COEFFICIENT PROPERTIES INVOLVING THE GENERALIZED
K–MITTAG-LEFFLER FUNCTIONS

HAMEED UR REHMAN, MASLINA DARUS, AND JAMAL SALAH

Abstract. In this article we investigate the Fekete-Szeg"{o} problem for the integral
operator associated with the most generalized K– Mittag-Leffler function. Our results
will focus on some of the subclasses of starlike and convex functions.

1. Introduction

Let N be the family of all normalized analytic functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} t_n z^n$$

which are analytic in the unit disk

$$T = \{ z \in \mathbb{C} : |z| < 1 \}.$$

Suppose S be the subclass of N consisting of functions that are univalent in T. A classical
theorem of Fekete-Szeg"{o} \cite{1} states that for $f \in N$ given by (1),

$$|t_3 - \mu t_2^2| \leq 1 + 2 \exp \left(\frac{-2\mu}{1 - \mu} \right),$$

for $0 \leq \mu < 1$ and that this inequality is sharp.

Definition 1. For a function $\{f, g\} \in N$ given by (1) and $g(z) = z + \sum_{n=2}^{\infty} d_n z^n$, we define
the Hadamard product (or convolution) of f and g by

$$(f * g)(z) = z + \sum_{n=2}^{\infty} t_n d_n z^n, \quad (t_n \geq 0, z \in T).$$

The one-parameter Mittag-Leffler function $E_{\alpha}(z) : (z) \in \mathbb{C}$ see \cite{6} and \cite{7},

$$E_{\alpha}(z) := \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha + 1)} =: E_{\alpha, 1}(z),$$

and its two-parameters extension $E_{\alpha, \beta}(z)$ was studied by Wiman \cite{8},

$$E_{\alpha, \beta}(z) := \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + \beta)} \quad (\alpha \geq 0),$$

where $\alpha, \beta \in \mathbb{C}, \mathcal{R}(\alpha) > 0$ and $\mathcal{R}(\beta) > 0$.
Lemma 1. Let q be a positive integer and $(\gamma)_n$ be an analytic function of class \mathcal{S}, Srivastava and his co-authors [3] have considered some normalization on E_{nq} type of generalized K–Mittag-Leffler function which is of the form

$$E^{\gamma,q}_{k,\alpha,\beta,\delta}(z) = \sum_{n=0}^{\infty} \frac{(\gamma)_{nq,k}}{\Gamma(k(\alpha n + \beta))(\delta)_n} z^n,$$

the imposition on parameters are $\alpha, \beta, \gamma \in \mathbb{C}, R(\alpha) > 0, R(\beta) > 0$, $k \in \mathbb{R}, \delta$ is non-negative real number, nq is a positive integer and $(\gamma)_n$ is the Pochhammer symbol:

$$(\gamma)_n = \frac{\Gamma(\gamma + n)}{\Gamma(\gamma)}, \quad n = 0, 1, \ldots, (\gamma)_n \in \mathbb{N}.$$

Note that

$$(x)_n = x(x+1)\ldots(x+n-1), \quad n \in \mathbb{N},$$

where $(\gamma)_{nq,k}$ is the k–Pochhammer symbol defined as:

$$(\gamma)_{nq,k} = (\gamma + k)(\gamma + k + 2q)\ldots(\gamma + (nq - 1)k) \quad (\gamma \in \mathbb{C}, k \in \mathbb{R}, n \in \mathbb{N}). \quad (7)$$

Since the Mittag-Leffler function in (5) does not belong to the class \mathcal{N} therefore, Srivastava and his co-authors [3] have considered some normalization on E_{nq} and made it an analytic function of class \mathcal{N}. Similarly we consider some normalization on the most generalized Mittag-Leffler function $E^{\gamma,q}_{k,\alpha,\beta,\delta}(z)$ defined in [6]

$$Q^{\gamma,q,\delta}_{k,\alpha,\beta}(z) = \frac{k^\delta}{(\gamma)_k} z \left(E^{\gamma,q}_{k,\alpha,\beta,\delta}(z) \right), \quad (z \in \mathbb{T})$$

$$= z + \sum_{n=1}^{\infty} \frac{(\gamma)_{nq,k} k^\delta \Gamma(\delta + 1)}{(\gamma)_n k \Gamma(\alpha n + \beta) \Gamma(\delta + n)} z^n + 1. \quad (8)$$

$$Q^{\gamma,q,\delta}_{k,\alpha,\beta,\delta}(z) = z + \sum_{n=2}^{\infty} \frac{(\gamma)_{nq,k} k^\delta \Gamma(\delta + 1)}{(\gamma)_{nq,k} \Gamma(\alpha(n - 1) + \beta) \Gamma(\delta + n - 1)} z^n. \quad (9)$$

Let $f(z) \in \mathcal{N}$. Denote $L^{\gamma,q,\delta}_{k,\alpha,\beta,\delta}(f)(z) : \mathcal{N} \rightarrow \mathcal{N}$ the operator is defined by

$$L^{\gamma,q,\delta}_{k,\alpha,\beta,\delta}(f)(z) = Q^{\gamma,q,\delta}_{k,\alpha,\beta}(z) * f(z),$$

and now by convolution or Hadamard product (\ast) the operator $L^{\gamma,q,\delta}_{k,\alpha,\beta,\delta}(f)(z)$ becomes

$$L^{\gamma,q,\delta}_{k,\alpha,\beta,\delta}(f)(z) = z + \sum_{n=2}^{\infty} \frac{(\gamma)_{nq,k} k^\delta \Gamma(\delta + 1)}{(\gamma)_{nq,k} \Gamma(\alpha(n - 1) + \beta) \Gamma(\delta + n - 1)} t_n z^n. \quad (10)$$

where $\alpha, \beta, \gamma \in \mathbb{C}, R(\alpha) > 0, R(\beta) > 0, k \in \mathbb{R}, \delta$ is non-negative real number, nq is a positive integer and $q \in (0,1) \cup \mathbb{N}$.

Some properties and relation of this integral operator are given in the next Lemma [7]

2. Preliminary Results

Lemma 1. Let $f(z) \in \mathcal{N}$. Then

i) $L^{1,1}_{1,0,1,1}(f)(z) = z + \sum_{n=2}^{\infty} t_n z^n = f(z)$

ii) $L^{1,1}_{1,0,0,0}(f)(z) = z + \sum_{n=2}^{\infty} nt_n z^n = zf'(z)$
iii) \(L_{1,0,1,1}^2(f)(z) = \frac{z}{2} \sum_{n=2}^{\infty} \left(\frac{n+1}{2} \right) t_n z^n = \frac{1}{2} [f(z) + zf'(z)] \)

iv) \(L_{1,0,1,2}^2(f)(z) = \frac{2}{z} \int_0^z f(t) dt = z + \sum_{n=2}^{\infty} \left(\frac{2}{n+1} \right) t_n z^n = \left(-\frac{2\log(1-z)}{z} - 2 \right) \)

v) \(L_{1,0,1,2}^2(f)(z) = z + \sum_{n=2}^{\infty} (n+1)t_n z^n = f(z) + zf'(z). \)

Remark 1. Note that in above Lemma part (iv) is the type of Bernardi Integral [15] and is the special case of studied by Libera [18] and Livingston [19].

Definition 2. Let \(f(z) \in \mathcal{N}. \) Then \(f(z) \in S_{k,\alpha,\beta,\delta}^q(\lambda) \) if and only if

\[
\Re \left\{ \frac{z}{2} \left[L_{k,\alpha,\beta,\delta}^{q, q,f}(z) \right] \right\} > \lambda, \quad 0 \leq \lambda < 1, \quad z \in \mathbb{T}.
\]

Definition 3. Let \(f(z) \in \mathcal{N}. \) Then \(f(z) \in C_{k,\alpha,\beta,\delta}^q(\lambda) \) if and only if

\[
\Re \left\{ \frac{z}{2} \left[L_{k,\alpha,\beta,\delta}^{q, q,f}(z) \right] \right\} > \lambda, \quad 0 \leq \lambda < 1, \quad z \in \mathbb{T}.
\]

Now we discuss the general properties and distortion theorems for the function \(f(z) \in \mathcal{N} \) belonging to the classes \(S_{k,\alpha,\beta,\delta}^q(\lambda) \) and \(C_{k,\alpha,\beta,\delta}^q(\lambda) \) by obtaining the coefficient bounds. In context to obtain sharp upper bounds of \(|t_2| \) and of the Fekete-Szegö functional \(|t_3 - \mu t_2^2| \) for the classes \(S_{k,\alpha,\beta,\delta}^q(\lambda) \) and \(C_{k,\alpha,\beta,\delta}^q(\lambda) \), we need to state the following result due to Duren [16].

Lemma 2. Let \(h(z) = 1 + \sum_{n=1}^{\infty} h_n z^n \in \mathcal{P}, \) such that \(h \) be analytic in \(\mathbb{T}, \) and \(\mathcal{P} \) be the class of all analytic functions, and \(\Re \{h(z)\} > 0 \) for \(z \in \mathbb{T}. \) Then

(i) \(|h_2 - \frac{h_1^2}{2}| \leq 2 - |\frac{h_1^2}{2}|, \)

(ii) \(|h_n| \leq \frac{1}{2} \) for all \(n \in \mathbb{N}. \)

Theorem 1. Let \(f(z) \in \mathcal{N}. \) If for \(k, \beta, \gamma \geq 1 \) and \(\{\alpha, q, \delta\} \geq 0 \)

\[
\sum_{n=2}^{\infty} (n-\lambda)|t_n| \left| \Psi_{k,\alpha,\beta,\delta}^{q, q} \right| \leq 1 - \lambda, \quad 0 \leq \lambda < 1, \quad (11)
\]

then \(f(z) \in S_{k,\alpha,\beta,\delta}^q(\lambda). \) The result \((11) \) is sharp, where

\[
\Psi_{k,\alpha,\beta,\delta}^{q, q} = \frac{(\gamma)_{n,q,k}\Gamma(\alpha + \beta)\Gamma(\delta + 1)}{(\gamma)_{q,k}\Gamma(\beta)\Gamma(\delta + n)}
\]

Proof. Let us say that \((11) \) holds true. Since

\[
1 - \lambda \geq \sum_{n=2}^{\infty} (n-\lambda)|t_n| \left| \Psi_{k,\alpha,\beta,\delta}^{q, q} \right|
\]

\[
\geq \sum_{n=2}^{\infty} \lambda|t_n| \left| \Psi_{k,\alpha,\beta,\delta}^{q, q} \right| - \sum_{n=2}^{\infty} n|t_n| \left| \Psi_{k,\alpha,\beta,\delta}^{q, q} \right|
\]
and this means that
\[
1 + \sum_{n=2}^{\infty} n|t_n|\{\Psi_{k,\alpha,\beta,\delta}^{\gamma,q}\} > \lambda,
\]
\[
1 + \sum_{n=2}^{\infty} |t_n|\{\Psi_{k,\alpha,\beta,\delta}^{\gamma,q}\}
\]
hence
\[
\mathcal{R}\left\{\frac{z \left(L_{k,\alpha,\beta,\delta,\lambda}^{\gamma,q} f(z) \right)'}{L_{k,\alpha,\beta,\delta,\lambda}^{\gamma,q} f(z)} \right\} > \lambda.
\]
We also note that the assertion (11) is sharp and the extremal function is given by
\[
f(z) = z + \sum_{n=2}^{\infty} \frac{(1-\lambda)}{(n-\lambda)} \left\{\frac{1}{\Psi_{k,\alpha,\beta,\delta}^{\gamma,q}} \right\} z^n.
\]

Corollary 1. Let the assumption of Theorem 1 is true. Then for \(0 \leq \lambda < 1\)
\[
|t_n| \leq \frac{1-\lambda}{n-\lambda} \left\{\frac{1}{\Psi_{k,\alpha,\beta,\delta}^{\gamma,q}} \right\}, \quad \forall n \geq 2. \tag{12}
\]

Corollary 2. Let the assumption of Theorem 1 is true, and if we put \(\alpha = \lambda = 0\) and \(\gamma = q = k = \beta = \delta = 1\) then we obtain
\[
|t_n| \leq \frac{1}{n}, \quad \forall n \geq 2. \tag{13}
\]

In a similar method we can verify our results for convex function \(C_{k,\alpha,\beta,\gamma,\delta}^{\gamma,q}(\lambda)\) that:

Theorem 2. Let \(f(z) \in \mathcal{N}\). If for \(\{k,\beta,\gamma\} \geq 1\) and \(\{\alpha,\gamma,\delta\} \geq 0\)
\[
\sum_{n=2}^{\infty} n(n-\lambda)|t_n|\{\Psi_{k,\alpha,\beta,\delta}^{\gamma,q}\} \leq 1 - \lambda, \quad 0 \leq \lambda < 1, \tag{14}
\]
then \(f(z) \in C_{k,\alpha,\beta,\gamma,\delta}^{\gamma,q}(\lambda)\). The result (14) is sharp, where
\[
\Psi_{k,\alpha,\beta,\gamma,\delta}^{\gamma,q} = \frac{(\gamma)_n k (\alpha + \beta) \Gamma(\delta + 1)}{(\gamma)_{k+1} \Gamma(\alpha n + \beta) \Gamma(\delta + n)}.
\]

Corollary 3. Let the assumption of Theorem 2 is true. Then for \(0 \leq \lambda < 1\)
\[
|t_n| \leq \frac{1-\lambda}{n(n-\lambda)} \left\{\frac{1}{\Psi_{k,\alpha,\beta,\gamma,\delta}^{\gamma,q}} \right\}, \quad \forall n \geq 2. \tag{15}
\]

Theorem 3. Let the hypotheses of Theorem 1 holds. Then for \(z \in \mathbb{T}\) and \(0 \leq \lambda < 1\)
\[
|L_{k,\alpha,\beta,\gamma,\delta}^{\gamma,q} f(z)| \geq |z| \left| \frac{1-\lambda}{2-\lambda} |z|^2 \right|
\]
and
\[
|L_{k,\alpha,\beta,\gamma,\delta}^{\gamma,q} f(z)| \leq |z| \left| \frac{1-\lambda}{2-\lambda} |z|^2 \right|.
\]
Proof. One can easily understand from Theorem 1 that

\[(2 - \lambda) \sum_{n=2}^{\infty} |t_n| \{\Psi_{k,\alpha,\beta,\delta}^{\gamma,q}\} \]
\[\leq \sum_{n=2}^{\infty} (n - \lambda) |t_n| \{\Psi_{k,\alpha,\beta,\delta}^{\gamma,q}\} \]
\[\leq 1 - \lambda \]
so,
\[\sum_{n=2}^{\infty} |t_n| \{\Psi_{k,\alpha,\beta,\delta}^{\gamma,q}\} \leq \frac{1 - \lambda}{2 - \lambda}.\]

Thus we have
\[|L_{k,\alpha,\beta,\delta}^{\gamma,q} f(z)| \leq |z| + \sum_{n=2}^{\infty} |t_n| \{\Psi_{k,\alpha,\beta,\delta}^{\gamma,q}\} |z|^n \]
\[\leq |z| + \sum_{n=2}^{\infty} |t_n| \{\Psi_{k,\alpha,\beta,\delta}^{\gamma,q}\} |z|^2 \]
\[\leq |z| + \left(1 - \frac{\lambda}{2 - \lambda}\right) |z|^2.\]

Now for second assertion we proceed as follows
\[|L_{k,\alpha,\beta,\delta}^{\gamma,q} f(z)| = |z + \sum_{n=2}^{\infty} t_n \{\Psi_{k,\alpha,\beta,\delta}^{\gamma,q}\} z^n| \]
\[\geq |z| - \sum_{n=2}^{\infty} |t_n| \{\Psi_{k,\alpha,\beta,\delta}^{\gamma,q}\} |z|^n \]
\[\geq |z| - \sum_{n=2}^{\infty} (n - \lambda) \left(\frac{1}{\Psi_{k,\alpha,\beta,\delta}^{\gamma,q}}\right) |t_n| |z|^2 \]
\[\geq |z| - \left(1 - \frac{\lambda}{2 - \lambda}\right) |z|^2,\]
and hence both parts of our proof are completed. \(\Box\)

Theorem 4. Let the hypotheses of Theorem 3 be satisfied. Then for \(z \in T\) and \(0 \leq \lambda < 1\)
\[|L_{k,\alpha,\beta,\delta}^{\gamma,q} f(z)| \geq |z| - \frac{1 - \lambda}{2(2 - \lambda)} |z|^2\]
and
\[|L_{k,\alpha,\beta,\delta}^{\gamma,q} f(z)| \leq |z| + \frac{1 - \lambda}{2(2 - \lambda)} |z|^2.\]

Theorem 5. Let the hypotheses of Theorem 2 be satisfied. Then for all \(\{n \geq 2 : n \in \mathbb{N}\}\), \(0 \leq \lambda < 1\), and \((n - \lambda)\{\Psi_{k,\alpha,\beta,\delta}^{\gamma,q}\} \geq 1\), implies
\[|f(z)| \geq |z| - (1 - \lambda) |z|^2\]
and
\[|f(z)| \leq |z| + (1 - \lambda) |z|^2.\]
Proof. By using Theorem 1, we get
\[\sum_{n=2}^{\infty} |t_n| \leq \sum_{n=2}^{\infty} (n - \lambda) \{ \Psi_{j,k,\alpha,\beta,\delta}^{\gamma,q} \} |t_n| \leq (1 - \lambda) \]

then
\[\sum_{n=2}^{\infty} |t_n| \leq (1 - \lambda) \]

So, we obtain
\[|f(z)| = \left| z + \sum_{n=2}^{\infty} t_n z^n \right| \leq |z| + \sum_{n=2}^{\infty} |t_n||z|^2 \leq |z| + (1 - \lambda)|z|^2 \]

To prove the second assertion we adopt the following steps
\[|f(z)| \geq \left| z - \sum_{n=2}^{\infty} t_n z^n \right| \geq |z| - \sum_{n=2}^{\infty} |t_n||z|^2 \geq |z| - (1 - \lambda)|z|^2 \]

and hence the proof. \(\square \)

Theorem 6. Let the hypotheses of Theorem 2 be satisfied. Then for all \(\{ n \geq 2 : n \in \mathbb{N} \} \), \(0 \leq \lambda < 1 \), and \(n(n - \lambda) \{ \Psi_{j,k,\alpha,\beta,\delta}^{\gamma,q} \} \geq 1 \), poses
\[|f(z)| \geq |z| - \frac{1 - \lambda}{2}|z|^2 \]

and
\[|f(z)| \leq |z| + \frac{1 - \lambda}{2}|z|^2. \]

Definition 4. Let \(\phi(z) \) be univalent starlike function with respect to 1 which maps the unit disk \(\mathbb{T} \) onto a region in the right half plane which is symmetric about the real axis, \(\phi(0) = 1 \) and \(\phi'(0) > 0 \). A function \(f \in \mathcal{N} \) is in the class \(L_{k,\alpha,\beta,\delta}^{\gamma,q} (\phi) \) if
\[z \left(L_{k,\alpha,\beta,\delta}^{\gamma,q} f(z) \right)' L_{k,\alpha,\beta,\delta}^{\gamma,q} f(z) < \phi(z). \]

(16)

Remark 2. It can be seen if we put \(\gamma = q = k = \beta = \delta = 1 \) and \(\alpha = 0 \) then the class \(L_{k,\alpha,\beta,\delta}^{\gamma,q} \phi(z) \) becomes the class of starlike function \(S^*(\phi) \).

Lemma 3. (see [12]) If \(h_1 = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \ldots \) is an analytic function with positive real part in the unit disk \(\mathbb{T} \), then
\[|c_2 - vc_1^2| \leq 2 \max \{ 1, |2v - 1| \} \]

(17)

and the result is sharp for the functions given by
\[h(z) = \frac{1 + z}{1 - z}, \quad h(z) = \frac{1 + z^2}{1 - z^2}. \]

(18)
3. FEKETE-SZEGÖ FOR THE CLASSES $S^γ,q_{k,α,β,δ}(λ)$ AND $C^γ,q_{k,α,β,δ}(λ)$

Now we determine the sharp upper bound for $|t_2|$ for the class $S^γ,q_{k,α,β,δ}(λ)$ and $C^γ,q_{k,α,β,δ}(λ)$, and calculate the Fekete-Szegö function of $|t_3 - µt_2^2|$ for these classes.

Theorem 7. Let the hypotheses of Theorem 1 be satisfied. Then

$$|t_2| \leq \frac{2(1 - λ)(γ)_{2q,k}Γk(2α + β)(δ + 1)}{(1 + λ)(γ)_{2q,k}Γk(α + β)}, \quad 0 ≤ λ < 1,$$

and for all $µ ∈ ℂ$ the following bound is sharp

$$|t_3 - µt_2^2| \leq \frac{1 - λ}{(2 + λ)B} \max \left\{ 1, \frac{1 - λ}{1 + λ} B_1^2 - \frac{1 - λ}{1 + λ} B_1^2 - \frac{1 - λ}{(1 + λ)^2 A^2} B_1^2 \right\},$$

where values of A and B are given by equation (21), $k, β, γ ≥ 1$ and $α, q, δ ≥ 0$.

Proof. Since $f ∈ S^γ,q_{k,α,β,δ}(λ)$ then the condition

$$R \left\{ \frac{z \left(L^γ,q_{k,α,β,δ}f(z) \right)^{'}}{L^γ,q_{k,α,β,δ}f(z)} \right\} > λ, \quad 0 ≤ λ < 1,$$

is equivalent to

$$z \left(L^γ,q_{k,α,β,δ}f(z) \right)^{'} = (1 - λ)h(z)L^γ,q_{k,α,β,δ}f(z), \quad z ∈ ℂ,$$

for some $h ∈ ℙ$. Equating the coefficients we have the values of

$$t_2 = \frac{(1 - λ)h_1}{(1 + λ)A}$$

and

$$t_3 = \frac{1 - λ}{(2 + λ)B} \left(\frac{1 - λ}{1 + λ} h_1^2 + h_2 \right),$$

and hence by using Lemma 2 and equation (19) we achieve the required result of $|t_2|$.

where

$$A = \frac{(γ)_{2q,k}Γk(α + β)}{(γ)_{2q,k}Γk(α + β)(δ + 1)} \quad \text{and} \quad B = \frac{(γ)_{3q,k}Γk(α + β)}{(γ)_{3q,k}Γk(3α + β)(δ + 1)(δ + 2)}. \quad (21)$$

For the Fekete-Szegö function $|t_3 - µt_2^2|$, consider $φ(z) = 1 + B_1z + B_2z^2 + ...$ if $f(z)$ is given by (11) belongs to $L^γ,q_{k,α,β,δ}(φ)$, then

$$h(z) = φ \left(\frac{h_1(z) - 1}{h_1(z) + 1} \right). \quad (22)$$

Since $φ(z)$ is univalent and $h(z) ≺ φ$, then the function below, is analytic and has a positive real part in $ℂ$.

$$h_1(z) = \frac{1 + φ^{-1}(h(z))}{1 - φ^{-1}(h(z))} = 1 + c_1z + c_2z^2 + ...$$

and then from (22) and (23) we obtain the values of $h_1(z)$ and $h_2(z)$

$$h_1 = \frac{1}{2} B_1c_1$$

and

$$h_2 = \frac{1}{2} \left(c_2 - \frac{1}{2} c_1^2 \right) + \frac{1}{4} B_2c_1,$$
so, by using Lemma 2 we find

\[|t_3 - \mu t_2^2| \leq \frac{2(1-\lambda)}{(2 + \lambda)B} + \left\{ \frac{(1-\lambda)^2}{(1+\lambda)(2 + \lambda)} - \mu \frac{(1-\lambda)^2}{(1+\lambda)^2 A^2} \right\} |h_1|^2 \]

\[\leq \mathcal{H}(x) = \frac{2(1-\lambda)}{(2 + \lambda)B} + \left\{ K - \frac{(1-\lambda)}{2(2 + \lambda)B} \right\} x^2, \quad x := |h_1|^2. \tag{24} \]

As a result we obtain

\[|t_3 - \mu t_2^2| \leq \begin{cases} \mathcal{H}(0) = \frac{2(1-\lambda)}{(2 + \lambda)B} \quad \text{if } K \leq \frac{(1-\lambda)^2}{2(2 + \lambda)B} \\ \mathcal{H}(2) = 4K \quad \text{if } K > \frac{(1-\lambda)^2}{2(2 + \lambda)B} \end{cases} \]

where

\[K := \frac{(1-\lambda)}{2(2 + \lambda)B} + \frac{1}{(1+\lambda)(2 + \lambda)} - \mu \frac{(1-\lambda)^2}{(1+\lambda)^2 A^2}. \]

Equality is attained for the functions given by

\[z \left[\frac{L_{k,\alpha,\beta,\delta}^q(z)}{L_{k,\alpha,\beta,\delta}^q(z)} \right]' = 1 + z(1-2\lambda) \]

\[z \left[\frac{L_{k,\alpha,\beta,\delta}^q(z)}{L_{k,\alpha,\beta,\delta}^q(z)} \right]' = 1 + z^2(1-2\lambda), \]

Also we have

\[t_3 - \mu t_2^2 = \frac{1-\lambda}{2(2+\lambda)B} \left[v_2 - v c_2^2 \right], \tag{25} \]

where values of \(A \) and \(B \) are given by (21), and

\[v = \frac{1}{2} \left(1 - B_2 - \frac{1-\lambda}{1+\lambda} B_1^2 + \mu \frac{(1-\lambda)(2 + \lambda)B}{(1+\lambda)^2 A^2} B_1^2 \right), \]

hence by applying Lemma 3 the result of sharp bound \(|t_4 - \mu t_2^2| \) is proved. \(\square \)

Corollary 4. Let the assumption of Theorem 7 is true. Then for \(\lambda = 0 \)

\[|t_2| \leq \frac{2(\gamma)^q \Gamma k(2\alpha + \beta)(\delta + 1)}{(\gamma)_{2q,k} \Gamma k(\alpha + \beta)} \]

and

\[|t_3 - \mu t_2^2| \leq \frac{1}{2B} \max \left\{ 1, \left| B_2 + B_1^2 - \frac{B}{A^2} B_1^2 \right| \right\} \]

Now we prove the result for the class of \(C_{k,\alpha,\beta,\delta}(\lambda) \).

Theorem 8. Let the hypotheses of Theorem 2 hold. Then

\[|t_2| \leq \frac{(1-\lambda)(\gamma)^q \Gamma k(2\alpha + \beta)(\delta + 1)}{(\gamma)_{2q,k} \Gamma k(\alpha + \beta)} \]

and for all \(\mu \in \mathbb{C} \) the following bound is sharp

\[|t_3 - \mu t_2^2| \leq \frac{1-\lambda}{3(2+\lambda)B} \max \left\{ 1, \left| B_2 + \frac{1-\lambda}{1+\lambda} B_1^2 - \mu \frac{3(1-\lambda)(2 + \lambda)B}{2(1+\lambda)^2 A^2} B_1^2 \right| \right\} \]
Proof. Since \(f \in C_{k,\alpha,\beta,\delta}^{\gamma,q}(\lambda) \) then the condition
\[
\mathcal{R} \left\{ \left. \begin{array}{c}
\left. \frac{z}{L_{k,\alpha,\beta,\delta}^{\gamma,q}f(z)} \right|^{'} \\
\left. \frac{L_{k,\alpha,\beta,\delta}^{\gamma,q}f(z)}{z} \right|^{'}
\end{array} \right\} > \lambda, \quad 0 \leq \lambda < 1,
\]
is equivalent to
\[
\left(L_{k,\alpha,\beta,\delta}^{\gamma,q}f(z) \right)' + z \left(L_{k,\alpha,\beta,\delta}^{\gamma,q}f(z) \right)' = (1 - \lambda)h(z) \left(L_{k,\alpha,\beta,\delta}^{\gamma,q}f(z) \right)', \quad z \in \mathbb{T},
\]
for some \(h \in \mathcal{P} \). Equating the coefficients we have the values of
\[
t_2 = \frac{(1 - \lambda)h_1}{2(1 + \lambda)A} \quad (26)
\]
and
\[
t_3 = \frac{1 - \lambda}{3(2 + \lambda)B} \left(\frac{1 - \lambda}{1 + \lambda}h_1^2 + h_2 \right), \quad (27)
\]
and hence by using Lemma 2 and equation (26) we achieve the required result of \(|t_2| \).

Further we obtain,
\[
t_3 - \mu t_2^2 = \frac{1 - \lambda}{6(2 + \lambda)B} \left[c_2 - vc_2^2 \right], \quad (28)
\]
where values of \(A \) and \(B \) are given by (21), and
\[
v = \frac{1}{2} \left(1 - B_2 - \frac{1 - \lambda}{1 + \lambda}B_2^2 + \mu \frac{3(1 - \lambda)(2 + \lambda)B}{2(1 + \lambda)^2A^2}B_2^2 \right),
\]

Corollary 5. Let the assumption of Theorem 5 is true. Then for \(\lambda = 0 \)
\[
|t_2| \leq \frac{(\gamma)_{\alpha,k}^{\mu,k}(2\alpha + \beta)(\delta + 1)}{(\gamma)_{\alpha,k}^{\mu,k}(\alpha + \beta)}
\]
and
\[
|t_3 - \mu t_2^2| \leq \frac{1}{6B} \max \left\{ 1, \left| B_2 + B_1^2 - \mu \frac{3\beta B}{A^2} \right| \right\}.
\]

Acknowledgment

The work here is supported by UKM grant: GUP-2017-064.

Conflict of interest: The authors declare that there is no conflict of interests. All the authors agreed with the contents of the manuscript.

References

University of Kebangsaan Malaysia
School of Mathematical Sciences, Faculty of Science and Technology
Bangi 43600, Selangor Darul Ihsan, Malaysia
E-mail address: hameedktk09@gmail.com

University of Kebangsaan Malaysia
School of Mathematical Sciences, Faculty of Science and Technology
Bangi 43600, Selangor Darul Ihsan, Malaysia
E-mail address: maslina@ukm.edu.my

A’ Sharqiyah University
College of Applied Sciences
Post Box No. 42, Post Code No. 400 Ibra, Sultanate of Oman
E-mail address: drjamals@asu.edu.om