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EXISTENCE OF NONOSCILLATORY SOLUTIONS OF DELAY

DYNAMIC EQUATIONS

ABDELOUAHEB ARDJOUNI AND AHCENE DJOUDI

Abstract. This article concerns the existence of nonoscillatory solutions for a dy-

namic equation on time scales. The main tool employed here is the Schauder’s fixed

point theorem. The results obtained here extend the work of Kubjatkova, Olach and
Stoberova [12].

1. Introduction

In 1988, Stephan Hilger [9] introduced the theory of time scales (measure chains) as
a means of unifying discrete and continuum calculi. Since Hilger’s initial work there has
been significant growth in the theory of dynamic equations on time scales, covering a
variety of different problems; see [6, 7, 8, 13] and references therein.

Let T be a time scale such that t0 ∈ T. In this article, we are interested in the analysis
of qualitative theory of nonoscillatory solutions of delay dynamic equations. Motivated
by the papers [1]-[5], [8], [10]-[12], [14], [16]-[19] and the references therein, we consider
the following delay dynamic equation

x4 (t) + p (t)xσ (t) + q (t)x (τ (t)) = 0, t ≥ t0, (1)

Throughout this paper we assume that p : [t0,∞) ∩ T → R and q : [t0,∞) ∩ T → (0,∞)
are rd-continuous, τ : T→ T is increasing so that the function x (τ (t)) is well defined
over T. We also assume that τ : [t0,∞) ∩ T → [0,∞) ∩ T is rd-continuous, τ(t) < t and
limt→∞ τ(t) =∞.

A solution of (1) is called oscillatory if it has arbitrarily large zeros and otherwise it
is nonoscillatory. To reach our desired end we have to transform (1) into an integral
equation and then use Schauder’s fixed point theorem to show the existence of solutions
which are bounded by positive functions.

The organization of this paper is as follows. In Section 2, we introduce some notations
and definitions, and state some preliminary material needed in later sections. We will
state some facts about the exponential function on a time scale as well as the Schauder’s
fixed point theorem. For details on Schauder theorem we refer the reader to [15]. In
Section 3, we establish our main results for positive solutions by applying the Schauder’s
fixed point theorem. The results presented in this paper extend the main results in [12].

2. Preliminaries

A time scale is an arbitrary nonempty closed subset of real numbers. The study of
dynamic equations on time scales is a fairly new subject, and research in this area is rapidly
growing (see [1]-[5], [10], [11], [18] and papers therein). The theory of dynamic equations
unifies the theories of differential equations and difference equations. We suppose that
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the reader is familiar with the basic concepts concerning the calculus on time scales for
dynamic equations. Otherwise one can find in Bohner and Peterson books [6, 7, 13] most
of the material needed to read this paper.

Definition 1 ([6]). A function f : T→ R is called rd-continuous provided it is continuous
at every right-dense point t ∈ T and its left-sided limits exist, and is finite at every left-
dense point t ∈ T. The set of rd-continuous functions f : T→ R will be denoted by

Crd = Crd(T) =Crd(T,R).

Definition 2 ([6]). For f : T → R, we define f∆(t) to be the number (if it exists) with
the property that for any given ε > 0, there exists a neighborhood U of t such that∣∣(f(σ(t))− f(s))− f∆(t) (σ(t)− s)

∣∣ < ε |σ(t)− s| for all s ∈ U.

The function f∆ : Tk → R is called the delta (or Hilger) derivative of f on Tk.

Definition 3 ([6]). A function p : T→ R is called regressive provided 1+µ(t)p(t) 6= 0 for
all t ∈ T. The set of all regressive and rd-continuous functions p : T→ R will be denoted
by R = R(T,R). We define the set R+ of all positively regressive elements of R by

R+ = R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0, ∀t ∈ T}.

Definition 4 ([6]). Let p ∈ R, then the generalized exponential function ep is defined as
the unique solution of the initial value problem

x∆(t) = p(t)x(t), x(s) = 1, where s ∈ T.

An explicit formula for ep(t, s) is given by

ep(t, s) = exp

(∫ t

s

ξµ(v)(p(v))∆v

)
, for all s, t ∈ T,

with

ξh(v) =

{
log(1+hv)

h if h 6= 0,
v if h = 0,

where log is the principal logarithm function.

Lemma 1 ([6]). Let p, q ∈ R. Then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1,
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s),

(iii) 1
ep(t,s) = e	p(t, s) where, 	p(t) = − p(t)

1+µ(t)p(t) ,

(iv) ep(t, s) = 1
ep(s,t) = e	p(s, t),

(v) ep(t, s)ep(s, r) = ep(t, r),

(vi)
(

1
ep(·,s)

)∆

= − p(t)
eσp (·,s) .

Lemma 2 ([1]). If p ∈ R+, then

0 < ep(t, s) ≤ exp

(∫ t

s

p(v)∆v

)
, ∀t ∈ T.

The proof of the main results in the next section is based upon an application of the
following Schauder’s fixed point theorem.

Theorem 1 (Schauder’s fixed point theorem [15]). Let Ω be a closed, convex and nonempty
subset of a Banach space X. Let S : Ω → Ω be a continuous mapping such that SΩ is a
relatively compact subset of X. Then S has at least one fixed point in Ω. That is there
exists an x ∈ Ω such that Sx = x.
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3. Existence of positive solutions

In this section we shall investigate the existence of positive solutions for equation (1).
The main result is in the following theorem.

Theorem 2. Suppose that there exist functions k1, k2 ∈ Crd ([t0,∞) ∩ T, (0,∞)) such
that for t ≥ t0

k1 (t) ≤ k2 (t) , p(t) + k1 (t) q(t) ≥ 0,

and ∫ τ(t)

σ(t)

ξµ(s) [	 (p(s) + k1 (s) q(s))] ∆s ≥ log k1 (t) ,∫ τ(t)

σ(t)

ξµ(s) [	 (p(s) + k2 (s) q(s))] ∆s ≤ log k2 (t) . (2)

Then equation (1) has a solution which is bounded by positive functions.

Proof. We choose T ≥ t0 + τ(T ) and set

u(t) = exp

(∫ t

T

ξµ(s) [	 (p(s) + k2 (s) q(s))] ∆s

)
,

v(t) = exp

(∫ t

T

ξµ(s) [	 (p(s) + k1 (t) q(s))] ∆s

)
, t ≥ T.

Let Crd ([t0,∞) ∩ T,R) be the set of all bounded rd-continuous functions with the norm

‖x‖ = sup
t≥t0
|x(t)| <∞.

Then Crd ([t0,∞) ∩ T,R) is a Banach space. We define a close, bounded and convex
subset Ω of Crd ([t0,∞) ∩ T,R) as follows

Ω = {x ∈ Crd ([t0,∞) ∩ T,R) :

u(t) ≤ x(t) ≤ v(t), t ≥ T,
x(τ(t)) ≤ k2 (t)xσ(t), t ≥ T,
x(τ(t)) ≥ k1 (t)xσ(t), t ≥ T,
x(t) = 1, τ(T ) ≤ t ≤ T} .

Define the map S : Ω→ Crd ([t0,∞) ,R) as follows

(Sx)(t) =

 exp

(∫ t

T

ξµ(s)

[
	
(
p(s) + q(s)x(τ(s))

xσ(s)

)]
∆s

)
, t ≥ T,

1, τ(T ) ≤ t ≤ T.

We shall show that for any x ∈ Ω we have Sx ∈ Ω. For every x ∈ Ω and t ≥ T we get

(Sx)(t) ≤ exp

(∫ t

T

ξµ(s) [	 (p(s) + k1 (s) q(s))] ∆s

)
= v(t).

Furthermore for t ≥ T we have

(Sx)(t) ≥ exp

(∫ t

T

ξµ(s) [	 (p(s) + k2 (s) q(s))] ∆s

)
= u(t).
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For t ∈ [τ(T ), T ]∩T we obtain (Sx)(t) = 1. Further for every x ∈ Ω and τ(t) ≥ T we get

(Sx)(τ(t)) = exp

(∫ τ(t)

T

ξµ(s)

[
	
(
p(s) + q(s)

x(τ(s))

xσ(s)

)]
∆s

)

= (Sx)(σ(t)) exp

(∫ τ(t)

σ(t)

ξµ(s)

[
	
(
p(s) + q(s)

x(τ(s))

xσ(s)

)]
∆s

)
. (3)

With regard to (2) and (3) we have

(Sx)(τ(t)) ≤ (Sx)(σ(t)) exp

(∫ τ(t)

σ(t)

ξµ(s) [	 (p(s) + k2 (s) q(s))] ∆s

)
≤ k2 (t) (Sx)(σ(t)), τ(t) ≥ T,

and

(Sx)(τ(t)) ≥ (Sx)(σ(t)) exp

(∫ τ(t)

σ(t)

ξµ(s) [	 (p(s) + k1 (s) q(s))] ∆s

)
≥ k1 (t) (Sx)(σ(t)), τ(t) ≥ T.

For τ(T ) ≤ τ(t) ≤ T we obtain (Sx)(τ(t)) = 1. Thus we have proved that Sx ∈ Ω for
any x ∈ Ω.

We now show that S is continuous. Let xi ∈ Ω be such that xi → x as i→∞. Because
Ω is closed, x ∈ Ω. For t ≥ T we have

|(Sxi)(t)− (Sx)(t)|

=

∣∣∣∣exp

(∫ t

T

ξµ(s)

[
	
(
p(s) + q(s)

xi(τ(s))

xσi (s)

)]
∆s

)
− exp

(∫ t

T

ξµ(s)

[
	
(
p(s) + q(s)

x(τ(s))

xσ(s)

)]
∆s

)∣∣∣∣ .
So we conclude that

lim
i→∞

‖Sxi − Sx‖ = 0.

For t ∈ [τ (T ) , T ] ∩ T the relation above is also valid. This means that S is continuous.
The family of functions {Sx : x ∈ Ω} is uniformly bounded on [τ(T ),∞)∩T. It follows

from the definition of Ω. This family is also equicontinuous on [τ(T ),∞) ∩ T. Then by
Arsela-Ascoli theorem the SΩ is relatively compact subset of Crd ([t0,∞) ∩ T,R). By
Theorem 1 there is an x0 ∈ Ω such that Sx0 = x0. We see that x0 is a positive solution
of the equation (1). The proof is complete. �

Corollary 1. Suppose that for t ≥ t0
0 < k1 ≤ k2, p(t) + k1q(t) ≥ 0,

and ∫ τ(t)

σ(t)

ξµ(s) [	 (p(s) + k1q(s))] ∆s ≥ log k1,∫ τ(t)

σ(t)

ξµ(s) [	 (p(s) + k2q(s))] ∆s ≤ log k2.

Then equation (1) has a solution which is bounded by positive functions.

Proof. We put k1 (t) = k1, k2 (t) = k2 and apply Theorem 2. �
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Corollary 2. Suppose that there exists a function k ∈ Crd ([t0,∞) ∩ T, (0,∞)) such that
for t ≥ t0

p(t) + k (t) q(t) ≥ 0,

and ∫ τ(t)

σ(t)

ξµ(s) [	 (p(s) + k (s) q(s))] ∆s = log k (t) .

Then equation (1) has a solution

x(t) = exp

(∫ t

T

ξµ(s) [	 (p(s) + k (s) q(s))] ∆s

)
, t ≥ T.

Proof. We put k1 (t) = k2 (t) = k (t) and apply Theorem 2. �

Corollary 3. Suppose that for t ≥ t0
k > 0, p(t) + kq(t) ≥ 0,

and ∫ τ(t)

σ(t)

ξµ(s) [	 (p(s) + kq(s))] ∆s = log k.

Then equation (1) has a solution

x(t) = exp

(∫ t

T

ξµ(s) [	 (p(s) + kq(s))] ∆s

)
, t ≥ T.

Proof. We put k (t) = k and apply Corollary 2. �

Corollary 4. Suppose that there exist functions k1, k2 ∈ Crd ([t0,∞) ∩ T, (0,∞)) and
α ∈ Crd ([t0,∞) ∩ T, [0,∞)) such that for t ≥ t0

α (t) ≤ k1 (t) ≤ k2 (t) , p(t) + α (t) q(t) = 0,

and ∫ τ(t)

σ(t)

ξµ(s) [	 ([k1 (s)− α (s)] q(s))] ∆s ≥ log k1 (t) ,∫ τ(t)

σ(t)

ξµ(s) [	 ([k2 (s)− α (s)] q(s))] ∆s ≤ log k2 (t) .

Then equation (1) has a solution which is bounded by positive functions.

Proof. We put p (t) = −α (t) q (t) into (2) and apply Theorem 2. �

Corollary 5. Suppose that for t ≥ t0
0 ≤ α < k1 ≤ k2, p(t) + αq(t) = 0,

and ∫ τ(t)

σ(t)

ξµ(s) [	 ([k1 − α] q(s))] ∆s ≥ log k1,∫ τ(t)

σ(t)

ξµ(s) [	 ([k2 − α] q(s))] ∆s ≤ log k2.

Then equation (1) has a solution which is bounded by positive functions.

Proof. We put α (t) = α, k1 (t) = k1, k2 (t) = k2 and apply Corollary 4. �
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