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APPROXIMATE SOLUTION OF A NONLINEAR FRACTIONAL

ORDINARY DIFFERENTIAL EQUATION BY DGJ METHOD

YIYING FENG AND YUE HU

Abstract. Applying the new iterative method (DGJM), which have been used to

handle the nonlinear models, we investigate the approximate analytical solutions for
a nonlinear fractional ordinary differential equation (FODE), where the fractional

derivatives are considered in Caputo sense. On the process of dealing with nonlin-

ear terms, we particularly employ Taylor series expansion to obtain the analytical
solutions.

1. Introduction

Fractional differential equations have caused increasing attention for decades since
it plays a vital role in various research fields as diverse as physics, polymer rheology,
regular variation in thermodynamics, biophysics, blood flow phenomena, aerodynamics,
electrodynamics of complex medium, viscoelasticity, electrical circuits, electron-analytical
chemistry, biology, control theory, fitting of experimental data, etc[1, 2, 3, 4, 5, 6]. Com-
pared to integer order differential equations, fractional differential equations have the
advantage that the definition of the fractional one involves all the values of the function.
In recent years, many authors have paid attention to studying the solutions of nonlinear
fractional differential equations by using various methods. Among these are the Adomian
decomposition method (ADM)[7, 8, 9, 10, 11, 12, 13], the homotopy perturbation method
(HPM)[14, 15, 16, 17, 18, 19], the variational iteration method(VIM)[20, 21, 22, 23], the
Homotopy Analysis Method(HAM)[24, 25, 26].

Daftardar-Gejji and Jafari [27] have devised a New Iterative Method(DGJM) in 2006
to solve nonlinear differential equations. This method is free from rounding off errors
since it does not involve discretization and has fairly simple algorithm. Also it does
not require prior knowledge of the concepts such as Lagrange multipliers(VIM) or ho-
motopy(HAM). In this article, DGJM is applied to solve a nonlinear fractional ordinary
differential equation.

2. Preliminaries and notations

We give some basic definitions and properties of the fractional calculus theory.
Definition 1. A real function s(x), x > 0, is said to be in the space Cµ, µ ∈ R if there
exists a real number p(> µ), such that s(x) = xps1(x), where s1(x) ∈ C[0,∞), and it is
said to be in the space Cmµ if s(m) ∈ Cµ, m ∈ N .
Definition 2. The Riemann-Liouville fractional integral operator of order α > 0, of a
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function s ∈ Cµ, µ > −1, is defined as

Jαs(x) =
1

Γ(α)

∫ x

0

(x− t)α−1s(t)dt, α > 0, x > 0,

J0s(x) = s(x).

(1)

where Γ(z) is the well-known Gamma function.
Properties of the operator Jα can be found in [28, 29, 30, 31], we mention only the

following.
For s ∈ Cµ, µ > −1, α, β > 0 and γ > −1:

1. JαJβs(x) = Jα+βs(x),
2. JαJβs(x) = JβJαs(x),

3. Jαxγ = Γ(γ+1)
Γ(α+γ+1)xα+γ .

The Riemann-Liouville derivative has certain disadvantages when trying to model real
world phenomena with fractional differential eqautions. Therefore, we shall introduce a
modified fractional differential operator Dα proposed by Caputo in his work on the theory
of viscoelasticity[32].
Definition 3. The fractional derivative s(x) in the Caputo sense is defined as

Dαs(x) = Jm−αDms(x) =
1

Γ(m− α)

∫ x

0

(x− t)m−α−1s(m)(t)dt, (2)

for m− 1 < α 6 m, m ∈ N , x > 0, s ∈ Cm−1.
Also, we need here two of its basic properties.

Lemma 1. If m− 1 < α 6 m, m ∈ N , and s ∈ Cmµ , µ > −1, then

DαJαs(x) = s(x)

and

JαDαs(x) = s(x)−
m−1∑
k=0

sk(0+)
xk

k!
, x > 0. (3)

The Caputo fractional derivatives are considered here because it allows traditional
initial conditions to be included in the formulation of the problem.
Definition 4. For m to be the smallest integer that exceeds α, the Caputo fractional
derivative operator of order α > 0 is defined as

Dα
t u(t) =

{
1

Γ(m−α)

∫ t
0
(t− τ)m−α−1 d

mu(τ)
dtm dτ for m− 1 < α < m,

dmu(x,y,t)
dtm for α = m ∈ N.

(4)

For more information on the mathematical properties of fractional derivatives and
integrals one can consult the mentioned references.

3. New iterative method-DGJM

Consider the following general functional equation[27]:

u(x̄) = f(x̄) +N(u(x̄)), (5)

where N is a nonlinear operator from a Banach space B → B and f is a known function.
x̄ = (x1, x2, . . . , xn). We are looking for a solution u of Eq.(5) having the series form

u(x̄) =

∞∑
i=0

ui(x̄). (6)
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The nonlinear operator N can be decomposed as

N

( ∞∑
i=0

ui

)
= N(u0) + {N(u0 + u1)−N(u0)}+ {N(u0 + u1 + u2)−N(u0 + u1)}

+ {N(u0 + u1 + u2 + u3)−N(u0 + u1 + u2)}+ · · ·

= N(u0) +

∞∑
i=1

N
 i∑
j=0

uj

−N
i−1∑
j=0

uj

 .

(7)

From Eqs.(6) and (7), Eq.(5) is equivalent to

∞∑
i=0

ui = f +N(u0) +

∞∑
i=1

N
 i∑
j=0

uj

−N
i−1∑
j=0

uj

 . (8)

We define the recurrence relation
u0 = f,

u1 = N(u0),

um+1 = {N(u0 + · · ·+ um)−N(u0 + · · ·+ um−1),

m = 1, 2, . . .

(9)

Then

(u1 + · · ·+ um+1) = N(u0 + · · ·+ um), m = 1, 2, . . . (10)

and
∞∑
i=0

ui = f +N

( ∞∑
i=0

ui

)
. (11)

The k-term approximate solution of (5) and (6) is given by u = u0 + u1 + · · ·+ uk−1.

4. Solution of a nonlinear fractional ordinary differential equation

In this section, let us consider the DGJ method for solving the following nonlinear
fractional ordinary differential equation:

Dαu(t) = u1/3(t), 0 < t 6 0.5, (12)

where 0 < α 6 1, subject to the initial condition

u(0) = (2/3)3/2. (13)

The exact solution of the FODE (12) for α = 1, is

u(t) =
2
√

6

9
(t+ 1)3/2. (14)

This type of FODE has been discussed in [33] by Odibat with VIM. Here we solve the
equation with DGJM. Firstly, expanding the nonlinear term u1/3 in (12) by using the
Taylor series, we get

u1/3 ≈ 40
√

6

243
+

10

9
u−
√

6

3
u2 +

5

16
u3. (15)

Then, the FDE (12) can be approximated by

Dαu =
40
√

6

243
+

10

9
u−
√

6

3
u2 +

5

16
u3. (16)
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According to the DGJM, in view of the algorithm(11), we construct the following
recurrence relation:

u0(t) =
2
√

6

9
,

u1(t) =

√
6tα

3Γ(α+ 1)
,

u2(t) =

√
6t2α

12Γ(α+ 1)2
−

√
6t3α

36Γ(α+ 1)3
+

5
√

6t4α

288Γ(α+ 1)4
,

u3(t) =

√
6t3α

72Γ(α+ 1)3
−

√
6t4α

72Γ(α+ 1)4
+

√
6t5α

72Γ(α+ 1)5
− 11

√
6t6α

6912Γ(α+ 1)6

+

√
6t7α

13824Γ(α+ 1)7
+

5
√

6t8α

6144Γ(α+ 1)8
− 55

√
6t9α

497664Γ(α+ 1)9
+

29
√

6t10α

3981312Γ(α+ 1)10

+
575
√

6t11α

29196288Γ(α+ 1)11
− 125

√
6t12α

31850496Γ(α+ 1)12
+

625
√

6t13α

828112896Γ(α+ 1)13
,

...

Then, the DGJM series solution of the FDE (12) can be approximated as

u(t) =

√
6tα

3Γ(α+ 1)
+

√
6t2α

12Γ(α+ 1)2
−

√
6t3α

72Γ(α+ 1)3
+

√
6t4α

192Γ(α+ 1)4
+ · · · . (17)

For the particular case α = 1,

u(t) =
2
√

6

9
+

√
6

3
t+

√
6

12
t2 −

√
6

72
t3 +

√
6

192
t4 + · · · . (18)

Table 1. Approximate solution of (12) for some values of α using the
4-term DGJM approximation

t α = 0.25 α = 0.5 α = 0.75 α = 1(DGJM) α = 1(Exact)
0.0 0.54433105 0.54433105 0.54433105 0.54433105 0.54433105
0.1 1.12594977 0.86049370 0.70973466 0.62798949 0.62798915
0.2 1.25457320 1.00574494 0.83071446 0.71555255 0.71554175
0.3 1.34538453 1.12342547 0.94220811 0.80690495 0.80682276
0.4 1.41863747 1.22749320 1.04931472 0.90203303 0.90168567
0.5 1.48149133 1.32352807 1.15440910 1.00106445 1.00000000

Numerical results is given in Table 1 on the [0, 0.5]. We can see that the numerical
solution is agree well with the exact solution when α = 1. Therefore, we hold that the
solution for α = 0.25, α = 0.5 and α = 0.75 is also credible.

5. Conclusions

In the present study, the new iterative method(DGJM) has been applied to solve a
fractional differential equation. This method is shown as a straightforward and popular
tool for handling many types of fractional differential equations. Combined with Taylor
series, the solutions agree well with the exact solutions.
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