A NOTE ON NEW REFINEMENTS AND REVERSES OF YOUNG'S INEQUALITY

S.S. DRAGOMIR

Abstract

In this note we obtain two new refinements and reverses of Young's inequality.

1. Introduction

The famous Young inequality for scalars says that if $a, b>0$ and $\nu \in[0,1]$, then

$$
\begin{equation*}
a^{1-\nu} b^{\nu} \leq(1-\nu) a+\nu b \tag{1}
\end{equation*}
$$

with equality if and only if $a=b$. The inequality (1) is also called ν-weighted arithmeticgeometric mean inequality.

We recall that Specht's ratio is defined by [8]

$$
S(h):=\left\{\begin{array}{l}
\frac{h^{\frac{1}{h-1}}}{e \ln \left(h^{\frac{1}{h-1}}\right)} \text { if } h \in(0,1) \cup(1, \infty) \tag{2}\\
1 \text { if } h=1 .
\end{array}\right.
$$

It is well known that $\lim _{h \rightarrow 1} S(h)=1, S(h)=S\left(\frac{1}{h}\right)>1$ for $h>0, h \neq 1$. The function is decreasing on $(0,1)$ and increasing on $(1, \infty)$.

The following inequality provides a refinement and a multiplicative reverse for Young's inequality

$$
\begin{equation*}
S\left(\left(\frac{a}{b}\right)^{r}\right) a^{1-\nu} b^{\nu} \leq(1-\nu) a+\nu b \leq S\left(\frac{a}{b}\right) a^{1-\nu} b^{\nu} \tag{3}
\end{equation*}
$$

where $a, b>0, \nu \in[0,1], r=\min \{1-\nu, \nu\}$.
The second inequality in (3) is due to Tominaga (9] while the first one is due to Furuichi [2].

Kittaneh and Manasrah [5], 6] provided a refinement and an additive reverse for Young inequality as follows:

$$
\begin{equation*}
r(\sqrt{a}-\sqrt{b})^{2} \leq(1-\nu) a+\nu b-a^{1-\nu} b^{\nu} \leq R(\sqrt{a}-\sqrt{b})^{2} \tag{4}
\end{equation*}
$$

where $a, b>0, \nu \in[0,1], r=\min \{1-\nu, \nu\}$ and $R=\max \{1-\nu, \nu\}$.
We also consider the Kantorovich's ratio defined by

$$
\begin{equation*}
K(h):=\frac{(h+1)^{2}}{4 h}, h>0 . \tag{5}
\end{equation*}
$$

The function K is decreasing on $(0,1)$ and increasing on $[1, \infty), K(h) \geq 1$ for any $h>0$ and $K(h)=K\left(\frac{1}{h}\right)$ for any $h>0$.

[^0]The following multiplicative refinement and reverse of Young inequality in terms of Kantorovich's ratio holds

$$
\begin{equation*}
K^{r}\left(\frac{a}{b}\right) a^{1-\nu} b^{\nu} \leq(1-\nu) a+\nu b \leq K^{R}\left(\frac{a}{b}\right) a^{1-\nu} b^{\nu} \tag{6}
\end{equation*}
$$

where $a, b>0, \nu \in[0,1], r=\min \{1-\nu, \nu\}$ and $R=\max \{1-\nu, \nu\}$.
The first inequality in (6) was obtained by Zou et al. in [10] while the second by Liao et al. [7].

In [10] the authors also showed that $K^{r}(h) \geq S\left(h^{r}\right)$ for $h>0$ and $r \in\left[0, \frac{1}{2}\right]$ implying that the lower bound in (6) is better than the lower bound from (3).

In the recent paper [1] we obtained the following reverses of Young's inequality as well:

$$
\begin{equation*}
0 \leq(1-\nu) a+\nu b-a^{1-\nu} b^{\nu} \leq \nu(1-\nu)(a-b)(\ln a-\ln b) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \leq \frac{(1-\nu) a+\nu b}{a^{1-\nu} b^{\nu}} \leq \exp \left[4 \nu(1-\nu)\left(K\left(\frac{a}{b}\right)-1\right)\right] \tag{8}
\end{equation*}
$$

where $a, b>0, \nu \in[0,1]$.
It has been shown in 1 that there is no ordering for the upper bounds of the quantity $(1-\nu) a+\nu b-a^{1-\nu} b^{\nu}$ as provided by the inequalities (4) and (7). The same conclusion is true for the upper bounds of the quantity $\frac{(1-\nu) a+\nu b}{a^{1-\nu} b^{\nu}}$ incorporated in the inequalities (3), (6) and (8).

In this note we obtain two new refinements and reverses of Young's inequality.

2. Results

We have the following result:
Lemma 1. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function on the interval $\stackrel{\circ}{I}$, the interior of I. If there exists the constants d, D such that

$$
\begin{equation*}
d \leq f^{\prime \prime}(t) \leq D \text { for any } t \in \check{I} \tag{9}
\end{equation*}
$$

then

$$
\begin{align*}
\frac{1}{2} \nu(1-\nu) d(b-a)^{2} & \leq(1-\nu) f(a)+\nu f(b)-f((1-\nu) a+\nu b) \tag{10}\\
& \leq \frac{1}{2} \nu(1-\nu) D(b-a)^{2}
\end{align*}
$$

for any $a, b \in I \quad$ and $\nu \in[0,1]$.
In particular, we have

$$
\begin{equation*}
\frac{1}{8}(b-a)^{2} d \leq \frac{f(a)+f(b)}{2}-f\left(\frac{a+b}{2}\right) \leq \frac{1}{8}(b-a)^{2} D \tag{11}
\end{equation*}
$$

for any $a, b \in \stackrel{\circ}{I}$.
The constant $\frac{1}{8}$ is best possible in both inequalities in 11.
Proof. We consider the auxiliary function $f_{D}: I \subset \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{D}(x)=\frac{1}{2} D x^{2}-$ $f(x)$. The function f_{D} is differentiable on I and $f_{D}^{\prime \prime}(x)=D-f^{\prime \prime}(x) \geq 0$, showing that f_{D} is a convex function on \check{I}.

By the convexity of f_{D} we have for any $a, b \in I$ and $\nu \in[0,1]$ that

$$
\begin{aligned}
0 & \leq(1-\nu) f_{D}(a)+\nu f_{D}(b)-f_{D}((1-\nu) a+\nu b) \\
& =(1-\nu)\left(\frac{1}{2} D a^{2}-f(a)\right)+\nu\left(\frac{1}{2} D b^{2}-f(b)\right) \\
& -\left(\frac{1}{2} D((1-\nu) a+\nu b)^{2}-f_{D}((1-\nu) a+\nu b)\right) \\
& =\frac{1}{2} D\left[(1-\nu) a^{2}+\nu b^{2}-((1-\nu) a+\nu b)^{2}\right] \\
& -(1-\nu) f(a)-\nu f(b)+f_{D}((1-\nu) a+\nu b) \\
& =\frac{1}{2} \nu(1-\nu) D(b-a)^{2}-(1-\nu) f(a)-\nu f(b)+f_{D}((1-\nu) a+\nu b)
\end{aligned}
$$

which implies the second inequality in 10 .
The first inequality follows in a similar way by considering the auxiliary function f_{d} : $I \subset \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{D}(x)=f(x)-\frac{1}{2} d x^{2}$ that is twice differentiable and convex on \dot{I}.

If we take $f(x)=x^{2}$, then (9) holds with equality for $d=D=2$ and (11) reduces to an equality as well.

If $D>0$, the second inequality in 10 is better than the corresponding inequality obtained by Furuichi and Minculete in (4) by applying Lagrange's theorem two times. They had instead of $\frac{1}{2}$ the constant 1 . Our method also allowed to obtain, for $d>0$, a lower bound that can not be established by Lagrange's theorem method employed in [4.

We have:
Theorem 1. For any $a, b>0$ and $\nu \in[0,1]$ we have

$$
\begin{align*}
\frac{1}{2} \nu(1-\nu)(\ln a-\ln b)^{2} \min \{a, b\} & \leq(1-\nu) a+\nu b-a^{1-\nu} b^{\nu} \tag{12}\\
& \leq \frac{1}{2} \nu(1-\nu)(\ln a-\ln b)^{2} \max \{a, b\}
\end{align*}
$$

and

$$
\begin{align*}
\exp \left[\frac{1}{2} \nu(1-\nu) \frac{(b-a)^{2}}{\max ^{2}\{a, b\}}\right] & \leq \frac{(1-\nu) a+\nu b}{a^{1-\nu} b^{\nu}} \tag{13}\\
& \leq \exp \left[\frac{1}{2} \nu(1-\nu) \frac{(b-a)^{2}}{\min ^{2}\{a, b\}}\right]
\end{align*}
$$

Proof. If we write the inequality for the convex function $f: \mathbb{R} \rightarrow(0, \infty), f(x)=$ $\exp (x)$, then we have

$$
\begin{align*}
& \frac{1}{2} \nu(1-\nu)(x-y)^{2} \min \{\exp x, \exp y\} \tag{14}\\
& \leq(1-\nu) \exp (x)+\nu \exp (y)-\exp ((1-\nu) x+\nu y) \\
& \leq \frac{1}{2} \nu(1-\nu)(x-y)^{2} \max \{\exp x, \exp y\}
\end{align*}
$$

for any $x, y \in \mathbb{R}$ and $\nu \in[0,1]$.
Let $a, b>0$. If we take $x=\ln a, y=\ln b$ in (14), then we get the desired inequality (12).

Now, if we write the inequality 10 for the convex function $f:(0, \infty) \rightarrow \mathbb{R}, f(x)=$ $-\ln x$, then we get for any $a, b>0$ and $\nu \in[0,1]$ that

$$
\begin{align*}
\frac{1}{2} \nu(1-\nu) \frac{(b-a)^{2}}{\max ^{2}\{a, b\}} & \leq \ln ((1-\nu) a+\nu b)-(1-\nu) \ln a-\nu \ln b \tag{15}\\
& \leq \frac{1}{2} \nu(1-\nu) \frac{(b-a)^{2}}{\min ^{2}\{a, b\}}
\end{align*}
$$

The second inequalities in $\sqrt{12}$ and $\sqrt{132}$ are better than the corresponding results obtained by Furuichi and Minculete in (4] where instead of constant $\frac{1}{2}$ they had the constant 1.

Now, since

$$
\frac{(b-a)^{2}}{\min ^{2}\{a, b\}}=\left(\frac{\max \{a, b\}}{\min \{a, b\}}-1\right)^{2} \text { and } \frac{(b-a)^{2}}{\max ^{2}\{a, b\}}=\left(\frac{\min \{a, b\}}{\max \{a, b\}}-1\right)^{2}
$$

then (13) can also be written as:

$$
\begin{align*}
\exp \left[\frac{1}{2} \nu(1-\nu)\left(1-\frac{\min \{a, b\}}{\max \{a, b\}}\right)^{2}\right] & \leq \frac{(1-\nu) a+\nu b}{a^{1-\nu} b^{\nu}} \tag{16}\\
& \leq \exp \left[\frac{1}{2} \nu(1-\nu)\left(\frac{\max \{a, b\}}{\min \{a, b\}}-1\right)^{2}\right]
\end{align*}
$$

for any $a, b>0$ and $\nu \in[0,1]$.
Remark 1. For $\nu=\frac{1}{2}$ we get the following inequalities of interest

$$
\begin{equation*}
\frac{1}{8}(\ln a-\ln b)^{2} \min \{a, b\} \leq \frac{a+b}{2}-\sqrt{a b} \leq \frac{1}{8}(\ln a-\ln b)^{2} \max \{a, b\} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\exp \left[\frac{1}{8}\left(1-\frac{\min \{a, b\}}{\max \{a, b\}}\right)^{2}\right] \leq \frac{\frac{a+b}{2}}{\sqrt{a b}} \leq \exp \left[\frac{1}{8}\left(\frac{\max \{a, b\}}{\min \{a, b\}}-1\right)^{2}\right] \tag{18}
\end{equation*}
$$

for any $a, b>0$.
Consider the functions

$$
P_{1}(\nu, x):=\nu(1-\nu)(x-1) \ln x
$$

and

$$
P_{2}(\nu, x):=\frac{1}{2} \nu(1-\nu)(\ln x)^{2} \max \{x, 1\}
$$

for $\nu \in[0,1]$ and $x>0$. A $3 D$ plot for $\nu \in(0,1)$ and $x \in(0,2)$ reveals that the difference $P_{2}(\nu, x)-P_{1}(\nu, x)$ takes both positive and negative values showing that there is no ordering between the upper bounds of the quantity $(1-\nu) a+\nu b-a^{1-\nu} b^{\nu}$ provided by (7) and 12 respectively.

Also, we consider the functions

$$
Q_{1}(\nu, x):=\exp \left[\nu(1-\nu) \frac{(x-1)^{2}}{x}\right]
$$

and

$$
Q_{2}(\nu, x):=\exp \left[\frac{1}{2} \nu(1-\nu) \frac{(x-1)^{2}}{\min ^{2}\{x, 1\}}\right]
$$

for $\nu \in[0,1]$ and $x>0$. Since the difference,

$$
d(x):=\frac{1}{x}-\frac{1}{2 \min ^{2}\{x, 1\}}=\frac{2 x-1}{2 x^{2}}
$$

for $x \in(0,1)$, changes the sign in $\frac{1}{2}$, then it reveals that the difference $Q_{2}(\nu, x)-Q_{1}(\nu, x)$ takes also both positive and negative values showing that there is no ordering between the upper bounds of the quantity $\frac{(1-\nu) a+\nu b}{a^{1-\nu} b^{\nu}}$ provided by (8) and 13).

References

[1] Dragomir, S.S., A Note on Young's Inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 126, http://rgmia.org/papers/v18/v18a126.pdf
[2] Furuichi, S., Refined Young inequalities with Specht's ratio, Journal of the Egyptian Mathematical Society 20 (2012), 46-49.
[3] Furuichi, S., On refined Young inequalities and reverse inequalities, J. Math. Inequal. 5 (2011), 21-31.
[4] Furuichi, S. and Minculete, N., Alternative reverse inequalities for Young's inequality, J. Math Inequal. 5 (2011), Number 4, 595-600.
[5] Kittaneh, F. and Manasrah, Y., Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl. 361 (2010), 262-269.
[6] Kittaneh, F. and Manasrah, Y., Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra. 59 (2011), 1031-1037.
[7] Liao, W., Wu, J. and Zhao, J., New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math. 19 (2015), No. 2, pp. 467-479.
[8] Specht, W., Zer Theorie der elementaren Mittel, Math. Z. 74 (1960), pp. 91-98.
[9] Tominaga, M., Specht's ratio in the Young inequality, Sci. Math. Japon. 55 (2002), 583-588.
[10] Zuo, G., Shi, G., and Fujii, M., Refined Young inequality with Kantorovich constant, J. Math. Inequal. 5 (2011), 551-556.

Mathematics, College of Engineering \& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001, Australia.
School of Computer Science \& Applied Mathematics
University of the Witwatersrand
Private Bag 3, Johannesburg 2050, South Africa
E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

[^0]: 1991 Mathematics Subject Classification. 26D15; 26D10.
 Key words and phrases. Young's Inequality, Convex functions, Arithmetic mean-Geometric mean inequality.

