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FRACTIONAL CALCULUS APPROACH FOR WAVE PROPAGATION

IN NONLOCAL ONE DIMENSIONAL ELASTIC SOLIDS

(FRACTIONAL CALCULUS)

BOLLEDLA YAKAIAH AND APPARASU SRIHARI RAO

Abstract. In this paper an attempt has been made to study the wave propagation

through a one dimensional elastic solid in the frame work of Eringen’s nonlocal elas-
ticity using the concept of fractional calculus. The fractional differential equation

corresponding to the axial harmonic wave propagation through a one dimensional

elastic bar of infinite length with uniform cross section is obtained. The dynamic
equation for the harmonic wave propagation in terms of Caputo fractional derivatives

of various orders α has been derived. The dispersive equation for an axial wave is

obtained in terms of fractional order α and a parameter β2, which accounts the effect
of nonlocal long range interactions. The effect of wave number on this ratio is studied

numerically for different values of the fractional order and the nonlocal parameters.

1. Introduction

Nonlocal continuum theory developed by Eringen [1] and is found as major field of
research due to its application in micro structural behavior of nano materials. The wave
propagation through nonlocal materials is able to detect the dispersive nature of traveling
disturbances, which is a special property and it cannot be described by a local stress-
strain model. Due to the dispersive nature in wave propagation and the study of Born-
Karmann model of lattice dynamics at the border of the Brillouin zone as the wave length
becomes close to the lattice distance and there exist a large deviation in the speed of the
traveling waves [2]. Recently, Zingales [3] presented a detailed study on wave propagation
in nonlocal elastic solids which is mechanically based on Kroner-Eringen integral model of
nonlocal elasticity in unbounded domain. Another work due to Aydogdu [4] is appeared
recently in the scientific literature for a nonlocal one dimensional solids in the study of
low dimensional system and nano structures.

Lazopoulos [5] introduced the concept of fractional calculus into the continuum me-
chanics which provides a natural extension for describing nonlocal constitutive relation of
a one dimensional bar under axial extension. It is assumed that the strain energy density
not only depends on the local strain but also on the order of the derivative α of the strain
where 0 < α < 1. Cottone et al. [6] discussed the wave propagation in unbounded and
bounded domain that includes dispersion of elastic waves using fractional derivatives of
order α where 0 < α < 1. Cornetti et al. [8] proved that if the attenuation function of
strain is expressed as power law then the fractional calculus can be used effectively to a
Eringen nonlocal elastic model. Sapora [7] presented the wave propagation in one dimen-
sional elastic continuum by means of fractional derivative of order α where 1 < α < 2.
Challamel et al. [9] presented the fractional generalization of Eringen’s nonlocal elasticity
with free non integer derivatives in the stress-strain fractional order differential equation
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which contains a single length scale and fractional order derivatives as parameters. Re-
cently, Vikash Pandey [10] investigated the spatial dispersion of elastic waves in a one
dimensional elastic bar with nonlocal interactions using a different attenuation function
containing fractional derivative as a parameter.

In this paper the wave propagation in one dimensional elastic solids with the help
of generalized fractional derivative is discussed. The fractional differential equation is
considered as Eringen’s fractional nonlocal elastic model. The equation contains the per-
centage of nonlocal interactions, a characteristic length responsible for nonlocal effects
and the order of Caputo fractional derivative. Using complex fourier transform the dis-
persive equation for harmonic wave propagation has been derived in terms of the these
three parameters. A numerical interpretation is presented to show the effect of different
fractional orders between 1 and 3 on the dispersion curve and the effect of the other
parameter, which influences the non locality.

2. Fractional order derivatives

From the Cauchy’s definition of a multiple order integral, the function f(x) is given by

Inf(x) =
1

(n− 1)!

∫ x

0

(x− τ)n−1f(τ)d(τ) (1)

where x is a positive real number, n is a positive integer and it is assumed that f(x) = 0
for x < 0.

Using the ideas presented by Lazopoulous [5], n has been replaced by a positive real
number α then α-fold primitive of f(x) has been obtained as

Iαf(x) =
1

Γ(α)

∫ x

0

(x− τ)α−1f(τ)d(τ) (2)

where Γ(α) is the Euler gamma function and (α) is a non-integer.
From the Riemann - Liouville definition [6], the fractional order derivative of a function

f(x) of order α where n− 1 < α < n is a positive real number less than n is given by

Dαf(x) =
1

Γ(n− α)

dn

dxn

∫ x

0

f(τ)

(x− τ)α+1−n d(τ) (3)

If α = m then Dαf(x) = dm

dxm f(x), where m is a positive integer.
Clearly, we have

Dαxr =
Γ(r + 1)

Γ(r + 1− α)
xr−α (4)

Hence for α > 0, the fractional derivative of order α of a constant c is not zero as

Dαc =
cx−α

Γ(1− α)
(5)

where n− 1 < α < n. Also, we have Dαxα−1 = 0.
As the Riemann-Liouville derivative of a constant function is not zero, there is an-

other option [3] for defining fractional derivative known as the Caputo fractional order
derivative.

cD
α
a f(x) =

1

Γ(x− α)

∫ x

a

fn(τ)

(x− τ)α+1−n d(τ) (6)

where x > a and n− 1 < α < n.
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Thus we have cD
α(constant) = 0 and Caputo fractional order derivative [11] is a

generalization of the derivation of integral order, it is more useful in practical applications
of fractional order derivatives. However, the definition of Riemann-Liouville and Caputo
are related by the identity

cD
α
a f(x) = Dα

a+ (f(x)− f(a)) (7)

.

3. Eringen’s Fractional nonlocal model

Consider an elastic bar of uniform cross section S and an infinite in length with an
external self equibrated force N(x) = σ(x)s. The axial equation of motion of the bar is

dN

dx
= ρs

∂2u

∂t2
. (8)

Thus, we have the equation of motion as

dσ

dx
= ρ

∂2u

∂t2
, (9)

where σ(x) is the stress at a point, x is the longitudinal co-ordinate where −∞ < x <∞,
ρ represents the mass density at any point of the material of the bar and u(x, t) is the
axial displacement of any point.

The kinematic relation between the uniaxial strain ε(x) and the axial displacement is

ε =
∂u

∂x
. (10)

According to the nonlocal elastic stress field theory [1], the stress at any point of the
elastic continuum depends not only on the strain at that point but also on the strain at
all other points of the body. This theory is based on atomic theory of lattice dynamics
with experimental observations of phonon dispersion. In case of an elastic bar of infinite
in length, the one dimensional stress strain relation [7] can be taken as

σ(x) = β1Eε(x) + β2El
α

∫ ∞
−∞

ε(τ)g(x, τ)dτ (11)

where E is the young’s modulus, l is a dimensionless parameter which is responsive
for long range nonlocal effects and α is a positive real number related to the fractional
dimensions of the inner micro-structure which has a selected property. Also, here g(x, τ)
is the attenuation function that accounts for the contribution of the strain at a point τ due
to nonlocal stress at x. Usally, g(x− τ) can be considered as a monotonically decreasing
function with the distance | x− τ |. The parameter β1 and β2 are considered as weights
where E = β1E is the reduced elastic modulus that accounts for long range effects and
β2 is a coefficient pertaining for the percentage of the nonlocal interactions. Always, we
have 0 ≤ β1, β2 ≤ 1 and β1 + β2 = 1.

It is observed by Paola and Zingales [12] that if the attenuation function of strain is
expressed as a power law then the concepts of fractional calculus can be used to construct
Eringen’s nonlocal elastic model. Thus the corresponding attenuation function can be
taken as

g(ξ) =
1

Γ(n− α)
| ξ |n−α−1 (12)

where n− 1 < α < n.
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The improved differential based model is obtained by changing the integer order of the
derivative in the stress-strain relationship which includes a symmetrized Caputo fractional
derivative [11]. It is observed by Challamel [9] that the fractional ordered model is a
better match for the Born-Karmann model of lattice dynamics. Thus, the fractional
order differential equation [13] corresponding to Eringen’s fractional model of nonlocal
elasticity is

σ(x) = β1Eε(x) + β2El
α
cD

ασ(x), (13)

where n− 1 < α < n is the fractional order of the stress-strain relation. Here cD
α is the

Caputo fractional derivative of order α defined as

cD
ασ(x) =

1

2

(
cD

α
−∞ +c D

α
∞
)
σ(x), (14)

where

cD
α
−∞σ(x) =

1

Γ(n− α)

∫ x

−∞

σn(τ)

(x− τ)α−n+1
d(τ), (15)

and

cD
α
∞σ(x) =

(−1)n

Γ(n− α)

∫ ∞
x

σn(τ)

(τ − x)α−n+1
d(τ). (16)

The equations (15 and 16) constitutive Eringen’s fractional nonlocal model. From
these equations it can observed that the fractional nonlocal model reduces to Eringen’s
nonocal model for α = 2 and while for α = 1 it reduce to constitutive equation for classical
elasticity with β2 = 0. Thus we consider the Eringen’s fractional nonlocal model with
fractional order derivative α where n− 1 < α < n and n ≥ 2.

4. Solution and dispersive equation

For the described harmonic wave propagation, the displacement of the propagation [9]
assumed as

u(x, t) = u0e
i(kx−ωt) (17)

where ω is the angular frequency and k is the wave number. Thus the equations (8
and 9) can be reduced as

dσ

dx
= −ρω2u ε = iku (18)

From the definition of exponential fourier transform of a function [14] we have

Ff(x) = f(k) =

∫ ∞
−∞

f(x)e−ikx (19)

here k is the wave number.
From the above definition, we have the following properties

i F
∫∞
−∞ f(τ)g(x− τ)dτ = f(k)g(k)

ii F dm

dxm f(x) = (ik)nf(k)

iii (iii)F
[

1
|x|β

]
= 2Γ(1− β)sinβπ2

1
|k|1−β

iv (iv)F
[
sgn(x)
|x|β

]
= −2iΓ(1− β)cosβπ2

sgn(k)
(|k|)1−β
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By taking the attenuation function g(ξ), the strain of nonlocal elasticity (18) we can
express the fractional order differential equation 11 as

σ(x) = β1Eε(x) +
β2El

α

2Γ(x− α)

∫ ∞
−∞

σn(ξ)sgn(x− ξ)
| x− ξ |α−n+1

dξ (20)

σ(x) = β1Eε(x) +
β2El

α

2Γ(x− α)

sgn(x)

| x |α−n+1
∗ σn(x) (21)

Taking fourier transform as defined above to the equation (18), we have

(ik)σ = −ριω2u and ε = (ik)u (22)

From these equations, we have a relation

σ(x)

ε(k)
=
ρω2

k2
(23)

.
Again applying Fourier transform to be fractional differential order gives in (22), we

have

σ(k) = Eβ1ε(k) +
Eβ2l

α

2Γ(x− α)
F

[
sgn(x)

| x |α−n+1
∗ σn(x)

]
(24)

Using Fourier theorem and Fourier properties (22), we obtain

σ(k) = Eβ1ε(k) + Eβ2l
αcos(

απ

2
)| k |α σ(k) (25)

The above equation is defined separately using for nonlocal model as

σ

ε
=

Eβ1
1− Eβ2lαcos(απ2 )| k |α

(26)

where n− 1 < α < n and n ≥ 2

ω

C0
= k

√
β1

1− cos(απ2 ) [l | K |]α
(27)

where C0 =
√
E/ρ is the speed of the nonlocal wave. The above equation (27) is the

dispersive equation for the nonlocal elasticity with small order of αε[n − 1, n]. Thus, in
the dispersive equation all the frequencies depends on fractional order (α).

5. Numerical Results and Discussion

For the described model of wave propagation in fractional nonlocal one dimensional
bar, the parameter for computation has been considered as E = 72KN/mm2, β1 = 0.76,
l = 1.1.

From the observations of the wave propagation in the bar shows that the different
values of the fractional derivative order 1 < α < 2 and 2 < α < 3 and the parameter β2
which influences the non locality. It is observed from the dispersive equation that as α
increases from 1 < α < 2 the angular frequency increases of wave number K. while α
varies from 2 < α < 3, the behavior is different as α approaches to 3. The same behavior
can be observed for different values of the parameter β2 = 0.2 and 0.4.

It is also possible to determined from the effect of dispersive equation for axial wave
propagation for another strength of nonlocality α. The dynamic properties of the nonlocal
model consumed will be same for the value of fractional derivative α more than 3.
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Figure 1. Nonlocal Fractional derivative effect for different values of
1 < α < 2
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Figure 2. Nonlocal Fractional derivative effect for different values of
2 < α < 3
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Figure 3. Nonlocal Fractional derivative of β = 0.2 effect for different
values of 1 < α < 2
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Figure 4. Nonlocal Fractional derivative of β = 0.4 effect for different
values of 2 < α < 3
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