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EXISTENCE AND UNIQUENESS THEOREMS FOR FOURTH-ORDER

EQUATIONS WITH BOUNDARY CONDITIONS

ROWAIDA ALRAJHI AND LAZHAR BOUGOFFA

Abstract. The purpose of this paper is to prove the existence and uniqueness theo-

rem of the boundary value problem for fourth-order differential equations

u(4) + q(x)u(x) = g(x), 0 < x < 1,

subject to the BC:
u(0) = u′(0) = u′′(1) = u′′′(1) = 0

in the Sobolev space H4([0, 1]) by using an a priori estimate. We also investigate the

Schauder’s fixed point theorem for proving the existence theorem of the boundary

value problem for fourth-order nonlinear differential equations

u(4) = f(x, u′, u′, u′′, u′′′), 0 < x < 1,

under the above boundary conditions (BC), where f : [0, 1]×R4 −→ R is a continuous

function and satisfies

|f(x, u, v, w, z)| ≤ a + a0|u|+ a1|v|+ a2|w|+ a3|z|,
where a, ai > 0, i = 0, ..., 3.

1. Introduction

In [1], the author considered the following linear boundary value problem for fourth-
order differential equation:

u(4)(x) + q(x)u(x) = g(x), 0 < x < 1, (1)

u(0) = a, u(1) = b, u′′(0) = c, u′′(1) = d, (2)

where q and g are continuous functions on [0, 1], and established a sufficient condition
sup0≤x≤1 | q(x) |< π4 that guarantees a unique solution for Pr.(1)-(2). This problem is
used in different areas of physics, engineering and mathematics such as plate deflection
theory. The analytical solution of Pr.(1)-(2) is given by Timoshenko and Woinowsky-
Krieger [2] provided the functions q(x) and g(x) are constants. Also, the use of a matrix
and power series methods for solving this problem are given in [3].
Yang [4] extended Pr.(1)-(2) and considered the following nonlinear problem

u(4) = g(x, u, u′′), 0 < x < 1,

subject to (2), and established a result on the existence and uniqueness theorem under a
suitable condition

| g(x, y, z) |≤ a | y | +b | z | +c, a, b, c > 0,
a

π4
+

b

π2
< 1.

In this paper, we consider the beam equation (1) under various boundary conditions:

u(0) = u′(0) = u′′(1) = u′′′(1) = 0, (3)
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which correspond to a beam clamped at x = 0 and free at x = 1 and prove some results
on the existence and uniqueness theorems for Eq.(1) and Eq.(3) in the Sobolev space
H4([0, 1]). The proof is based on an a priori estimate and the density of the range of the
linear operator generated by the studied problem. We also consider the following general
nonlinear problem

u(4) = f(x, u, u′, u′′, u′′′), 0 < x < 1, (4)

subject to (3), where f : [0, 1] × R4 −→ R is a continuous function. A result on the
existence theorem is proved under the condition

|f(x, u, v, w, z)| ≤ a+ a0|u|+ a1|v|+ a2|w|+ a3|z|,

where a, ai > 0, i = 0, ..., 3.

2. The linear BVP problem Eq.(1) with Eq.(3)

2.1. A result on the existence and uniqueness theorem in H4([0, 1]). Rewrite the
above boundary value problem Eq. (1) and Eq. (3) in the linear equation of the form

zu = g, u ∈ U,

where

z : D(z) ⊂ U → L2 : zu = u(4) + q(x)u

and U is a Hilbert space:

U =

{
u : u,

diu

dxi
∈ L2(0, 1), i = 1, ..., 4.

}
with respect to the norm

||u||2U =

∫ 1

0

[
u2 +

(
du

dx

)2

+

(
d2u

dx2

)2

+

(
d3u

dx3

)2

+

(
d4u

dx4

)2
]
dx <∞,

D(z) = {u ∈ U : u(0) = u′(0) = u′′(1) = u′′′(1) = 0} .
The purpose of this section is to establish the uniqueness solution in U.

Lemma 1 ( Wirtinger’s Inequality). Suppose u ∈ C1[a, b] with u(a) = 0 or u(b) = 0.
Then ∫ b

a

u2(x)dx ≤ 4(b− a)2

π2

∫ b

a

(u′(x))2dx.

2.2. A priori estimate. For u ∈ U, we define the operator M by Mu ≡ u and consider
the scalar product (zu, Mu)L2

.

Employing integration by parts, and taking into account that the BC (3), we obtain

(zu, u)L2
=

∫ 1

0

(
d2u

dx2

)2

dx+

∫ 1

0

q(x)u2dx.

The scalar product (zu, Mu)L2
can be estimated by means of the Cauchy-Schwarz-

Bunyakovski inequality and the ε− inequality

2uv ≤ εu2 +
1

ε
v2, u, v ≥ 0, ε > 0,

| (zu, Mu)L2
| ≤ 1

2ε1

∫ 1

0

g2(x)dx+
ε1
2

∫ 1

0

u2(x)dx, ε1 > 0.
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If we suppose that 0 < α ≤ q(x) ≤ β for all x ∈ [0, 1], then

(α− ε1
2

)

∫ 1

0

u2dx+

∫ 1

0

(
d2u

dx2

)2

dx ≤ 1

2ε1

∫ 1

0

g2(x)dx. (5)

From Eq.(1), we have
d4u

dx4
= g(x)− q(x)u

and therefore it follows that

ε2

∫ 1

0

(
d4u

dx4

)2

dx ≤ 2ε2

(∫ 1

0

g2(x)dx+ β2

∫ 1

0

u2dx

)
, ε2 > 0.

Adding this estimate with inequality (5), we obtain

(α− ε1
2
−2ε2β

2)

∫ 1

0

u2dx+

∫ 1

0

(
d2u

dx2

)2

dx+ ε2

∫ 1

0

(
d4u

dx4

)2

dx ≤ (2ε2 +
1

2ε1
)

∫ 1

0

g2(x)dx.

(6)
Adding also the following Wirtinger type inequalities [5]∫ 1

0

(
du

dx

)2

dx ≤ 4

π2

∫ 1

0

(
d2u

dx2

)2

dx, u′(0) = 0

and ∫ 1

0

(
d3u

dx3

)2

dx ≤ 4

π2

∫ 1

0

(
d4u

dx4

)2

dx, u′′′(0) = 0 or u′′′(1) = 0

to (6) and choosing εi, i = 1, 2 to be sufficiently small so that α − ε1
2 − 2ε2β

2 > 0 and
4
π2 < ε2 < 1. Since 0 < α < β, we have 0 < ε1 < 2α− 16

π2α
2. Hence∫ 1

0

[
u2 +

(
du

dx

)2

+

(
d2u

dx2

)2

+

(
d3u

dx3

)2

+

(
d4u

dx4

)2
]
dx ≤ C

∫ 1

0

g2(x)dx,

that is
||u||U ≤ C1||g||L2 , (7)

where C1 = C
1
2 and C =

2ε2+
1

2ε1

min(α− ε1
2 −2ε2β2,ε2− 4

π2 )
.

Thus we have proved the following statement.

Theorem 1. Suppose that 0 < α ≤ q(x) ≤ β for all x ∈ [0, 1]. Then for g ∈ L2[0, 1],
there exists a constant C1 > 0 such that the obtained a priori estimate (7) holds.

2.3. Existence of the solution. Notice that the uniqueness of the solution follows
immediately from the estimate (7), however the existence of the solution is equivalent to
the property R(L) = L2, where R(L) is the range of L.
We need the following lemmas:

Lemma 2. L is a closed operator.

Proof. To show that L is a closed operator, let {un} be a convergent sequence, that is
un → u in L2 such that {Lun} converges to w in L2. From,∫ 1

0

Lunϕ(x)dx =

∫ 1

0

u(4)n (x)ϕ(x)dx+

∫ 1

0

q(x)un(x)ϕ(x)dx, ϕ ∈ C∞0 (0, 1),

that is ϕ and its derivatives ϕ(k), ∀ k ∈ N vanish outside [0, 1], we have∫ 1

0

Lunϕ(x)dx =

∫ 1

0

u(4)n (x)ϕ(x)dx+

∫ 1

0

q(x)un(x)ϕ(x)dx.
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Taking the limit n→∞ to get∫ 1

0

wϕ(x)dx =

∫ 1

0

(u(4) + q(x)u)ϕ(x)dx.

Thus Lu = w ∈ L2. �

Lemma 3. For the linear operator L : D(L) ⊂ U → L2, we have R(L) = L2 if and only
if R(L) is closed and R(L)⊥ = {0} .

Thus we have

Theorem 2. Under the hypotheses of Proposition 1, and if we assume R(L)⊥ = {0} .
Then for each g ∈ L2, the problem Eq. (1) and Eq. (3) has a unique solution.

Proof. Let {un} ⊂ D(L) be a sequence with Lun = gn. Using the a priori estimate (7),
we obtain

||un − um||U ≤ C1||gn − gm||L2
.

Thus {un} is a Cauchy sequence in U. Since U is a Hilbert space and L is closed, the
sequence {un} converges, that is un → u ∈ U, we conclude that u ∈ D(L) and Lu = g ∈
R(L). Consequently, R(L) is closed. So we obtain the existence of the solution. �

3. The nonlinear BVP problem Eq.(4) with (3)

In this section, we will reformulate the nonlinear boundary value problem Eq.(4) sub-
ject to the BC (3) as a fixed point problem for integral equation.
We will use the following Lemmas.

Lemma 4. Let g : [0, 1] → R be a continuous function. The unique solution u of the
following boundary value problem

u(4) = g(x) (8)

subject to the boundary conditions (3) is given by

u(x) =

∫ 1

0

G(x, y)g(y)dy,

where G(x, y) is the Green function given by

G(x, y) =


−y3

6
+
xy2

2
, if 0 ≤ y ≤ x ≤ 1,

−x3

6
+
x2y

2
, if 0 ≤ x ≤ y ≤ 1.

Proof. Integrating (8) twice, we obtain:

u′′(x) = C1x+ C2 +

∫ x

0

∫ x

0

g(s)dsdy,

where C1 and C2 are constants.
Thus,

u′′(x) = C1x+ C2 +

∫ x

0

(x− y)g(y)dy.

Integrating again both sides of this equation, we obtain

u′(x) =
C1x

2

2
+ C2x+ C3 +

1

2

∫ x

0

(x− y)2g(y)dy.
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where Ci, i = 1, 2, 3 are also constants. Hence,

u(x) =
C1x

3

6
+
C2x

2

2
+ C3x+ C4 +

1

6

∫ x

0

(x− y)3g(y)dy.

We determine Ci from u(0) = u′(0) = u′′(1) = u′′′(1) = 0, we obtain

C1 = −
∫ 1

0

g(y)dy, C2 =

∫ 1

0

yg(y)dy, C3 = C4 = 0.

Consequently,

u(x) =

∫ x

0

(
−y3

6
+
xy2

2
)g(y)dy +

∫ 1

x

(
−x3

6
+
x2y

2
)g(y)dy.

�

Lemma 5. The Green function and its derivatives satisfy the following properties:

(1)

max
0≤x≤1

∫ 1

0

|G(x, y)|dy ≤ 0.220026174 = K0,

(2)

max
0≤x≤1

∫ 1

0

|Gx(x, y)|dy ≤ 1

6
= K1,

(3)

max
0≤x≤1

∫ 1

0

|Gxx(x, y)|dy ≤ 2

3
= K2,

(4)

max
0≤x≤1

∫ 1

0

|Gxxx(x, y)|dy ≤ 1 = K3.

The problem (4 )-(3) can be converted into the following system:{
u′′′ = v, u(0) = u′(0) = u′′(1) = 0,
v′ = f(x, u, u′, u′′, v), v(1) = 0.

(9)

Proposition 1. Suppose that f : [0, 1]× R4 −→ R satisfies

|f(x, u, v, w, z)| ≤ a+ a0|u|+ a1|v|+ a2|w|+ a3|z|,
where a, ai > 0, i = 0, ..., 3 and 16a0

π3 + 8a1
π2 + 4a2

π + 2a3
π < 1− ε

2 , where ε > 0 is sufficiently
small. Then there exist a constant M > 0, such that

‖u‖E ≤M, where ‖u‖E = max
0≤x≤1

3∑
i=0

ai|u(i)(x)| and E = C3([0, 1]).

Proof. Multiplying both sides of the first equation of (9) by u′′ and integrating from x to
1, we get

−1

2
(u′′)2(x) =

∫ 1

x

v(x)u′′(x)dx.

Then

(u′′)2(x) ≤ 2

∫ 1

x

|v(x)||u′′(x)|dx.

Using Cauchy-Schwarz inequality, we get

(u′′(x))2dx ≤ 2

(∫ 1

0

v2(x)dx

) 1
2
(∫ 1

0

(u′′(x))2dx

) 1
2

.



20 ROWAIDA ALRAJHI AND LAZHAR BOUGOFFA

Thus ∫ 1

0

(u′′(x))2dx ≤ 2

(∫ 1

0

v2(x)dx

) 1
2
(∫ 1

0

(u′′(x))2dx

) 1
2

.

Hence ∫ 1

0

(u′′(x))2dx ≤ 4

∫ 1

0

v2(x)dx. (10)

Applying Wirtinger’s inequality Lemma to the R.H.S of (10), we get∫ 1

0

(u′′(x))2dx ≤ 16

π2

∫ 1

0

(v′(x))2dx. (11)

Multiplying now both sides of the second equation of Eq.(9) by v′ and integrating from
0 to 1, we get ∫ 1

0

(v′(x))2dx =

∫ 1

0

f(x, u, u′, u′′, v)v′(x)dx.

Thus, from the given condition on f, we obtain∫ 1

0

(v′(x))2dx ≤ a

∫ 1

0

|v′(x)|dx+ a0

∫ 1

0

|u(x)||v′(x)|dx

+ a1

∫ 1

0

|u′(x)||v′(x)|dx+ a2

∫ 1

0

|u′′(x)||v′(x)|dx

+ a3

∫ 1

0

|v(x)||v′(x)|dx.

Therefore, by using Cauchy-Schwarz inequality, we get

∫ 1

0

(v′(x))2dx ≤ a
∫ 1

0

|v′(x)|dx + a0

(∫ 1

0

u2(x)dx

) 1
2
(∫ 1

0

(v′(x))2dx

) 1
2

+a1

(∫ 1

0

(u′(x))2dx

) 1
2
(∫ 1

0

(v′(x))2dx

) 1
2

+ a2

(∫ 1

0

(u′′(x))2dx

) 1
2
(∫ 1

0

(v′(x))2dx

) 1
2

+a3

(∫ 1

0

v2(x)dx

) 1
2
(∫ 1

0

(v′(x))2dx

) 1
2

.

The term a

∫ 1

0

|v′(x)|dx can be estimated by means of the ε- inequality. Thus

∫ 1

0

(v′(x))2dx ≤ 1

2ε
a2 +

ε

2

∫ 1

0

(v′(x))2dx + a0

(∫ 1

0

u2(x)dx

) 1
2
(∫ 1

0

(v′(x))2dx

) 1
2

+a1

(∫ 1

0

(u′(x))2dx

) 1
2
(∫ 1

0

(v′(x))2dx

) 1
2

+ a2

(∫ 1

0

(u′′(x))2dx

) 1
2
(∫ 1

0

(v′(x))2dx

) 1
2

+ a3

(∫ 1

0

v2(x)dx

) 1
2
(∫ 1

0

(v′(x))2dx

) 1
2

.
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From the following Wirtinger’s inequalities:∫ 1

0

v2(x)dx =
4

π2

∫ 1

0

(v′(x))2dx, v(1) = 0,∫ 1

0

u2(x)dx =
4

π2

∫ 1

0

(u′(x))2dx, u(0) = 0,∫ 1

0

(u′(x))2dx =
4

π2

∫ 1

0

(u′′(x))2dx, u′(0) = 0,

we have,∫ 1

0

(v′(x))2dx ≤ a2

2ε
+
ε

2

∫ 1

0

(v′(x))2dx+
16a0
π3

∫ 1

0

(v′(x))2dx+
8a1
π2

∫ 1

0

(v′(x))2dx

+
4a2
π

∫ 1

0

(v′(x))2dx+
2a3
π

∫ 1

0

(v′(x))2dx.

Hence,

(1− ε

2
− 16a0

π3
− 8a1

π2
− 4a2

π
− 2a3

π
)

∫ 1

0

(v′(x))2dx ≤ a2

2ε
.

Since ε is sufficiently small, we can choose

1− ε

2
− 16a0

π3
− 8a1

π2
− 4a2

π
− 2a3

π
= K, K > 0.

Thus ∫ 1

0

(v′(x))2dx ≤ a2

2εK
(12)

since

−v(x) =

∫ 1

x

v′(x)dx, v(1) = 0,

we have

|v(x)| ≤
(∫ 1

0

(v′(x))2dx

) 1
2

≤ a√
2εK

.

Hence

|u′′′(x)| ≤M3 =
a√
2εK

. (13)

From (11) and (12), we have: ∫ 1

0

(u′′(x))2dx ≤ 8a2

επ2K

since

u′(x) =

∫ x

0

u′′(x)dx, u′(0) = 0.

Thus

|u′(x)| ≤
(∫ 1

0

(u′′(x))2dx

) 1
2

≤ 2
√

2a

π
√
εK

= M1. (14)

In view of

u(x) =

∫ x

0

u′(x)dx, u(0) = 0,

we obtain

|u(x)| ≤
(∫ 1

0

(u′(x))2dx

) 1
2

≤M1. (15)
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Also, from

u′′(x) =

∫ x

1

u′′′(x)dx, u′′(1) = 0,

we obtain

|u′′(x)| ≤
∫ 1

0

|u′′′(x)|dx ≤M3. (16)

From (13), (14), (15) and (16), we get the required result. �

Theorem 3. Suppose f satisfies the condition of Proposition (1). Then problem (3) with
(4) has a solution.

Proof. Define the operator T : C(3)[0, 1] −→ C(3)[0, 1] by

Tu =

∫ 1

0

G(x, y)f(s, u(s), u′(s), u′′(s), u′′′(s))ds.

By differentiation with respect to x, we get

(Tu)′(x) =

∫ 1

0

Gx(x, s)f(s, u(s), u′(s), u′′(s)u′′′(s))ds,

(Tu)′′(x) =

∫ 1

0

Gxx(x, s)f(s, u(s), u′(s), u′′(s), u′′′(s))ds,

(Tu)′′′(x) =

∫ 1

0

Gxxx(x, s)f(s, u(s), u′(s), u′′(s), u′′′(s))ds.

Thus

|Tu(x)| ≤
∫ 1

0

|G(x, s)||f(s, u(s), u′(s), u′′(s), u′′′(s))|ds,

|(Tu)′(x)| ≤
∫ 1

0

|Gx(x, s)||f(s, u(s), u′(s), u′′(s), u′′′(s))|ds,

|(Tu)′′(x)| ≤
∫ 1

0

|Gxx(x, s)||f(s, u(s), u′(s), u′′(s), u′′′(s))|ds,

|(Tu)′′′(x)| ≤
∫ 1

0

|Gxxx(x, s)||f(s, u(s), u′(s), u′′(s), u′′′(s))|ds.

Using Lemma (5) and the condition of f(s, u(s), u′(s), u′′(s), u′′′(s)), we obtain

|Tu(x)| ≤ K0

[
a+

∫ 1

0

[a0|u|+ a1|u′|+ a2|u′′|+ a3|u′′′|] ds
]
,

|(Tu)′(x)| ≤ K1

[
a+

∫ 1

0

[a0|u|+ a1|u′|+ a2|u′′|+ a3|u′′′|] ds
]
,

|(Tu)′′(x)| ≤ K2

[
a+

∫ 1

0

[a0|u|+ a1|u′|+ a2|u′′|+ a3|u′′′|] ds
]
,

|(Tu)′′′(x)| ≤ K3

[
a+

∫ 1

0

[a0|u|+ a1|u′|+ a2|u′′|+ a3|u′′′|] ds
]
.
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Since |u(i)(x)| ≤ max0≤x≤1 |u(i)(x)|, then

|Tu(x)| ≤ K0 [a+ ‖u‖E ] ,

|(Tu)′(x)| ≤ K1 [a+ ‖u‖E ] ,

|(Tu)′′(x)| ≤ K2 [a+ ‖u‖E ] ,

|(Tu)′′′(x)| ≤ K3 [a+ ‖u‖E ] .

Multiplying the last forth inequalities by a0, a1, a2, a3, respectively, we obtain

a0|Tu(x)| ≤ a0K0 [a+ ‖u‖E ] ,

a1|(Tu)′(x)| ≤ a1K1 [a+ ‖u‖E ] ,

a2|(Tu)′′(x)| ≤ a2K2 [a+ ‖u‖E ] ,

a3|(Tu)′′′(x)| ≤ a3K3 [a+ ‖u‖E ] .

Hence

‖Tu‖E ≤ [a0K0 + a1K1 + a2K2 + a3K3][a+ ‖u‖E ].

Using Proposition (1 ), we obtain

‖Tu‖E ≤ M1,

where M1 = (a+M)[a0K0 + a1K1 + a2K2 + a3K3].
Hence T maps the closed, bounded and convex set

S =
{
u ∈ C(3)[0, 1] : |u(i)(x)| ≤Mi, i = 0, ...3

}
into itself. T is completely continuous on C(3)[0, 1] and so is a compact operator by
Ascoli’s theorem. The Schauder’s fixed point theorem then yields the fixed point of T,
which is a solution of the given nonlinear boundary value problem.

�

Another result similar to [6] is that

Theorem 4. Let f : [a, b]× R4 −→ R satisfy a Lipshitz condition

|f(x, u(x), u′(x), u′′(x), u′′′(x))− f(x, v(x), v′(x), v′′(x), v′′′(x))| < a0|u(x)− v(x)|
+a1|u′(x)− v′(x)|+ a2|u′′(x)− v′′(x)|+ a3|u′′′(x)− v′′′(x)|,

where ai > 0, i = 0, ..., 3. Assume also that a0K0 + a1K1 + a2K2 + a3K3 < 1. Thus there
exists a unique solution to the boundary value problem Pr.(4)-(3).

Proof. It must be shown that T is a contraction map. Indeed,

|Tu(x)− Tv(x)| ≤ K0‖u− v‖3,
|(Tu)′(x)− (Tv)′(x)| ≤ K1‖u− v‖3
|(Tu)′′(x)− (Tv)′′(x)| ≤ K2‖u− v‖3
|(Tu)′′′(x)− (Tv)′′′(x)| ≤ K3‖u− v‖3.

Thus

‖Tu− Tv‖E ≤ [a0K0 + a1K1 + a2K2 + a3K3]‖u− v‖3.

By hypothesis, a0K0 + a1K1 + a2K2 + a3K3 < 1. Therefore T is a contraction. Hence
there exists a unique solution u such that Tu = u. �
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Example 1. Let

u(4) =
1

10
exu+

1

5
sin(u′)− 1

8
u′′ +

x

10
u′′′.

Here f(x, u, u′, u′′, u′′′) = 1
10e

xu + 1
5 sin(u′) − 1

8u
′′ + x

10u
′′′, x ∈ [0, 1]. Thus, the mean

value theorem gives us

| ∂f
∂u
|=| 1

10
ex |≤ 1

10
= a0, |

∂f

∂u′
|= 1

5
| cos |≤ 1

5
= a1,

| ∂f
∂u′′
| = 1

8
= a2, |

∂f

∂u′′′
|= x

10
≤ 1

10
= a3.

Since a0K0 + a1K1 + a2K2 + a3K3 < 1. Thus the given problem has a unique solution.
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