t, ϕ (t− τ)) + a (t) c (t+ 1)ϕ (t+ 1− τ)) , (19)

and

(B3ϕ) (n) = c (t)ϕ (t− τ) . (20)

Theorem 4. Suppose (16)-(18) hold. Then equation (1) has a positive ω-periodic solution
x in the subset D.

Proof. The proof is similar to that Theorem 2, so it is omitted. �

In the case −1 < c (t) ≤ 0, we substitute conditions (16)-(18) with the following
conditions respectively. We assume that there exists negative constant c6 such that

c6 ≤ c (t) ≤ 0, for all n ∈ [0, ω − 1] ∩ Z, (21)

c6 > −1, (22)

and for all t ∈ [0, ω − 1] ∩ Z, x ∈ D

(L− c6K)M ≤ −f (t, x (t− τ)) + a (t) c (t+ 1)x (t+ 1− τ) ≤ mK. (23)

We express equation (4) as

ϕ (t) = (B4ϕ) (t) + (A4ϕ) (t) := (H4ϕ) (t) ,

where A4,B4 : D→ B are defined by

(A4ϕ) (n) = −P (f (t, ϕ (t− τ))− a (t) c (t+ 1)ϕ (t+ 1− τ)) , (24)

and

(B4ϕ) (n) = c (t)ϕ (t− τ) . (25)

Theorem 5. Suppose (21)-(23) hold. Then equation (1) has a positive ω-periodic solution
x in the subset D.

Proof. The proof is similar to that Theorem 3, so it is omitted. �
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