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SOME SERIES OF DISTRIBUTIONALLY INTEGRABLE FUNCTIONS

RICARDO ESTRADA

Abstract. We study several properties of series of distributionally integrable func-
tions. We consider the case of a nowhere dense closed subset K of [a, b] , with a, b ∈ K,
and complementary open intervals (an, bn) . We prove that if f is distributionally inte-

grable in [a, b] and if the primitives of order m of f, Fm, are such that their restrictions
Fm|K are absolutely continuous in K for all m ≥ 1, then fχK is Lebesgue integrable

and

fχ[a,b] = fχK +

∞∑
n=1

fχ[an,bn] ,

in the space D′ (R) . We also prove that under these conditions several related results
hold, in particular the generalized integration by parts formula∫

K
f (x)φ (x) dx = −

∫
K
F (x)φ′ (x) dx+ Fφ|ba −

∞∑
n=1

Fφ|bnan ,

where φ is a test function. Furthermore, we prove that∫ b

a
f (x) dx =

∫
K
f (x) dx+

∞∑
n=1

∫ bn

an

f (x) dx ,

if f is distributionally integrable and the restriction of its first order primitive to K is

absolutely continuous. We give examples that show that the formulas may fail when
the hypotheses are not satisfied.

1. Introduction

If f is a Lebesgue integrable function in R and if {En}∞n=1 is a sequence of mutually
disjoint measurable sets with [a, b] =

⋃∞
n=1En then in the space of distributions D′ (R)

fχ[a,b] =

∞∑
n=1

f (x)χEn , (1)

where χA is the characteristic function of a set A. Our main aim in this article is to
consider the corresponding question when f is integrable in the sense of a more general
integral, such as the Denjoy-Perron-Henstock-Kurzweil integral or the recently introduced
distributional integral. It is very simple to see that for non-absolute integrals it is not
even true that fχE has to be integrable for f integrable and E measurable, so we consider
a particular but very important decomposition of E = [a, b] as a disjoint union, namely
as

[a, b] = K ∪
∞⋃
n=1

(an, bn) , (2)

where K is a closed nowhere dense set with a, b ∈ K and where the (an, bn) are the
complementary intervals. We shall actually be able to show in the Theorem 1 that under
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certain restrictions on a distributionally integrable function f then

fχ[a,b] = fχK +

∞∑
n=1

fχ[an,bn] , (3)

in the space D′ (R) . Nevertheless when those conditions are not satisfied then (3) does
not need to hold, as we show by several examples in the Section 6.

A simpler but closely related question is whether the formula∫ b

a

f (x) dx =

∫
K

f (x) dx+

∞∑
n=1

∫ bn

an

f (x) dx , (4)

which is clearly valid if f is Lebesgue integrable, remains true for other integrals. In fact
this question already appears in the work of Lebesgue on the reconstruction of a function
from its derivative [10, Chp. 8] since he established that if F has a derivative everywhere
in [a, b] then, even if F ′ is not Lebesgue integrable, if F ′χK is Lebesgue integrable and if
the series

∑∞
n=1 |F (bn)− F (an)| converges then

F (b)− F (a) =

∫
K

F ′ (x) dx+

∞∑
n=1

(F (bn)− F (an)) , (5)

which is basically (4) for f = F ′. This formula was pivotal for the construction of the
Denjoy totalization [10, Chp. 8]. Actually it is well known that (4) holds if f is Denjoy

integrable in [a, b] , fχK is Lebesgue integrable, and the series
∑∞
n=1

∣∣∣∫ bnan f (x) dx
∣∣∣ con-

verges [6]. Notice that if f is Denjoy integrable in [a, b] then so are the functions fχ[an,bn]

but in general fχK is not, and thus one needs to assume this explicitly; a similar situation
is encountered with the distributional integral.

The plan of the article is the following. In section 2 we explain the basic properties of
the distributional integral. Sections 3 and 4 contain the necessary technical developments
needed to prove in Section 5 that under suitable hypotheses then (3), (4), and (5) are
valid for distributionally integrable functions. Then in Section 6 we give examples that
show that the formulas may fail if the hypotheses are not satisfied.

2. The distributional integral

We refer to the texts for the basic ideas about distributions [7, 13]. Here we would like
to discuss some not so well known topics [2, 4, 11, 12, 17], topics needed to understand
the distributional integral [5], which we explain after them.

In [8]  Lojasiewicz defined the value of a distribution f ∈ D′(R) at the point x0 as the
limit

f(x0) = lim
ε→0

f(x0 + εx) , (6)

if the limit exists in D′(R), that is, if

lim
ε→0
〈f(x0 + εx), φ(x)〉 = f(x0)

∫ ∞
−∞

φ(x) dx , (7)

for each φ ∈ D(R). It was proved in [8] that the distributional point value f(x0) exists

and equals L if and only if there exists m and a primitive of order m, Fm, (Fm)
(m)

= f,
that comes from a function Fm that is continuous in a neighborhood of x0 and such that

lim
x→x0

Fm (x)

(x− x0)
m =

L

m!
. (8)

In this case we say that the point value is order m at the most.
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A distribution f is a  Lojasiewicz distribution if the distributional point value f (x0)
exists for every x0 ∈ R. A function f defined in R is called a  Lojasiewicz function if there
exists a  Lojasiewicz distribution f such that

f (x) = f (x) ∀x ∈ R . (9)

The  Lojasiewicz functions can be considered as a distributional generalization of contin-
uous functions. They are defined at all points, and furthermore the value at each given
point is not arbitrary but the (distributional) limit of the function as one approaches that
point.

The question of whether a distribution can be considered a function is the theme of [3].
In general distributions are not functions, but, interestingly, sometimes they are. In fact,
locally integrable Lebesgue functions f give rise in a unique fashion to associated regular
distributions f, f ↔ f. Actually Denjoy-Perron-Henstock-Kurzweil integrable functions
also have canonically associated distributions [9]. The correspondence f ↔ f is clearly
defined in the case of  Lojasiewicz functions and distributions. The class of the locally
distributionally integrable functions is a large class that includes both the locally Denjoy-
Perron-Henstock-Kurzweil integrable functions the  Lojasiewicz functions, and many more,
for which the correspondence f ↔ f is well defined [5]. Notice that in this section it is
better to say that f and f are associated and employ different notations for the function
and the distribution, instead of the standard practice of saying that f “is” f, but we will
employ the standard practice in the rest of the article.

In [5] we constructed and studied the properties of a general integration operator that
can be applied to functions of one variable, f : [a, b] → R = R∪{−∞,∞} , denoted in
this section as

(dist)

∫ b

a

f (x) dx , (10)

but as
∫ b
a
f (x) dx in the rest of the article. We call it the distributional integral of f.

The space of distributionally integrable functions is a vector space and the operator (10)
is a linear functional in this space.

Any Denjoy-Perron-Henstock-Kurzweil integrable function is also distributionally in-
tegrable, and the integrals coincide; if the Denjoy-Perron-Henstock-Kurzweil integral can
be assigned the value∞ then the distributional integral can also be assigned the value∞.
If f : R → R is a function that is distributionally integrable over any compact interval,
and if ψ ∈ D (R) is a test function, then the formula

〈f (x) , ψ (x)〉 = (dist)

∫ ∞
−∞

f (x)ψ (x) dx , (11)

defines a distribution f ∈ D′ (R) . This distribution f has distributional point values almost
everywhere and

f (x) = f (x) (a.e.) . (12)

If we start with a distribution f0 ∈ D′ (R) that has values everywhere, then construct the
function f given by those values, and then define a distribution f ∈ D′ (R) by formula
(11) then we recover the initial distribution: f = f0.

Let us now look at the indefinite integral

F (x) = (dist)

∫ x

a

f (t) dt , (13)

of a distributionally integrable function f. For the Denjoy-Perron-Henstock-Kurzweil in-
tegral F is continuous while for the Lebesgue integral F is absolutely continuous, but for
a general distributionally integrable function f the function F is a  Lojasiewicz function.
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Let F be the distribution associated to F, F ↔ F, and let f = F′. Then f = F′ is the same
distribution given by (11). Furthermore, F′ has distributional values almost everywhere
and actually F′ (x) = f (x) (a.e) , a precise statement of the idea that f is the derivative
of F almost everywhere.

One can think of a simple procedure for the construction of primitives of functions
by using the fact that distributions are known to have primitives. Indeed, start with a
function f, associate to it a distribution f, construct the distributional primitive F, that
is, F′ = f, and then construct the function F associated to F. Then F would be a primitive
of f. Unfortunately, this procedure fails, in general, because there is no unique way to
assign a distribution f to a given function f, as follows from a well known theorem of
Lusin [5, Thm. 7.1]. The method works sometimes, however. When? It works for the
distributionally integrable functions!. It is important to emphasize that the distributional
integral is a method to find the integral of functions not integrals of distributions; for the
integrals of distributions see [1, 14, 15, 16].

If f is distributionally integrable over [a, b] then so are (x− a)
α

(b− x)
β
f (x) for any

real numbers α > 0 and β > 0. For a general distribution f ∈ D′ (R) there is no canonical
way to define χ[a,b]f, but if f corresponds to a locally distributionally integrable function
then χ[a,b]f is well defined. In particular, if F is the distribution corresponding to F, the
primitive of f, then χ[a,b]F is well defined and we have the ensuing version of the well
known formula,(

χ[a,b] (x)F (x)
)′

= χ[a,b]f + F (a) δ (x− a)− F (b) δ (x− b) . (14)

3. Some series of deltas

We shall employ the following conventions. The set K ⊂ [a, b] is a closed nowhere
dense set, such that a, b ∈ K. We will denote by (an, bn) , n = 1, 2, 3, . . . the components
of [a, b] \K, so that [a, b] is decomposed as the disjoint union

[a, b] = K ∪
∞⋃
n=1

(an, bn) . (15)

We start with the derivative formulas for some Lebesgue integrable functions.

Lemma 1. Let f ∈ L1 (R) and let F be any primitive of f. Then the series of delta
functions

∑∞
n=1 (F (an) δ (x− an) − F (bn) δ (x− bn)) converges in D′ (R) and

∞∑
n=1

(F (an) δ (x− an)− F (bn) δ (x− bn))

= f (x)χK (x)− (F (x)χK (x))
′
+ F (a) δ (x− a)− F (b) δ (x− b) . (16)

Proof. Notice that since both f and F are locally Lebesgue integrable then

f (x)χ[a,b] (x) = f (x)χK (x) +

∞∑
n=1

f (x)χ[an,bn] (x) , (17)

and

F (x)χ[a,b] (x) = F (x)χK (x) +

∞∑
n=1

F (x)χ[an,bn] (x) . (18)
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Distributional differentiation of the last relation, taking the first into consideration, yields

f (x)χ[a,b] (x) + F (a) δ (x− a)− F (b) δ (x− b) =

(F (x)χK (x))
′
+

∞∑
n=1

{
f (x)χ[an,bn] (x) + F (an) δ (x− an)− F (bn) δ (x− bn)

}
=

(F (x)χK (x))
′
+
(
f (x)χ[a,b] (x)− f (x)χK (x)

)
+

∞∑
n=1

(F (an) δ (x− an)− F (bn) δ (x− bn)) ,

and (16) is obtained after a rearrangement of terms.
Observe also that the series

∑∞
n=1 (F (an) δ (x− an)− F (bn) δ (x− bn)) must be con-

vergent but in general both series
∑∞
n=1 F (an) δ (x− an) and

∑∞
n=1 F (bn) δ (x− bn) are

divergent. �

Two special cases of this formula will be particularly important in our analysis.

Lemma 2. Let g ∈ L1 (R) with supp g ⊂ K. Let G (x) = G (a)+
∫ x
a
g (t) dt be a primitive

of g. Then
∞∑
n=1

G (an) (δ (x− an)− δ (x− bn))

= g (x)− (G (x)χK (x))
′
+G (a) δ (x− a)−G (b) δ (x− b) , (19)

in the space D′ (R) .

Proof. Notice that in this case G (an) = G (bn) , so that the result follows from (16). �

Lemma 3. Let f ∈ L1 (R) , let h = f − fχK , and let H be a primitive of h. Then
∞∑
n=1

(H (an) δ (x− an)−H (bn) δ (x− bn))

= −h̃ (x) +H (a) δ (x− a)−H (b) δ (x− b) , (20)

where

h̃ (x) = (W (x)χK (x))
′
, (21)

W being any continuous function in R such that W |K = H|K .

Proof. This is another particular case of the Lemma 1, but we worded it in such a way

that it is clear that h̃ depends only on H|K but not on the values of H in the intervals
(an, bn) . �

The particular cases when K has measure 0 deserve to be mentioned. In the Lemma
2 G must be a constant, which we may take to be 1. We thus obtain that in D′ (R)

∞∑
n=1

(δ (x− an)− δ (x− bn)) = δ (x− a)− δ (x− b) . (22)

Notice that both series
∑∞
n=1 δ (x− an) and

∑∞
n=1 δ (x− bn) are divergent. In the Lemma

3 we have h̃ = 0 and thus
∞∑
n=1

(H (an) δ (x− an)−H (bn) δ (x− bn)) = H (a) δ (x− a)−H (b) δ (x− b) , (23)
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a formula that, as shall see in the next section, actually holds for any function H whose
restriction to K is absolutely continuous.

It is interesting to note that in general such series of delta functions are not Radon
measures. Indeed, if K has positive measure the formula

∞∑
n=1

(δ (x− an)− δ (x− bn)) = − (χK (x))
′
+ δ (x− a)− δ (x− b) , (24)

obtained from (16) if F = 1, shows that the series on the left is not a measure but rather
a distributionally convergent series of measures which does not converge in the space of
measures.

4. Decomposition of continuous functions on K

Let W be a function defined and continuous in K. The jump sequence of W is defined
as

Sn = W (bn)−W (an) , n = 1, 2, 3, . . . . (25)

We say that W is jump-less if this sequence vanishes.
Let us observe that the usual definitions of bounded variation and absolute continuity

can be also applied to functions defined only on K [6, Chp. 6].

Lemma 4. Let W ∈ C (K) be such that

∞∑
n=1

|Sn| <∞ . (26)

Then W can be written in a unique way as

W = L+ S , (27)

where L is jump-less and where S is a saltus function,

S (x) =
∑
bn≤x

Sn . (28)

If W is absolutely continuous then (26) holds and there exists l ∈ L1 (K) such that

L (x) = L (a) +

∫ x

a

l (t) dt , x ∈ K . (29)

Proof. The results are quite clear. Notice that W being absolutely continuous means that

L is, and this is equivalent to the fact that L̃, its extension to [a, b] constructed by asking
it to be constant in each interval [an, bn] , is absolutely continuous and thus there exists

l ∈ L1 [a, b] with supp l ⊂ K such that L̃ (x) = L (a) +
∫ x
a
l (t) dt, x ∈ [a, b] . �

It is well known that a saltus function has the property that S′ (x) = 0 almost every-

where [6, 10]. Hence if W̃ is an extension to a nearly everywhere differentiable function
in [a, b] then (

W̃ (x)
)′

= l (x) , x ∈ K . (30)

It also follows that

l (x) = lim
y→x,y∈K

W (y)−W (x)

y − x
, almost everywhere in K . (31)

The following result will also be useful.
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Lemma 5. Let W be a continuous function defined on K that satisfies (26). Then the
series

∞∑
n=1

(W (an) δ (x− an)−W (bn) δ (x− bn)) , (32)

converges in D′ (R) .

Proof. Let φ ∈ D (R) . For each n there exists θn ∈ (an, bn) such that

φ (bn) = φ (an) + (bn − an)φ′ (θn) . (33)

Therefore the series
∞∑
n=1

〈W (an) δ (x− an)−W (bn) δ (x− bn) , φ (x)〉 =

∞∑
n=1

(W (an)φ (an)−W (bn)φ (bn))

=

∞∑
n=1

W (bn) (an − bn)φ′ (θn)−
∞∑
n=1

Snφ (an) ,

converges since both series on the right converge. �

We now proceed to compute the sum of the series (32) when W is absolutely continuous.

Lemma 6. Let L be a jump-free absolutely continuous function defined on K. Then

∞∑
n=1

L (an) (δ (x− an)− δ (x− bn)) =

l (x)− (L (x)χK (x))
′
+ L (a) δ (x− a)− L (b) δ (x− b) . (34)

Proof. It follows from the Lemma 2 since L̃
∣∣∣
K

= L, L̃ is absolutely continuous and l is

its derivative. �

Lemma 7. Let S be the saltus function defined in (28) where
∑∞
n=1 |Sn| <∞. Then

∞∑
n=1

(S (an) δ (x− an)− S (bn) δ (x− bn)) =

− (S (x)χK (x))
′
+ S (a) δ (x− a)− S (b) δ (x− b) . (35)

Proof. Let H be the extension of S|K to [a, b] that is linear in each interval [an, bn] . Then
H is absolutely continuous and thus (35) is obtained from the Lemma 3. �

If we now combine the last two lemmas, we obtain the desired formula.

Proposition 1. Let W be an absolutely continuous function defined on K. Then

∞∑
n=1

(W (an) δ (x− an)−W (bn) δ (x− bn)) =

l (x)− (W (x)χK (x))
′
+W (a) δ (x− a)−W (b) δ (x− b) , (36)

where l ∈ L1 is given by (31) in K and vanishes in [a, b] \K.
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Notice that even though W is defined only on K, the function WχK is a well defined
function in all of R, an element of D′ (R) in fact.

We would also like to point out that (36) does not hold if W is just continuous but not
absolutely continuous. An example is provided if K has measure 0 and W is the restriction
to K of ω, a continuous singular function whose derivative vanishes in [a, b] \K. Indeed
in this case W is jump-free but

∞∑
n=1

W (an) (δ (x− an)− δ (x− bn)) = ω′ (x) +W (a) δ (x− a)−W (b) δ (x− b) , (37)

where ω′ is a singular measure, concentrated on K; thus neither (34) nor (36) hold.

5. The main results

Let f be distributionally integrable in [a, b] . Let us denote by Fm some fixed primitives
of order m of f, (Fm)(m) = f. There exists m0 such that Fm is absolutely continuous in
[a, b] for m ≥ m0. In fact if Fm is absolutely continuous in [a, b] then so are the Fm′ for
m′ > m. However, as we show in the Example 3, it is possible for Fm|K to be absolutely
continuous while Fm+1|K is not. Hence in our main results we must assume that Fm|K
is absolutely continuous for all m ≥ 1; notice however that this holds for any K whenever
m ≥ m0.

We start with an auxiliary result.

Lemma 8. Let f be distributionally integrable in [a, b] . Suppose

fχ[a,b] =

∞∑
n=1

fχ[an,bn] , (38)

in the space D′ (R) . Then

f (x) = 0 , almost everywhere in K , (39)

so that

fχK = 0 , (40)

in the space D′ (R) .

Proof. If x ∈ K then the distributional point value f (x) may or may not exist, but even
if it does it does not have to vanish. Consider for example the case when K has measure
zero and f is a continuous function in [a, b] that does not vanish in K : here the point
values exist for all x ∈ K but they are never zero. Nevertheless, our aim is to show that
the distributional point values values vanish almost everywhere in K.

Let us now observe that (39) and (40) certainly hold for Lebesgue integrable functions.
Let m be a positive integer. Let us find a g ∈ L1 such that∫ bn

an

f (x)xj dx =

∫ bn

an

g (x)xj dx , 0 ≤ k ≤ m, (41)

for all n. Then if Fm and Gm are primitives of order m of f and g, respectively, that
coincide of order m at one point of K, then they will coincide in all of K. Let z ∈ K be a
point where the point value exists and is of order m at the most, so that for the primitive
Fm (x) =

∫ x
z

(x− t)m−1 f (t) dt/ (m− 1)! we have

f (z) = lim
y→z

m!Fm (y)

(y − z)m
. (42)
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If Gm (x) =
∫ x
z

(x− t)m−1 g (t) dt/ (m− 1)! then Fm (x) = Gm (x) for all x ∈ K. If the
distributional point value g (z) exists and is of order m at the most then

f (z) = lim
y→z

m!Fm (y)

(y − z)m
= lim
y→z, y∈K

m!Fm (y)

(y − z)m

= lim
y→z, y∈K

m!Gm (y)

(y − z)m
= g (z) . (43)

But g is Lebesgue integrable and thus the distributional point value g (z) is of order 1
almost everywhere and vanishes almost everywhere in K. Hence f (z) = 0 almost every-
where in Km = {z ∈ K : f (z) exists of order m at the most} . The result follows because
∪∞m=1Km is of full measure in K. �

We now have all the preliminaries to prove our main theorem.

Theorem 1. Let f be distributionally integrable in [a, b] . Let Fm be some fixed primitives
of order m of f. Suppose that Fm|K is absolutely continuous in K for all m ≥ 1. Then
fχK is Lebesgue integrable and

fχ[a,b] = fχK +

∞∑
n=1

fχ[an,bn] , (44)

in the space D′ (R) .

Proof. We can easily prove a special case: If the formula

Fχ[a,b] = FχK +

∞∑
n=1

Fχ[an,bn] , (45)

is true for F = F1 and the hypotheses of the theorem hold, then (44) is satisfied. Namely,
if we take the Proposition 1 into account, then we obtain

fχ[a,b] =
(
Fχ[a,b]

)′ − F (a) δa + F (b) δb

= (FχK)
′
+

∞∑
n=1

(
Fχ[an,bn]

)′ − F (a) δa + F (b) δb

= (FχK)
′
+

∞∑
n=1

(
fχ[an,bn] + F (an) δan − F (bn) δbn

)
− F (a) δa + F (b) δb

= lχK +

∞∑
n=1

fχ[an,bn] ,

where lχK ∈ L1. But applying the Lemma 8 to fχ[a,b] − lχK it follows that fχK = lχK
and thus we obtain (44).

We therefore obtain the general result by iteration of this special case. Indeed, if m is
large enough then Fm is continuous in [a, b] . Consequently Fm satisfies the decomposition
formula (45). Then the special case yields that the decomposition formula also holds for
(Fm)

′
, and thus for (Fm)

′′
, and so on, until we obtain that it holds for (Fm)(m) = f. �

Let us observe that if f satisfies the hypotheses of the Theorem 1 then evaluation at a
test function φ gives∫ b

a

f (x)φ (x) dx =

∫
K

f (x)φ (x) dx+

∞∑
n=1

∫ bn

an

f (x)φ (x) dx , (46)
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for all φ ∈ D (R) . If those hypotheses are not satisfied then (46) might not be true for all
φ, but maybe it holds for some test functions. We are particularly interested in when it
holds for φ = 1. We first need a preliminary result similar to the Lemma 8.

Lemma 9. Let f be distributionally integrable and let F be a primitive. Suppose F |K is
absolutely continuous in K. Then

f (x) = lim
y→x,y∈K

F (y)− F (x)

y − x
, almost everywhere in K , (47)

and f is Lebesgue integrable in K.

Proof. It is enough to prove the result in the special case when F |K vanishes since in the
general case, decomposing F |K as L+ S where L is jump-less and S is a jump function,

we obtain F = L̃+ S̃ + V, where L̃ is the extension of L to [a, b] that is constant in each

[an, bn] , S̃ is the extension of S to [a, b] that is linear in each [an, bn] , and where V is the
primitive of a distributionally integrable function with V (x) = 0 for all x ∈ K, and both

L̃ and S̃ satisfy the result corresponding to (47). Therefore from now on we assume that
F (x) = 0 for x ∈ K and if x ≤ a or x ≥ b.

Notice that if F is Lebesgue integrable then F =
∑∞
n=1 Fχ[an,bn] and differentiation

yields f =
∑∞
n=1 fχ[an,bn] and the Lemma 8 gives that f (x) = 0 almost everywhere in

K. As the examples in the next section show, for a distributionally integrable f the series∑∞
n=1 fχ[an,bn] does not have to converge to f, so that for the general case we need to

employ a different argument.
Let U be a harmonic representation of F, that is, U (x, y) is harmonic in the upper half

plane y > 0, vanishes angularly at infinity and limy→0 U (x, y) = F (x) distributionally.
Since F has point values at each point, we may extend U to the closed half plane y ≥
0 by putting U (x, 0) = F (x)χ[a,b]; while in general U is not continuous at a point
(x0, 0) , U (x, y) → U (x0, 0) if (x, y) → (x0, 0) angularly. Notice also that u = ∂U/∂x
is a harmonic representation of f and consequently if the point value f (x0) exists then
u (x, y)→ f (x0) as (x, y)→ (x0, 0) angularly.

Let M > 0. Let KM be the set of points x0 ∈ K such that |U (x, y)| ≤ M for
(x, y) ∈ ΩM,x0

where ΩM,x0
is the region y > ϕx0

(x) = min {|x− x0| , 1} . Let ΩM
be the region ∪x0∈KMΩM,x0

. Then |U (x, y)| ≤ M for (x, y) ∈ ΩM . On the other hand,
ΩM is the set of points (x, y) with y > ϕx0

(x) for some x0 ∈ KM , that is, y > λM (x)
where

λM (x) = inf
x0∈KM

ϕx0
(x) = min {d (x,KM ) , 1} , (48)

d (x,KM ) being the distance from x to KM . Observe that λM is a Lipschitz function
and thus a set X ⊂ R has measure zero if and only if the set {(x, λM (x)) : x ∈ X} has
measure zero as a subset of the boundary ∂ΩM , with the measure induced by a conformal
equivalence map of ΩM and the upper half palne.

Consider now the function FM (x) = U (x, λM (x)) . It is a bounded function and
FM (x) = 0 in KM . Hence F ′M (x) = 0 almost everywhere in KM , as a subset of R or as
subset of ∂ΩM . The distributional boundary value of u on the curve ∂ΩM has point values
almost everywhere and vanishes if x0 ∈ KM and F ′M (x0) = 0 and thus u (x, y) → 0 as
(x, y)→ (x0, 0) angularly inside the region ΩM . This does not imply that f (x0) = 0, but
suppose now that also f (x0) exists. Then u (x, y)→ f (x0) if (x, y)→ (x0, 0) angularly in
the upper half plane, too. Hence f (x0) = 0. It follows that f (x) = 0 almost everywhere
in KM . But K = ∪M>0KM so that f (x) = 0 almost everywhere in K. �

We immediately obtain the ensuing result.
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Theorem 2. Let f be distributionally integrable in [a, b] with primitive F. Suppose that
F |K is absolutely continuous in K. Then fχK is Lebesgue integrable and∫ b

a

f (x) dx =

∫
K

f (x) dx+

∞∑
n=1

∫ bn

an

f (x) dx . (49)

Proof. The Lemma 9 says that in the Proposition 1 if W = F |K then l = fχK , so that
fχK ∈ L1. Evaluation of (37) at φ = 1 then yields (49). �

At this point it is worth to point out that while of course ifW is absolutely continuous in
K then W is of bounded variation and continuous and

∑∞
n=1 |W (bn)−W (an)| converges,

the converse also holds for some primitives of distributionally integrable functions.

Lemma 10. Suppose f and fχK are distributionally integrable. If F |K is of bounded
variation and continuous and

∑∞
n=1 |F (bn)− F (an)| converges then F |K is absolutely

continuous in K. Also fχK is Lebesgue integrable.

Proof. Indeed, let g = fχK and h = f − g. Let G and H be the corresponding primitives.
Since

∑∞
n=1 |H (bn)−H (an)| =

∑∞
n=1 |F (bn)− F (an)| , the restriction H|K is a pure

jump function and thus absolutely continuous. On the other hand, G is constant in
each [an, bn] and thus it is also continuous and of bounded variation, hence of the form
Gac +Gsg, an absolutely continuous part and a singular part. But the singular measure
G′sg = G′ −G′ac is a distributionally integrable function and hence G′sg = 0. Thus G|K =
Gac|K is absolutely continuous and g = G′ac is Lebesgue integrable. �

One may also express the formula (49) as a way to reconstruct a function from the
point values of its distributional derivative.

Theorem 3. Let F be the primitive of a distributionally integrable function. Suppose
that F |K is absolutely continuous in K. Then F ′χK is Lebesgue integrable and

F (b)− F (a) =

∫
K

F ′ (x) dx+

∞∑
n=1

(F (bn)− F (an)) . (50)

Let us observe that the particular case when K has measure zero is actually a corollary
of the Proposition 1 that tell us that if F |K is absolutely continuous in K then

F (b)− F (a) =

∞∑
n=1

(F (bn)− F (an)) .

Another interesting result is the following extended integration by parts formula.

Theorem 4. Let f be distributionally integrable and let F be a primitive. Suppose F |K
is absolutely continuous in K. Then∫

K

f (x)φ (x) dx = −
∫
K

F (x)φ′ (x) dx+ Fφ|ba −
∞∑
n=1

Fφ|bnan . (51)

Proof. Indeed, the Proposition 1 gives, after a slight rearrangement, remembering that
l = fχK if W = F |K ,

fχK = (FχK)
′ − F (a) δa + F (b) δb +

∞∑
n=1

(F (an) δan − F (bn) δbn) , (52)

and (51) follows by evaluation at a test function φ. �
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6. Examples

Let us start by considering examples of  Lojasiewicz functions. The oscillatory functions

eα,β (x) =

{
|x|α ei|x|−β , x 6= 0 ,

0 , x = 0 ,
(53)

for α ∈ C and β > 0, are  Lojasiewicz functions. If H is the Heaviside function, then so
are the functions H (±x) sα,β (x) and their linear combinations.

In fact, instead of the exponential eix one may employ any continuous periodic function
with zero mean ψ and obtain  Lojasiewicz functions as

Ψα,β (x) =

{
|x|α ψ

(
|x|−β

)
, x 6= 0 ,

0 , x = 0 ,
(54)

for any α ∈ C and β > 0. This is true because for any periodic distribution f, in particular
for ψ, 〈

xαf
(
λxβ

)
, φ (x)

〉
= o

(
λ−N

)
, as λ→∞ , (55)

for any φ ∈ K (0,∞) and any N > 0 [4].
We can construct  Lojasiewicz functions that oscillate at every point of K as follows,

Ψα,β,K (x) =

{
Ψα,β ((x− an) (bn − x)) , x ∈ (an, bn) ,

0 , x ∈ K .
(56)

It is interesting that this type of construction has been employed since a long time ago.
In fact, Lebesgue considers Ψ2,2,K for ψ (x) = sinx in writings from 1902 [10, pg. 134]
and his proof of the fact that Ψ′2,2,K (x) exists everywhere in [a, b] and vanishes in K
gives with little modification the argument needed to show that for any continuous ψ the
function Ψα,β,K is a  Lojasiewicz function.

Suppose now that ψ is a C∞ function. Then all derivatives of any order Ψ
(m)
α,β,K are also

 Lojasiewicz functions that vanish in K. Consequently they are distributionally integrable
over [a, b] and actually they are also primitives of distributionally integrable functions.

Example 1. The function Ψ1/2,1,K , say for ψ (x) = sinx, is a continuous function that
is the primitive of a distributionally integrable function, namely Ψ′1/2,1,K . However, if

K has positive measure then Ψ′1/2,1,K is not Denjoy-Perron-Henstock-Kurzweil integrable

because the ordinary derivative of Ψ1/2,1,K does not exist in K so that it does not exist
almost everywhere.

Example 2. Let ψ be a C∞ function periodic of period 1. Suppose ψ (1) = L 6= 0. Let

F = Ψ0,1 and f = F ′. Let K = {0} ∪ {1/n : n = 1, 2, 3, . . .} . Let (an, bn) =
(

1
n+1 ,

1
n

)
.

Then f is distributionally integrable in [a, b] = [0, 1] and∫ 1

0

f (x) dx = F (1)− F (0) = L , (57)

but
∫
K
f (x) dx = 0 and

∞∑
n=1

∫ bn

an

f (x) dx =

∞∑
n=1

(F (bn)− F (an)) = 0 . (58)

Actually the series
∑∞
n=1 fχ[an,bn] converges in D′ (R) but it does not converge to fχ[0,1]−

fχK = fχ[0,1] but rather

f (x)χK (x) +

∞∑
n=1

f (x)χ[an,bn] (x) = f (x)χ[0,1] (x) + Lδ (x) , (59)
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since ∫
K

f (x)φ (x) dx+

∞∑
n=1

∫ bn

an

f (x)φ (x) dx =

∫ 1

0

f (x)φ (x) dx+ Lφ (0) , (60)

for all test functions φ.

Example 3. Let ψ be a C∞ function periodic of period 1 that satisfies ψ (x) = 1 for
|x| ≤ ε for some ε > 0. Consider the functions G2 = Ψ0,1, G1 = G′2, and g = G′′2 .
Let K = {0} ∪ {1/n : n = 1, 2, 3, . . .} . Then the restriction of the first order primitive
of g to K vanishes there and thus G1|K absolutely continuous but the restriction of the
second order primitive G2|K is not absolutely continuous since F2 (1/n) = 1 for all n
while F2 (0) = 0. We also easily obtain that

g (x)χK (x) +

∞∑
n=1

g (x)χ[an,bn] (x) = gχ[0,1] (x) + Lδ′ (x) . (61)

This shows that the absolute continuity of the first primitive on K is not enough to obtain
the result of the Theorem 1.

More examples are easy to construct by using these ideas. For example, if K0 has
measure zero and ν is any Radon measure concentrated on K0 then we can find K =
[a, b] \

⋃∞
n=1 (an, bn) , with K0 ⊂ K, and f distributionally integrable such that

fχK +

∞∑
n=1

fχ[an,bn] = fχ[a,b] + ν . (62)
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