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SECOND AND THIRD HANKEL DETERMINANT FOR A CLASS

DEFINED BY GENERALIZED POLYLOGARITHM FUNCTIONS

MOHD NAZRAN MOHAMMED PAUZI, MASLINA DARUS, AND SAIBAH SIREGAR

Abstract. By making use of Dmλ f(z), the generalized Polylogarithms derivative op-

erator introduced by Al-Saqsi and Darus [4] defined by

Dmλ f(z) = z +

∞∑
n=2

nm(n+ λ− 1)!

λ!(n− 1)!
anz

n,

wherem ∈ N0 = {0, 1, 2, 3, ...}. The sharp upper bound for the second Hankel determi-

nant H2,2(f) and third Hankel determinant H3,1(f) is obtained. Relevant connections

of the results presented here with those given in earlier works are also indicated.

1. Introduction

Let A denotes the family of analytic functions in the open unit disk U = {z ∈ C : |z| <
1} of the form

f(z) = z +

∞∑
n=2

anz
n. (1)

A function f is said to be univalent in the domain U, if it is one-to-one in U. Let S
denote the subclass of A consisting of functions which are univalent in U.

The Hankel determinant Hq,n(f) for q ≥ 1 and n ≥ 1 of Taylor’s coefficients of function
f ∈ A of the form (1) defined by Noonan and Thomas [25] defined as

Hq,n(f) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q+1

an+1 an+2 . . . an+q+2

...
...

...
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣ ,
where a1 = 1 and n, q ∈ N = 1, 2, ... .

The application of Hankel determinant have been investigate by various researchers.
For example, Wilson [33] study the application of Hankel determinant in meromorphic
functions and Cantor in [9] shows the application of Hankel determinant in showing that
a function of bounded characteristic in U, i.e. a function which a ratio of two bounded
analytic functions with its Laurent series around the origin having integral coefficients,
is rational. Since then, the study of |Hq,n(f)| have been investigated by several authors.
Pommerenke [29] investigated the Hankel determinant of a really mean p-valent functions
as well as of starlike functions and prove that the determinants of univalent functions
satisfy

|Hq,n(f)| < Kn−(
1
2+β)q+

3
2 for (n = 1, 2, ...) and (q = 2, 3, ...),

where β > 1/4000 and K depends only on q. Later, Hayman [14] showed that |H2,n(f)| <
An1/2 (n=1,2,...; A an absolute constant) for a really mean univalent functions. Noor in
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[26] have determined the rate of growth of as with bounded boundary and also studied the
Hankel determinant for Bazilevic functions in [27]. The Hankel determinant of exponential
polynomials were studied by Ehrenborg [11], and Layman in [20] discussed some of its
properties.

It is easily observe that for q = 2 and n = 1, we will have a classical theorem of Fekete
and Szegö given by,

H2,1(f) =

∣∣∣∣ a1 a2
a2 a3

∣∣∣∣ = a3 − a22. (2)

They in [12] made an early study for the estimates of |a3 − µa22| when a1 = 1 and µ
real. The well-known result due to them states that if f ∈ S, then

|a3 − µa22| ≤


4µ− 3, if µ ≥ 1,

1 + 2e(
−2µ
1−µ ) if 0 ≤ µ ≤ 1,

3− 4µ if µ ≤ 0.

Several author have investigated problem involving H2,1(f). For example, Keogh and
Merkes [17] discussed the sharp estimates for |a3 − µa22| when f is close-to-convex and
starlike in U. The functional (2) is studied, among others, by Koepf [18], London [23],
Srivastava et. al [32] and others.

Hankel determinant of f ∈ A for q = 2 and n = 2, known as the second Hankel
determinant, given by

H2,2(f) =

∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ = a2a4 − a23. (3)

This second Hankel determinant has been considered by many researchers. Such as,
Janteng et. al [15] have studied the sharp bound for the function f in (1), consisting the
functions which derivative has a positive real part and have the result |a2a4 − a23| ≤ 4/9.
The same author [16] obtained the result for the sharp upper bounds for starlike and
convex functions as |a2a4 − a23| ≤ 1 and |a2a4 − a23| ≤ 1/8 respectively. Further, various
authors studied and investigated the second Hankel determinant for a certain class of
analytic functions such as Al-Refai and Darus [1], Abubaker and Darus [2], Al-Abbadi
and Darus [3] and Bansal [7].

The third Hankel determinant H3,1(f) is defined by

H3,1(f) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣ = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22). (4)

for f ∈ A and a1 = 1. By applying triangle inequality, we obtain

|H3,1(f)| ≤ |a3||(a2a4 − a23)| − |a4||(a4 − a2a3)|+ |a5||(a3 − a22)|. (5)

Recently, the study on |H3,1(f)| have been investigated by Babalola [5], Shanmugam
et. al [31], Prajabat et. al [28], Bansal et. al [8], Krishna et. al [19] and Zaparwa [34].

In the present paper we will use the generalized polylogarithms derivative operator
Dm
λ f(z) introduced by Al-Saqsi and Darus [4] defined as follow:

Definition 1. [4] For f ∈ A, the generalized polylogarithms defined by Dm
λ f(z) : A → A

Dm
λ f(z) = z +

∞∑
n=2

nm(n+ λ− 1)!

λ!(n− 1)!
anz

n, (6)

where m ∈ N0 = {0, 1, 2, ...}, z ∈ U. It is clear that the operator Dm
λ f(z) included two

unknown derivative operators. Note that Dm
0 = Dm which are Sălăgean and D0

λ = Dλ is
the Ruscheweyh derivative operators respectively.
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Motivated by the results obtained by various authors in this direction mentioned above,
we investigate the upper bound for functional |a2a4−a23|, |a4−a2a3| and |a3−a22| to find
|H2,2(f)| and |H3,1(f)|.

The subclass Dm
λ f(z) is defined as the following.

Definition 2. Let f be given by (1). Then f is said to be the class Dm
λ f(z) if it is

satisfies the inequality
Re{[Dm

λ f(z)]′} > 0, (z ∈ U) (7)

We first state some preliminary lemmas required for proving our results.

2. Preliminary Results

Lemma 1. [30] Let P be the family of all functions p analytic in U for which Re{p(z)} >
0. If p ∈ P is of the form

p(z) = 1 +

∞∑
n=1

anz
n (8)

for z ∈ U, then
|cn| ≤ 2 for n ∈ N := {1, 2, ...}. (9)

The inequality in (9) is sharp and the equality holds for the function ϕ(z) = (1+z)/(1−z)
(see Duren [10]).

Lemma 2. [13]. The power series for p(z) given in (2.1) converges in U to a function
in P if and only if the Toeplitz determinants

Tn(p) =

∣∣∣∣∣∣∣∣∣
2 c1 c2 . . . cn
c−1 2 c1 . . . cn−1

...
...

...
...

...
c−n c−n+1 c−n+2 . . . 2

∣∣∣∣∣∣∣∣∣ , n = 1, 2, 3, ... (10)

and ck = c̄k, are all nonnegative. They are strictly positive except for p(z) =
l∑

k=1

%kp0(eitkz),

%k > 0, tk real and tk 6= tj for k 6= j; in this case Tn(p) > 0 for n < (l−1) and Tn(p) = 0
for n ≥ l.

This necessary and sufficient condition is due to Carathéodory and Toeplitz and can
be found in Grenander and Szegö [13].

The Toeplitz determinant can be use to find the estimate of the upper bound on
the coefficients functional for analytic function introduced by Janteng et al. [15]. By
referring to method introduced by Libera and Zlotkiewicz [21, 22]. We may assume
without restriction that c1 > 0. For the case n = 2, then from (10) we obtain

T2(p) =

∣∣∣∣∣∣
2 c1 c2
c1 2 c1
c̄2 c1 2

∣∣∣∣∣∣ = 8 + 2Re{c21c2} − 2|c2| − 4c21 ≥ 0,

which is equivalent to
2c2 = c21 + x(4− c21) (11)

for some x,|x| ≤ 1. Then for n = 3, T3(p) ≥ 0 is equivalent to

|(4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)2| ≤ 2(4− c21)2 − 2|2c2 − c21|2;

and this, with (11), provides the relation

4c3 = c31 + 2(4− c21)c1x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)z, (12)

for some value of z, |z| ≤ 1.
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3. Main Result

Our main result is the following:

Theorem 1. Let the function f given by (1) be in the class Dm
λ f(z). Then

|a2a4 − a23| ≤
16

9m+1(λ+ 1)2(λ+ 2)2
. (13)

The inequality in result (13) obtained is sharp.

Proof. Since f ∈ Dm
λ f(z), by virtue of (7) there exists an analytic function p ∈ P in the

unit disk U with p(0) = 1 and [Rep(z)] > 0 such that

[Dm
λ f(z)]′ = p(z). (14)

Replacing [Dm
λ f(z)]′ and p(z) with their equivalent series expressions in 14, we have for

some z ∈ U.

1 +

∞∑
n=2

nm+1(n+ λ− 1)!

λ!(n− 1)!
anz

n−1 = 1 + c1z + c2z
2 + c3z

3 + ....

Upon simplification, we have

1 + 2 · 2m(λ+ 1)a2z +
3 · 3m(λ+ 2)(λ+ 1)

2
a3z

2

+
2 · 4m(λ+ 3)(λ+ 2)(λ+ 1)

3
a4z

3 + ... = 1 + c1z + c2z
2 + c3z

3 + .... (15)

Equating coefficients in (15) of the like powers z0, z and z2, respectively, yields{
a2 =

1

2

c1
2m(λ+ 1)

, a3 =
2

3

c2
3m(λ+ 2)(λ+ 1)

, a4 =
3

2

c3
4m(λ+ 3)(λ+ 2)(λ+ 1)

}
. (16)

Substituting the values of a2, a3 and a4 from (16) in the second Hankel functional |a2a4−
a23| , it can be easily established that

|a2a4 − a23| =
1

(λ+ 1)2(λ+ 2)

∣∣∣∣34 c1c3
2m4m(λ+ 3)

− 4

9

c22
(3m)2(λ+ 2)

∣∣∣∣ .
We make use of Lemma 2 to obtain the proper bound on

1

(λ+ 1)2(λ+ 2)

∣∣∣∣34 c1c3
2m4m(λ+ 3)

− 4

9

c22
(3m)2(λ+ 2)

∣∣∣∣ (17)

Now, to simplify our calculation, we let

{u = 2m, v = 3m and w = 4m}. (18)

Thus, equation (17) can be written as

1

(λ+ 1)2(λ+ 2)

∣∣∣∣34 c1c3
uw(λ+ 3)

− 4

9

c22
v2(λ+ 2)

∣∣∣∣ .
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By substituting the values of c2 and c3 from (11) along with (12) from Lemma 2 in (17),
we get

1

(λ+ 1)2(λ+ 2)

∣∣∣∣34 c1c3
uw(λ+ 3)

− 4

9

c22
v2(λ+ 2)

∣∣∣∣
=

1

(λ+ 1)2(λ+ 2)

∣∣∣∣∣c4
[

27v2(λ+ 2)− 16uw(λ+ 3)

144uv2w(λ+ 3)(λ+ 2)

]
+c2(4− c2)x

[
27v2(λ+ 2)− 16uw(λ+ 3)

72uv2w(λ+ 3)(λ+ 2)

]
−(4− c2)x2

{
[27v2(λ+ 2)− 16uw(λ+ 3)]c2 − 64uw(λ+ 3)

144uv2w(λ+ 3)(λ+ 2)

}
+

3c(4− c2)(1− |x|2)z

8uw(λ+ 3)

∣∣∣∣∣.
By using the facts |z| < 1 and triangle inequality with taking c1 = c and c ∈ [0, 2] shows
that

1

(λ+ 1)2(λ+ 2)

∣∣∣∣34 c1c3
uw(λ+ 3)

− 4

9

c22
v2(λ+ 2)

∣∣∣∣
≤ 1

(λ+ 1)2(λ+ 2)

{
|27v2(λ+ 2)− 16uw(λ+ 3)|c4

144uv2w(λ+ 3)(λ+ 2)
+

3c(4− c2)

8uw(λ+ 3)

+c2(4− c2)ρ
|27v2(λ+ 2)− 16uw(λ+ 3)|

72uv2w(λ+ 3)(λ+ 2)

+(4− c2)(c− 2)ρ2

[
27v2(λ+ 2)c− 16uw(λ+ 3)(c+ 2)

144uv2w(λ+ 3)(λ+ 2)

]}
= F (c, ρ), for 0 ≤ ρ = |x| ≤ 1. (19)

We assume that the upper bound for (19) attains at the interior point of ρ ∈ [0, 1] and
c ∈ [0, 2]. Next, we maximize the function F (c, ρ) on the closed square [0, 2] × [0, 1].
Differentiating (19) with respect to ρ, we obtain

∂F

∂ρ
= c2(4− c2)

|27v2(λ+ 2)− 16uw(λ+ 3)|
72uv2w(λ+ 3)(λ+ 2)

+(4− c2)(c− 2)ρ

[
27v2(λ+ 2)− 16uw(λ+ 3)(c+ 2)

72uv2w(λ+ 3)(λ+ 2)

]
. (20)

From (20) we observe that, ∂F
∂ρ > 0 for ρ > 0. Thus, (20) is an increasing function of

ρ and hence it cannot have a maximum in the interior of the closed region [0, 2] × [0, 1].
Moreover, for fixed c ∈ [0, 2] we have

max
0≤ρ≤1

F (c, ρ) = F (c, 1). (21)

Therefore, by substituting ρ = 1 in (19), upon simplification we obtain

F (c, 1) =
1

144vw(uv2wλ+ 1)2(λ+ 2)2(λ+ 3)

{
54v2(λ+ 2)(4− c2)c

+|27v2(λ+ 2)− 16uw(λ+ 3)|[c4 + 2c2(4− c2)]

+(4− c2)(c− 2)[27v2(λ+ 2)c− 16uw(λ+ 3)(c+ 2)]
}
, (22)
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then

F ′(c, 1) =
1

144uv2w(λ+ 1)2(λ+ 2)2(λ+ 3)

{
(4− 3c2)[54v2(λ+ 2)]

+4c(4− c2)|27v2(λ+ 2)− 16t2uw(λ+ 3)|
+(8− 3c2)[27v2(λ+ 2)c− 16t2uw(λ+ 3)(c+ 2)]

+(4− c2)(c− 2)[27v2(λ+ 2)c− 162uw(λ+ 3)]
}
. (23)

From (23), we note that F ′(c, 1) ≤ 0 for every c ∈ [0, 2]. Therefore, F (c, 1) is a decreasing
function of c in the interval c ∈ [0, 2], whose maximum values occurs at points of F must
be on the boundary of c ∈ [0, 2]. However, F (0, 1) ≥ F (2, 1) and thus F has maximum
value at c = 0.
The upper bound for (19) corresponds to ρ = 1 and c = 0, in which case

|a2a4 − a23| =
1

(λ+ 1)2(λ+ 2)

∣∣∣∣34 c1c3
uw(λ+ 3)

− 4

9

c22
v2(λ+ 2)

∣∣∣∣ (24)

≤ 16

9v2(λ+ 1)2(λ+ 2)2
.

By substituting v = 3m. We have the upper bound

|a2a4 − a23| ≤
16

9m+1(λ+ 1)2(λ+ 2)2
. (25)

By setting c1 = 0 and choosing x = 1 in (11) and (12), we find that c2 = 2 and c3 = 0.
Substitute these values in (24), the equality is attained, which shows that our result is
sharp. This concludes the proof of our theorem. �

Remark 1. For the choice of m = 0 and λ = 0 into Theorem 1, we will obtained the
result coincides with Janteng et. al [15] which stated that |a2a4 − a23| ≤ 4/9.

Theorem 2. Let the function f given by (1) be in the class Dm
λ f(z). Then

|a2a3 − a4| ≤
3

4m(λ+ 2)(λ+ 3)
. (26)

The result obtained in is sharp.

Proof. Substituting the values of a2, a3 and a4 from (16) in the nonlinear functional
|a2a3 − a4| , we obtain

|a2a3 − a4| =
1

(λ+ 1)(λ+ 2)

∣∣∣∣13 c1c2
2m3m(λ+ 1)

− 3

2

c3
4m(λ+ 3)

∣∣∣∣ . (27)

We substitute (18) into (27) to simplfy our calculation. Thus, equation (27) can be written
as

1

(λ+ 1)(λ+ 2)

∣∣∣∣13 c1c2
uv(λ+ 1)

− 3

2

c3
w(λ+ 3)

∣∣∣∣ .
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By Lemma 2 and substituting the values of c2 and c3 from (11) along with (12) in (27),
we get

1

(λ+ 1)(λ+ 2)

∣∣∣∣13 c1c2
uv(λ+ 1)

− 3

2

c3
w(λ+ 3)

∣∣∣∣
=

1

(λ+ 1)(λ+ 2)

∣∣∣∣∣
(

[8w(λ+ 3)− 18uv(λ+ 1)]

48uvw(λ+ 1)(λ+ 3)

)
c3

+

(
4w(λ+ 3)− 18uv(λ+ 1)

24uvw(λ+ 1(λ+ 3)

)
c(4− c2)x+

3

8

(4− c2)x2

w(λ+ 3)
− 3

4

(4− c2)(1− |x|2)z

w(λ+ 3)

∣∣∣∣∣,
for some x and z such that |x| ≤ 1 and |z| ≤ 1. Using the triangle inequality with c1 = c
and c ∈ [0, 2], we have

1

(λ+ 1)(λ+ 2)

∣∣∣∣13 c1c2
uv(λ+ 1)

− 3

2

c3
w(λ+ 3)

∣∣∣∣
≤ 1

(λ+ 1)(λ+ 2)

{(
[8w(λ+ 3)− 18uv(λ+ 1)]

48uvw(λ+ 1)(λ+ 3)

)
c3 +

3

4

(4− c2)

w(λ+ 3)

+c(4− c2)ρ

(
[4w(λ+ 3)− 18uv(λ+ 1)]

24uvw(λ+ 1)(λ+ 3)

)
+ (4− c2)ρ2

[
3c− 6

8w(λ+ 3)

]}

≤ 1

48uvw(λ+ 1)2(λ+ 2)(λ+ 3)

{
[8w(λ+ 3)− 18uv(λ+ 1)]c3

+36uv(4− c2)(λ+ 1) + 2ρ(4− c2)[4w(λ+ 3)− 18uv(λ+ 1)]c

+6ρ2(4− c2)(3c− 6)uv(λ+ 1)]
}

= G(c, ρ), for 0 ≤ ρ = |x| ≤ 1. (28)

We assume that the upper bound for (27) attains at the interior point of ρ ∈ [0, 1] and
c ∈ [0, 2]. Next, we maximize the function G(c, ρ) on the closed square [0, 2]× [0, 1]. Since

∂G

∂ρ
=

1

48uvw(λ+ 1)2(λ+ 2)(λ+ 3)

{
2(4− c2)[4w(λ+ 3)− 18uv(λ+ 1)]c

+12ρ(4− c2)(3c− 6)uv(λ+ 1)]
}
. (29)

with elementary calculus, we can show that ∂G
∂ρ > 0 for ρ > 0. Thus, G(c, ρ) is an

increasing function of ρ and hence it cannot have a maximum in the interior of the closed
region [0, 2]× [0, 1]. Moreover, for fixed c ∈ [0, 2] we have

max
0≤ρ≤1

G(c, ρ) = G(c, 0). (30)

Therefore, by substituting ρ = 0 in (28), upon simplification we obtain

G(c, 0) =
1

48uvw(λ+ 1)2(λ+ 2)(λ+ 3)

{
[8w(λ+ 3)− 18uv(λ+ 1)]c3

+36uv(4− c2)(λ+ 1)
}

(31)

then

G′(c, 0) =
1

48uvw(λ+ 1)2(λ+ 2)(λ+ 3)

{
3[8w(λ+ 3)− 18uv(λ+ 1)]c2

−72uv(λ+ 1)c
}
. (32)
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From (32), we note that G′(c, 0) ≤ 0 for every c ∈ [0, 2]. Therefore, G(c, 0) is a decreasing
function of c in the interval c ∈ [0, 2], whose maximum values occurs at points of G must
be on the boundary of c ∈ [0, 2]. However, G(c) ≥ G(2) and thus the local maximum at
G(0, 0).
The upper bound for (27) corresponds to ρ = 0 and c = 0, in which case

|a2a3 − a4| ≤
3

w(λ+ 2)(λ+ 3)
. (33)

By substituting w = 4m. We have the upper bound

|a2a4 − a23| ≤
3

4m(λ+ 2)(λ+ 3)
. (34)

By setting c1 = 0 and choosing x = |1| in (11) and (12), we find that c2 = 2 and c3 = 0.
Substitute these values in (33), the equality is attained, which shows that our result is
sharp. This concludes the proof of our theorem. �

Remark 2. For the choice of m = 0 and λ = 0 into Theorem 2, we will obtained the
result coincides with Bansal et. al [8] which |a2a4 − a23| ≤ 1/2.

Theorem 3. Let the function f given by (1) be in the class Dm
λ f(z). Then

|a3 − a22| ≤
4

3m+1(λ+ 1)(λ+ 2)
. (35)

The result obtained in (35) is sharp.

Proof. Substituting the values of a2, a3 and a4 from (16) in functional |a3−a22| , we obtain

|a3 − a22| =
1

(λ+ 1)

∣∣∣∣23 c2
3m(λ+ 2)

− 1

4

c21
(2m)2(λ+ 1)

∣∣∣∣ . (36)

To simplfy our calculation, we substitute (18) into (36). Thus, equation (36) become

|a3 − a22| =
1

(λ+ 1)

∣∣∣∣23 c2
v(λ+ 2)

− 1

4

c21
u2(λ+ 1)

∣∣∣∣ .
We assume c1 = c and c ∈ [0, 2] and substituting the values of c2 and c3 from (11) along
with (12) and make use Lemma 2 in (36), we have

1

(λ+ 1)

∣∣∣∣23 c2
v(λ+ 2)

− 1

4

c21
u2(λ+ 1)

∣∣∣∣
=

1

(λ+ 1)

∣∣∣∣∣13 c3

v(λ+ 2)
+

1

3

c(4− c2)x

v(λ+ 2)
− 1

4

c2

u2(λ+ 1)

∣∣∣∣∣. (37)

for some x and z such that |x| ≤ 1 and |z| ≤ 1. Using the triangle inequality , we have

1

(λ+ 1)

∣∣∣∣23 c2
v(λ+ 2)

− 1

4

c21
u2(λ+ 1)

∣∣∣∣
≤ 1

(λ+ 1)

{
1

3

c3

v(λ+ 2)
+

1

3

c(4− c2)ρ

v(λ+ 2)
− 1

4

c2

u2(λ+ 1)

}

≤ 1

12u2v(λ+ 1)(λ+ 2)

{
4c3u2(λ+ 1) + 4cρu2(4− c2)(λ+ 1) + 3c2v(λ+ 2)

}
= H(c, ρ), for 0 ≤ ρ = |x| ≤ 1. (38)
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We assume that the upper bound for (36) attains at the interior point of ρ ∈ [0, 1] and
c ∈ [0, 2]. Next, we maximize the function H(c, ρ) on the closed square [0, 2]× [0, 1]. Since

∂H

∂ρ
=

1

12u2v(λ+ 1)(λ+ 2)

{
4cu2(4− c2)(λ+ 1)

}
.

with elementary calculus, we can show that ∂H
∂ρ > 0. Thus, H(c, ρ) is an increasing

function of ρ and hence it cannot have a maximum in the interior of the closed region
[0, 2]× [0, 1]. Moreover, for fixed c ∈ [0, 2] we have

max
0≤ρ≤1

H(c, ρ) = H(c, 1). (39)

Therefore, by substituting ρ = 1 in (38), upon simplification we obtain

H(c, 1) =
1

12u2v(λ+ 1)(λ+ 2)

{
4c3u2(λ+ 1) + 4cu2(4− c2)(λ+ 1) + 3c2v(λ+ 2)

}
(40)

then

H ′(c, 1) =
1

12u2v(λ+ 1)(λ+ 2)

{
12c2u2(λ+ 1) + 4u2(4− c2)(λ+ 1)

−8c2u2(λ+ 1) + 6cv(λ+ 2)
}

(41)

From (41), we note that H ′(c, 1) ≤ 0 for every c ∈ [0, 2]. Therefore, H(c, 1) is a decreasing
function of c in the interval c ∈ [0, 2], whose maximum values occurs at points of H must
be on the boundary of c ∈ [0, 2]. However, H(0, 1) ≥ H(2, 1) and thus the local maximum
at H(0, 1).
The upper bound for (36) corresponds to ρ = 1 and c = 0, in which case

|a3 − a22| ≤
4

3v(λ+ 1)(λ+ 2)
. (42)

By substituting v = 3m. We have the upper bound

|a3 − a22| ≤
4

3m+1(λ+ 1)(λ+ 2)
. (43)

By setting c1 = 0 and choosing x = |1| in (11) and (12), we find that c2 = 2 and c3 = 0.
Substitute these values in (42), the equality is attained, which shows that our result is
sharp. This concludes the proof of our theorem. �

Remark 3. For the choice of m = 0 and λ = 0 into Theorem 3, we will obtained the
result coincides with Babalola and Opoola [6] which show |a3 − a22| ≤ 2/3.

It is well known from Macgregor [24]. If f in the form of (1), then |an| ≤ 2/n, (n = 2, 3, ...).
Using these coefficient bounds together with Theorem 1, 2 and 3, we obtained

|H3,1(f)| ≤ |a3||(a2a4 − a23)| − |a4||(a4 − a2a3)|+ |a5||(a3 − a22)|.

≤ 2

3

(
16

9m+1(λ+ 1)2(λ+ 2)2

)
− 2

4

(
3

4m(λ+ 2)(λ+ 3)

)
+

2

5

(
4

3m+1(λ+ 1)(λ+ 2)

)
. (44)

Thus, we state that:
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Theorem 4. Let the function f given by (1) be in the class Dm
λ f(z). Then

|H3,1(f)| ≤ 32

32m+3(λ+ 1)2(λ+ 2)2
− 6

4m+1(λ+ 2)(λ+ 3)

+
8

5 · 3m+1(λ+ 1)(λ+ 2)
. (45)

The result obtained is sharp and the equality holds for the function

f ′(z) =
1 + z2

1− z2
.

Remark 4. By taking m = 0 and λ = 0 into Theorem 4, we will obtained the result
coincides with Bansal et. al [8] which |H3,1(f)| ≤ 439/540.
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[12] Fekete, M., Szegö, G., Eine Bemerkung uber ungerade schlichte funktionen, J. London Math. Soc.,

8 (1933), 85–89.
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