
TJMM
8 (2016), No. 1, 45-49

A NOTE ON NEW REFINEMENTS AND REVERSES OF YOUNG’S

INEQUALITY

S.S. DRAGOMIR

Abstract. In this note we obtain two new refinements and reverses of Young’s in-

equality.

1. Introduction

The famous Young inequality for scalars says that if a, b > 0 and ν ∈ [0, 1], then

a1−νbν ≤ (1− ν) a+ νb (1)

with equality if and only if a = b. The inequality (1) is also called ν-weighted arithmetic-
geometric mean inequality.

We recall that Specht’s ratio is defined by [8]

S (h) :=


h

1
h−1

e ln

(
h

1
h−1

) if h ∈ (0, 1) ∪ (1,∞)

1 if h = 1.

(2)

It is well known that limh→1 S (h) = 1, S (h) = S
(
1
h

)
> 1 for h > 0, h 6= 1. The function

is decreasing on (0, 1) and increasing on (1,∞) .
The following inequality provides a refinement and a multiplicative reverse for Young’s

inequality

S
((a

b

)r)
a1−νbν ≤ (1− ν) a+ νb ≤ S

(a
b

)
a1−νbν , (3)

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν}.
The second inequality in (3) is due to Tominaga [9] while the first one is due to Furuichi

[2].
Kittaneh and Manasrah [5], [6] provided a refinement and an additive reverse for Young

inequality as follows:

r
(√

a−
√
b
)2
≤ (1− ν) a+ νb− a1−νbν ≤ R

(√
a−
√
b
)2

(4)

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν} and R = max {1− ν, ν} .
We also consider the Kantorovich’s ratio defined by

K (h) :=
(h+ 1)

2

4h
, h > 0. (5)

The function K is decreasing on (0, 1) and increasing on [1,∞) , K (h) ≥ 1 for any h > 0
and K (h) = K

(
1
h

)
for any h > 0.
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The following multiplicative refinement and reverse of Young inequality in terms of
Kantorovich’s ratio holds

Kr
(a
b

)
a1−νbν ≤ (1− ν) a+ νb ≤ KR

(a
b

)
a1−νbν (6)

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν} and R = max {1− ν, ν} .
The first inequality in (6) was obtained by Zou et al. in [10] while the second by Liao

et al. [7].
In [10] the authors also showed that Kr (h) ≥ S (hr) for h > 0 and r ∈

[
0, 12
]

implying
that the lower bound in (6) is better than the lower bound from (3).

In the recent paper [1] we obtained the following reverses of Young’s inequality as well:

0 ≤ (1− ν) a+ νb− a1−νbν ≤ ν (1− ν) (a− b) (ln a− ln b) (7)

and

1 ≤ (1− ν) a+ νb

a1−νbν
≤ exp

[
4ν (1− ν)

(
K
(a
b

)
− 1
)]
, (8)

where a, b > 0, ν ∈ [0, 1].
It has been shown in [1] that there is no ordering for the upper bounds of the quantity

(1− ν) a+ νb− a1−νbν as provided by the inequalities (4) and (7). The same conclusion

is true for the upper bounds of the quantity (1−ν)a+νb
a1−νbν incorporated in the inequalities

(3), (6) and (8).
In this note we obtain two new refinements and reverses of Young’s inequality.

2. Results

We have the following result:

Lemma 1. Let f : I ⊂ R → R be a twice differentiable function on the interval I̊, the
interior of I. If there exists the constants d, D such that

d ≤ f ′′ (t) ≤ D for any t ∈ I̊ , (9)

then

1

2
ν (1− ν) d (b− a)

2 ≤ (1− ν) f (a) + νf (b)− f ((1− ν) a+ νb) (10)

≤ 1

2
ν (1− ν)D (b− a)

2

for any a, b ∈ I̊ and ν ∈ [0, 1] .
In particular, we have

1

8
(b− a)

2
d ≤ f (a) + f (b)

2
− f

(
a+ b

2

)
≤ 1

8
(b− a)

2
D, (11)

for any a, b ∈ I̊.
The constant 1

8 is best possible in both inequalities in (11).

Proof. We consider the auxiliary function fD : I ⊂ R → R defined by fD (x) = 1
2Dx

2 −
f (x) . The function fD is differentiable on I̊ and f ′′D (x) = D − f ′′ (x) ≥ 0, showing that

fD is a convex function on I̊ .
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By the convexity of fD we have for any a, b ∈ I̊ and ν ∈ [0, 1] that

0 ≤ (1− ν) fD (a) + νfD (b)− fD ((1− ν) a+ νb)

= (1− ν)

(
1

2
Da2 − f (a)

)
+ ν

(
1

2
Db2 − f (b)

)
−
(

1

2
D ((1− ν) a+ νb)

2 − fD ((1− ν) a+ νb)

)
=

1

2
D
[
(1− ν) a2 + νb2 − ((1− ν) a+ νb)

2
]

− (1− ν) f (a)− νf (b) + fD ((1− ν) a+ νb)

=
1

2
ν (1− ν)D (b− a)

2 − (1− ν) f (a)− νf (b) + fD ((1− ν) a+ νb) ,

which implies the second inequality in (10).
The first inequality follows in a similar way by considering the auxiliary function fd :

I ⊂ R→ R defined by fD (x) = f (x)− 1
2dx

2 that is twice differentiable and convex on I̊.

If we take f (x) = x2, then (9) holds with equality for d = D = 2 and (11) reduces to
an equality as well. �

If D > 0, the second inequality in (10) is better than the corresponding inequality
obtained by Furuichi and Minculete in [4] by applying Lagrange’s theorem two times.
They had instead of 1

2 the constant 1. Our method also allowed to obtain, for d > 0, a
lower bound that can not be established by Lagrange’s theorem method employed in [4].

We have:

Theorem 1. For any a, b > 0 and ν ∈ [0, 1] we have

1

2
ν (1− ν) (ln a− ln b)

2
min {a, b} ≤ (1− ν) a+ νb− a1−νbν (12)

≤ 1

2
ν (1− ν) (ln a− ln b)

2
max {a, b}

and

exp

[
1

2
ν (1− ν)

(b− a)
2

max2 {a, b}

]
≤ (1− ν) a+ νb

a1−νbν
(13)

≤ exp

[
1

2
ν (1− ν)

(b− a)
2

min2 {a, b}

]
.

Proof. If we write the inequality (10) for the convex function f : R→ (0,∞) , f (x) =
exp (x) , then we have

1

2
ν (1− ν) (x− y)

2
min {expx, exp y} (14)

≤ (1− ν) exp (x) + ν exp (y)− exp ((1− ν)x+ νy)

≤ 1

2
ν (1− ν) (x− y)

2
max {expx, exp y}

for any x, y ∈ R and ν ∈ [0, 1] .
Let a, b > 0. If we take x = ln a, y = ln b in (14), then we get the desired inequality

(12).
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Now, if we write the inequality (10) for the convex function f : (0,∞) → R, f (x) =
− lnx, then we get for any a, b > 0 and ν ∈ [0, 1] that

1

2
ν (1− ν)

(b− a)
2

max2 {a, b}
≤ ln ((1− ν) a+ νb)− (1− ν) ln a− ν ln b (15)

≤ 1

2
ν (1− ν)

(b− a)
2

min2 {a, b}
.

�

The second inequalities in (12) and (13) are better than the corresponding results
obtained by Furuichi and Minculete in [4] where instead of constant 1

2 they had the
constant 1.

Now, since

(b− a)
2

min2 {a, b}
=

(
max {a, b}
min {a, b}

− 1

)2

and
(b− a)

2

max2 {a, b}
=

(
min {a, b}
max {a, b}

− 1

)2

,

then (13) can also be written as:

exp

[
1

2
ν (1− ν)

(
1− min {a, b}

max {a, b}

)2
]
≤ (1− ν) a+ νb

a1−νbν
(16)

≤ exp

[
1

2
ν (1− ν)

(
max {a, b}
min {a, b}

− 1

)2
]

for any a, b > 0 and ν ∈ [0, 1] .

Remark 1. For ν = 1
2 we get the following inequalities of interest

1

8
(ln a− ln b)

2
min {a, b} ≤ a+ b

2
−
√
ab ≤ 1

8
(ln a− ln b)

2
max {a, b} (17)

and

exp

[
1

8

(
1− min {a, b}

max {a, b}

)2
]
≤

a+b
2√
ab
≤ exp

[
1

8

(
max {a, b}
min {a, b}

− 1

)2
]
, (18)

for any a, b > 0.

Consider the functions

P1 (ν, x) := ν (1− ν) (x− 1) lnx

and

P2 (ν, x) :=
1

2
ν (1− ν) (lnx)

2
max {x, 1}

for ν ∈ [0, 1] and x > 0. A 3D plot for ν ∈ (0, 1) and x ∈ (0, 2) reveals that the difference
P2 (ν, x) − P1 (ν, x) takes both positive and negative values showing that there is no
ordering between the upper bounds of the quantity (1− ν) a + νb − a1−νbν provided by
(7) and (12) respectively.

Also, we consider the functions

Q1 (ν, x) := exp

[
ν (1− ν)

(x− 1)
2

x

]
and

Q2 (ν, x) := exp

[
1

2
ν (1− ν)

(x− 1)
2

min2 {x, 1}

]
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for ν ∈ [0, 1] and x > 0. Since the difference,

d (x) :=
1

x
− 1

2 min2 {x, 1}
=

2x− 1

2x2

for x ∈ (0, 1) , changes the sign in 1
2 , then it reveals that the difference Q2 (ν, x)−Q1 (ν, x)

takes also both positive and negative values showing that there is no ordering between

the upper bounds of the quantity (1−ν)a+νb
a1−νbν provided by (8) and (13).
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