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NEW INFLUENCE FUNCTIONS FOR THERMAL DISPLACEMENTS

AND STRESSES WITHIN HALF-SPACE

ION CRET, U

Abstract. In this study new influence functions for the thermal displacements and

stresses caused by a unit point heat source for three-dimensional boundary value prob-

lem of thermoelasticity within half-space were obtained. These results are presented
in terms of elementary functions. Using the computer program Maple 18, the graph-

ical presentations of thermal displacements and stresses caused by a unit point heat

source were constructed.

1. Introduction

Determination of states of deformations and stresses caused by a internal heat source,
temperature and other thermal actions on the body surface is a difficult mathematical
problem that requires the creation of special theories. To obtain new integral solutions
was required developed a new method, Harmonic Integral Representation Method (HIRM)
proposed by V. Şeremet. Using integral solutions can be calculated thermal displacements
and stresses. By generalizing Maysel’s integral formula [1] and Green’s integral formulas,
V. S, eremet proposed a new form of these integral formulas [2, 3, 4, 5]:

ui(ξ) = a−1

∫
V

F (x)Ui(x, ξ)dV (x)−
∫

ΓD

T (y)
∂Ui(y, ξ)

∂ny
dΓD(y)

+

∫
ΓN

∂T (y)

∂ny
Ui(y, ξ)dΓN (y) + a−1

∫
ΓM

[
αT (y) + a

∂T (y)

∂ny

]
Ui(y, ξ)dΓM (y); i = 1, 2, 3, (1)

where:
ΓD, ΓN and ΓM are the parts of the body surface Γ = ΓD ∪ΓN ∪ΓM , which are given:

the Dirichlet’s boundary conditions (temperature T (y)), the Neumann’s boundary condi-

tions (heat flux a∂T (y)
∂ny

)
and mixed boundary conditions (heat exchange between exterior

medium and surface of the body represented by law
[
αT (y) + a∂T (y)

∂ny

])
are prescribed; a

is thermal conductivity; F (x) is the internal heat source; α is the coefficient of convective
heat conductivity; γ = αt(2µ + 3λ) is the thermoelastic constant; αt is the coefficient of
the linear thermal expansion, but λ, µ are Lame’s constants of elasticity.

The thermal stresses for three-dimensional canonical domains of Cartesian system of
coordinates will be calculated by using the following type of Green’s integral formula [2]:

σij(ξ) = a−1

∫
V

F (x)σij(x, ξ)dV (x)−
∫

ΓD

T (y)
∂σij(y, ξ)

∂ny
dΓD(y)+

∫
ΓN

∂T (y)

∂ny
σij(y, ξ)dΓN (y)
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+ a−1

∫
ΓM

[
αT (y) + a

∂T (y)

∂ny

]
σij(y, ξ)dΓM (y); i, j = 1, 2, 3, (2)

where:
σij represents the influence functions for thermal stresses of a unit point heat source

and σij represent the thermal stress caused by internal heat source, temperature, heat
flux or a heat exchange between exterior medium and surface of the body.

The thermal stresses σij can be determined of Duhamel-Neumann law [6]:

σij = µ(Ui,j + Uj.i) + δij(λΘ− γGT ); Θ = Uk,k(x, ξ); i, j, k = 1, 2, 3, (3)

where:
δij - Kronecker’s symbol, which is equal to 1, if i = j and 0, if i 6= j.

2. Thermal stresses σij within half-space caused by a unit point heat
source

It is required to determine thermal stresses σij(x, ξ); i, j = 1, 2, 3 of a boundary value
problem in the half-space S(0 ≤ x1 < ∞,−∞ < x2, x3 < ∞) with thermal boundary
condition of Dirichlet type for Green’s function:

GT = 0. (4)

The mechanical boundary conditions on the marginal plan Γ10(y1 = 0;−∞ < y2 <∞;
−∞ < y3 <∞) are:

U1 = U2 = U3 = 0. (5)

The mechanical and thermal boundary conditions of a boundary value problems within
half-space are showed in the Figure 1.

Γ 10

G =0  T

x1

x2

x3

U =0  3

U =0  2

U =0  1

0  

Figure 1. The scheme of the half-space S(0 ≤ x1 <∞,−∞ < x2, x3 <
∞) with the mechanical boundary conditions U1, U2, U3 and the thermal
boundary conditions GT on the marginal plan Γ10.

To solve this problem it is necessary to determine thermoelastic displacements Ui(x, ξ)
caused by a unit point heat source.

In the field literature [7], [8] boundary value problems within half-space are solved
by using ΘG - convolution method, but with other mechanical and thermal boundary
conditions.

In this paper for the first time the thermoelastic displacements Ui(x, ξ); i = 1, 2, 3 and
thermal stresses σij(x, ξ) caused by a unit point heat source with boundary conditions (4)
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- (5) within half-space using the structural formulas have been proposed. These structural
formulas were obtained by HIRM.

2.1. Determination of thermoelastic displacements Ui. In the half-space S(0 ≤
x1 < ∞,−∞ < x2, x3 < ∞), thermoelastic displacements Ui(x, ξ); x ≡ (x1, x2, x3);
ξ ≡ (ξ1, ξ2, ξ3) must be calculated. For this must be solved Lame equations:

µ52
ξ Ui(x, ξ) + (λ+ µ)Θ,ξi(x, ξ)− γGT,ξi(x, ξ) = 0; i = 1, 2, 3, (6)

with mechanical and thermal boundary conditions on the marginal plan Γ10(y1 = 0;
−∞ < y2, y3 <∞):

U1(x, y) = U2(x, y) = U3(x, y) = 0;x ∈ S;GT (y, ξ) = 0; y ≡ (0, y2, y3) ∈ Γ10; (7)

To determine the thermal displacements using the structural formulas Ui(x, ξ) and
Θ(x, ξ) which have been demonstrated in theorem 13 of the monograph [2]. In this case
thermoelastic displacements take the following form:

Ui(x, ξ) =
γ

2(λ+ 2µ)

[
ξiGT (x, ξ)− xiGi(x, ξ)− 2x1ξ1B

−1 ∂

∂ξi
WT (x, ξ)

]
, (8)

where:
WT (x, ξ) is regular part of the Green’s function GT (x, ξ) - Green’s function with reverse

boundary condition for marginal plan Γ10:
∂GT (x, ξ)

∂ny
= −∂GT (x, ξ)

∂y1
= 0;

B =
λ+ 3µ

λ+ µ
,

and thermoelastic volume dilatation:

Θ(x, ξ) =
γ

λ+ 2µ

(
GT (x, ξ) +

2µ

λ+ µ
B−1x1

∂

∂x1
WT (x, ξ)

)
. (9)

Green’s functions GT ;GΘ and Gi; i = 1, 2, 3 are connected with the boundary con-
ditions (7) as follows: if on the marginal plan Γ10 the thermoelastic displacements are
known, then Green’s functions are equal to zero:

U1 = U2 = U3 = 0;GT = 0⇒ G1 = G2 = G3 = GΘ = 0. (10)

Green’s functions GT ;GΘ;G1;G2 and G3 for the half-space S are extracted from hand-
book [3] or encyclopedia [9] and these functions will be calculated by the following ex-
pressions:

G1 = G2 = G3 = GT = GΘ = G(1) =
1

4π
(R−1 −R−1

1 ), (11)

where:
R =

√
(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2;

R1 =
√

(x1 + ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2.

Green’s function GT (x, ξ) with reverse boundary condition GT,1 = 0 for marginal plan
Γ10 is calculated from [3, 9]:

GT (x, ξ) =
1

4π
(R−1 +R−1

1 ). (12)

The regular part of the Green’s function GT (x, ξ) (12) is that part which contains
inferior index 1, that part of the GT (x, ξ) which are reflected via marginal plan Γ10. So,
WT (x, ξ) of the formulas (8) and (9) is calculated with the following relation:

WT (x, ξ) =
1

4π
(R−1

1 ). (13)
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Substituting expressions (11) and (13) in the formula (8) are obtained the final expres-
sions for thermoelastic displacements Ui(x, ξ) within half-space S, which are presented in
the following forms:

U1(x, ξ) =
γ

8π(λ+ 2µ)

[
(ξ1 − x1)(R−1 −R−1

1 )− 2x1ξ1B
−1 ∂

∂ξ1
R−1

1

]
; (14)

U2(x, ξ) =
γ

8π(λ+ 2µ)

[
(ξ2 − x2)(R−1 −R−1

1 )− 2x1ξ1B
−1 ∂

∂ξ2
R−1

1

]
; (15)

U3(x, ξ) =
γ

8π(λ+ 2µ)

[
(ξ3 − x3)(R−1 −R−1

1 )− 2x1ξ1B
−1 ∂

∂ξ3
R−1

1

]
. (16)

Graphs of the thermoelastic displacements Ui(x, ξ); i = 1, 2, 3 within half-space S for
0 ≤ ξ1 ≤ 10, ξ2 = 1, −10 ≤ ξ3 ≤ 10 caused by a unit point heat source applied in the point
x1 = 5m,x2 = 2m,x3 = 0 were constructed using computer program Maple 18. The value
of elastic and thermal constants are: the Poisson ration ν = 0, 3; modulus of elasticity
E = 2, 1 · 105MPa, and coefficient of linear thermal expansion αt = 1, 2 · 10−5(K−1).

Thermoelastic displacements U1(x, ξ), U2(x, ξ) and U3(x, ξ) were constructed using
formulas (14)-(16) are presented in the Figure 2, a),b) and c).

Analyzing the Figure 2 graphs one can observe the following:

- the boundary conditions (7) are respected: on the marginal plan Γ10, U1(x, ξ) = 0
(Figure 2, a); U2(x, ξ) = 0 (Figure 2, b); U3(x, ξ) = 0 (Figure 2, c); ξ ≡ (ξ1 = 0;
−∞ < ξ2, ξ3 <∞);

- graph of the thermoelastic displacement U2(x, ξ) has a local maximum: in the
point of application of the unit heat source (Figure 2, b). The others graphs
U1(x, ξ) and U3(x, ξ) have a discontinuity near this point.

- if ξ1 → ∞, ξ3 → ±∞, then thermoelastic displacements U1(x, ξ); U2(x, ξ) and
U3(x, ξ) → 0.

2.2. Determination of thermal stresses σij. The thermal stresses σij(x, ξ) are cal-
culated using Duhamel-Neumann law (3), but Θ(x, ξ) - thermoelastic volume dilatation
which is determine by using the formula (9) and has the form:

Θ(x, ξ) =
γ

4π(λ+ 2µ)

(
R−1 −R−1

1 +
2µ

λ+ µ
B−1x1

∂

∂x1
R−1

1

)
. (17)

Substituting Green’s function GT (x, ξ) (11), thermoelastic volume dilatation Θ(x, ξ)
(17) and expressions for thermoelastic displacements Ui(x, ξ); i = 1, 2, 3 (14)-(16) in the
Duhamel-Neumann law (3) we obtain the expressions for thermoelastic influence functions
for thermal stresses σij(x, ξ):

σ11(x, ξ) =
γµ

4π(λ+ 2µ)

{[
(ξ1 − x1)

∂

∂ξ1
− 1

]
R−1 −

(
ξ1

∂

∂ξ1
− 1

)
R−1

1

+2x1B
−1 ∂

∂ξ1
R−1

(
1− 2ξ1

∂

∂ξ1
R−1

1

)}
; (18)

σ12(x, ξ) =
γµ

8π(λ+ 2µ)

{[
(ξ1 − x1)

∂

∂ξ2
+ (ξ2 − x2)

∂

∂ξ1

] (
R−1 −R−1

1

)
−4x1ξ1B

−1 ∂

∂ξ1

∂

∂ξ2
R−1

1

}
; (19)
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Figure 2. Graphs of thermoelastic displacements Ui(x, ξ) in the half-
space S for 0 ≤ ξ1 ≤ 10; ξ2 = 1; −10 ≤ ξ3 ≤ 10 caused by a unit heat
source applied in the point x1 = 5m,x2 = 2m,x3 = 0.

σ22(x, ξ) =
γµ

4π(λ+ 2µ)

{[
(ξ2 − x2)

∂

∂ξ2
− 1

] (
R−1 −R−1

1

)
+2x1B

−1

(
λ

λ+ µ

∂

∂ξ1
R−1

1 − ξ1
∂2

∂ξ2
2

R−1
1

)}
; (20)

σ23(x, ξ) =
γµ

8π(λ+ 2µ)

{[
(ξ2 − x2)

∂

∂ξ3
+ (ξ3 − x3)

∂

∂ξ2

] (
R−1 −R−1

1

)
−4x1ξ1B

−1 ∂

∂ξ2

∂

∂ξ3
R−1

1

}
; (21)

σ33(x, ξ) =
γµ

4π(λ+ 2µ)

{[
(ξ3 − x3)

∂

∂ξ3
− 1

] (
R−1 −R−1

1

)
+2x1B

−1

(
λ

λ+ µ

∂

∂ξ1
R−1

1 − ξ1
∂2

∂ξ2
3

R−1
1

)}
; (22)
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σ13(x, ξ) =
γµ

8π(λ+ 2µ)

{[
(ξ1 − x1)

∂

∂ξ3
+ (ξ3 − x3)

∂

∂ξ1

] (
R−1 −R−1

1

)
−4x1ξ1B

−1 ∂

∂ξ1

∂

∂ξ3
R−1

1

}
. (23)

Graphs of the thermal stresses σij(x, ξ); i, j = 1, 2, 3 within half-space S for ξ1 = 0, 5,
−10 ≤ ξ2, ξ3 ≤ 10 caused by a unit point heat source applied in the point x1 = 5m,
x2 = 0, x3 = 0 were constructed using computer program Maple 18. The value of elastic
and thermal constants were taken the same as for thermoelastic displacements Ui(x, ξ);
i = 1, 2, 3.

Normal and tangential thermal stresses σ11(x, ξ), σ12(x, ξ) were constructed by using
the formulas (18) and (19), which are presented in the Figure 3, a), b).
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Figure 3. Graphs of normal and tangential thermal stresses σ11(x, ξ),
σ12(x, ξ) in the half-space S (ξ1 = 0, 5; −10 ≤ ξ2, ξ3 ≤ 10) caused by a
unit heat source applied in the point x1 = 5m,x2 = 0, x3 = 0.

Analyzing the Figure 3 graphs one can observe the following:

- the graph (Figure 3, a) has a local maximum in the point of application of the
unit heat source x1 = 5m,x2 = 0, x3 = 0, but the graph (Figure 3, b) has a
discontinuity near this point;

- if ξ2, ξ3 → ±∞, then thermal stresses σ11(x, ξ) and σ12(x, ξ) → 0.

Normal and tangential thermal stresses σ22(x, ξ) σ23(x, ξ) were constructed by using
the formulas (20) and (21), which are presented in the Figure 4, a), b).

Analyzing the Figure 4 graphs one can observe the following:

- the graph (Figure 4, a) has a local maximum in the point of application of the
unit heat source x1 = 5m,x2 = 0, x3 = 0, but the graph (Figure 4, b) has a
discontinuity near this point;

- if ξ2, ξ3 → ±∞, then thermal stresses σ22(x, ξ) and σ23(x, ξ) → 0.

Normal and tangential thermal stresses σ33(x, ξ), σ13(x, ξ) were constructed by using
the formulas (22) and (23), which are presented in the Figure 5, a), b).

Analyzing the Figure 5 graphs one can observe the following:

- the graph (Figure 5, a) has a local maximum in the point of application of the
unit heat source x1 = 5m,x2 = 0, x3 = 0, but the graph (Figure 5, b) has a
discontinuity near this point;
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Figure 4. Graphs of normal and tangential thermal stresses σ22(x, ξ),
σ23(x, ξ) in the half-space S (ξ1 = 0, 5; −10 ≤ ξ2, ξ3 ≤ 10) caused by a
unit heat source applied in the point x1 = 5m,x2 = 0, x3 = 0.
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Figure 5. Graphs of normal and tangential thermal stresses σ33(x, ξ),
σ13(x, ξ) in the half-space S (ξ1 = 0, 5; −10 ≤ ξ2, ξ3 ≤ 10) caused by a
unit heat source applied in the point x1 = 5m,x2 = 0, x3 = 0.

- if ξ2, ξ3 → ±∞, then thermal stresses σ33(x, ξ) and σ13(x, ξ) → 0.

3. Conclusions

The relations for thermoelastic displacements Ui(x, ξ) (14) - (16) and thermal stresses
σij(x, ξ) (18) - (23) in the half-space S for the boundary conditions (7) were obtained
for the first time. The expressions are presented in terms of elementary functions. Ther-
moelastic displacements Ui(x, ξ) and thermal stresses σij(x, ξ) are presented graphically
using computer program Maple 18 with subsequent analysis of these graphs.

Using these expressions and soft Maple 18 can be obtained their graphical presentations
caused by a unit heat source applied at any point of half-space S. Using the thermoelastic
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displacements Ui(x, ξ) (14 - 16) and the thermal stresses σij(x, ξ) (18 - 23) of a unit point
heat source can be determined thermoelastic displacements (1) and thermal stresses (2)
for a particular boundary value problems caused by the internal heat source applied at
any point for half-space S and/or the temperature gradient applied of the marginal plan
Γ10 for this half-space S.
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