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AN INTEGRAL EQUATION FROM PHYSICS - A SYNTHESIS

SURVEY - PART II

MARIA DOBRIT, OIU

Abstract. This part of the synthesis survey on the study of the integral equation

from physics:

x(t) =

∫ b

a
K(t, s, x(s), x(a), x(b))ds + f(t), t ∈ [a, b].

contains the results concerning the continuous data dependence and the differentia-
bility of its solution. This part ends with some examples.

1. Introduction

We consider again, the integral equation:

x(t) =

∫ b

a

K(t, s, x(s), x(a), x(b))ds+ f(t), t ∈ [a, b] (1)

where K : [a, b]× [a, b]×R3 −→ R or K : [a, b]× [a, b]× J3 −→ R, J ⊂ R closed interval,
and f : [a, b] −→ R.

In the second part of the survey, we present the obtained results regarding the continu-
ous data dependence, the differentiability with respect to a and b, and the differentiability
with respect to a parameter of the solution of this integral equation. Some of these results
were published in the papers [7], [8], [9] and [11].

In the section 2 we present the basic notations and results that were used in order to
obtaining the results presented in the next sections.

The section 3 contains the results regarding the continuous data dependence of the
solution of the integral equation (1). It also gives a theorem of data dependence of the
solution of an integral equations system. For establishing of these results was useful the
General Data Dependence Theorem.

In the section 4 we present some results of differentiability of the solution of the integral
equation (1), that were obtained by applying the Fiber Generalized Contractions Theorem
and some of the results of I.A. Rus, published in the papers [25], [26], [28] and [29].

Finally, in the section 5 we present some examples.

2. Basic notations and results

Let X be a nonempty set, d a metric on X and A : X → X an operator. In this part
of survey we shall use the following notations:
FA := {x ∈ X|A(x) = x} – the fixed points set of A
A0 := 1X , A

1 := A, An+1 := A ◦An, n ∈ N – the iterate operators of A.
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In order to study the continuous data dependence of the solution of integral equation
(1), we consider, as in part I, the Banach space X = C([a, b] ,B),

C([a, b],B) = {x : [a, b] −→ B|x continuous function},

endowed with the Chebyshev norm

‖x‖C := max
t∈[a,b]

|x(t)| , for all x ∈ C([a, b],B), (2)

where (B,+,R, | · |) is a Banach space.
Also, in order to study the continuous data dependence of the solution of the integral

equations system (1’), it was used the Banach space C ([a, b] ,Rm),

C([a, b],Rm) = {x : [a, b] −→ Rm|x continuous function},

endowed with the generalized Chebyshev norm norm defined by the relation:

‖x‖ :=

 ‖x1‖C
· · ·
‖xm‖C

 , for all x :=

 x1
· · ·
xm

 ∈ C ([a, b] ,Rm) (3)

where ‖xk‖C := max
t∈[a,b]

|xk(t)|, k = 1,m.

This space is a complete generalized Banach space, where for an element w ∈ Rm, we
denoted ‖w‖ = (|w1| , ..., |wm|).

The following definitions and theorems were used to study the data dependence and
the differentiability of the solution of the integral equation (1) (see [20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30]). In order to obtain the results presented in this survey, also, were used
some results from [17], [18], [19], [31] and [32].

Definition 1. (I.A. Rus, [22] or [24]) Let (X, d) be a metric space. An operator A :
X −→ X is Picard operator (PO) if there exists x∗ ∈ X such that:

(a) FA = {x∗};
(b) the sequence (An(x0))n∈N converges to x∗, for all x0 ∈ X.

Definition 2. (I.A. Rus, [22] or [24]) Let (X, d) be a metric space. An operator A :
X −→ X is weakly Picard operator (WPO) if the sequence (An(x0))n∈N converges for all
x0 ∈ X and the limit (which may depend on x0) is a fixed point of A.

If A is a WPO, then we consider the following operator A∞ : X −→ X, defined by
A∞(x) = lim

n→∞
An(x) and we observe that A∞(X) = FA (see part I, [16]).

In order to obtain a result of continuous data dependence of the solution of the integral
equation (1), it was used the following theorem.

Theorem 1. (General Data Dependence Theorem) Let (X, d) be a complete metric space
and A, B : X −→ X two operators. We suppose that:

(i) A is an α-contraction (α < 1) and FA = {x∗A};
(ii) x∗B ∈ FB;

(iii) there exists η > 0 such that d(A(x), B(x)) < η for all x ∈ X.

In these conditions we have

d (x∗A, x
∗
B) ≤ η

1− α
.

Also, to obtain a result of continuous data dependence of the solution of an integral
equations system, the following definition and theorems were applied.
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Definition 3. (see [20], [27]) A matrix Q ∈ Mmm(R) converges to zero if Qk converges
to the zero matrix as k −→ 1.

The following theorem has two conditions which are equivalents with the convergence
to zero of a matrix Q ∈ Mmm(R+) and it was useful in two examples presented in the
last section.

Theorem 2. (see [20], [27]) Let Q ∈ Mmm(R+) be a matrix. The following conditions
are equivalents:

(i) Qk → ∞ as k → ∞;
(ii) The eigenvalues λk , k = 1,m of the matrix Q, satisfies the condition |λk| < 1,

k = 1,m;
(iii) The matrix I −Q is non-singular and (I −Q)

−1
= I +Q+ ...+Qn + ... .

Theorem 3. (A.I. Perov) Let (X, d) be a complete generalized metric space, with the
metric d(x, y) ∈ Rm and A : X −→ X an operator. Suppose that there exists a matrix
Q ∈Mmm(R+), such that

(i) d(A(x), A(y)) ≤ Qd(x, y) for all x, y ∈ X;
(ii) Qn → ∞ as n→ ∞.

Then

(a) A has a unique fixed point x∗, i.e. FA = {x∗};
(b) the successive approximations sequence xn = An(x0), converges to x∗ for all

x0 ∈ X, i.e.
x∗ = lim

n→∞
An(x0), for all x0 ∈ X.

In addition, the following estimate

d(An(x), x∗) ≤ (Im −Q)
−1
Qnd (x0, A(x0)) , n ∈ N∗

is accomplished.

In order to study the data dependence of the solution of the integral equation (1), the
following theorem was useful.

Theorem 4. (see [30]) Let (X.d) be a complete generalized metric space and A,B : X −→
X two operators. We suppose that:

(i) A is a Q-contraction (Q converges to zero matrix) and FA = {x∗A};
(ii) x∗B ∈ FB;

(iii) there exists η ∈ Rm+ such that d(A(x), B(x)) < η for all x ∈ X.

In these conditions we have: d (x∗A, x
∗
B) ≤ (I −Q)

−1
η .

The results presented in the section 4 were obtained by applying the Fiber Generalized
Contractions Theorem, that we present below.

Theorem 5. (I.A. Rus, [25]) (Fiber Generalized Contractions Theorem) Let (X, d) be a
metric space (generalized or not) and (Y, ρ) a complete generalized metric space (ρ(x, y) ∈
Rm).

Let B : X −→ X and C : X × Y −→ Y be two operators and A : X × Y −→ X × Y a
continuous operator. Suppose that:

(i) A(x, y) = (B(x), C(x, y)), for all x ∈ X, y ∈ Y ;
(ii) B is a WPO;

(iii) there exists a matrix Q ∈Mmm(R+), Qn → ∞ as n→ ∞, such that

ρ (C(x, y1), C(x, y2)) ≤ Qρ (y1, y2) , for all x ∈ X, y1, y2 ∈ Y .

Under these conditions A is a WPO. In addition, if B is a PO, then A is a PO too.
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3. Continuous data dependence

In what follows we present two results of continuous data dependence of the solution
of the integral equation (1) and of the integral equations system (1’). These results were
published in the papers [12], [13] and [14].

3.1. Data dependence of the solution of integral equation (1).
In order to obtain the first result of continuous data dependence of the solution, we

consider the integral equation with modified argument (1)

x(t) =

∫ b

a

K(t, s, x(s), x(a), x(b))ds+ f(t), t ∈ [a, b]

and the perturbed integral equation

y(t) =

∫ b

a

H(t, s, y(s), y(a), y(b))ds+ h(t), t ∈ [a, b] (4)

where K,H : [a, b] × [a, b] ×B3 −→ B, f, h : [a, b] −→ B and (B,+,R, | · |) is a Banach
space.

We applied the following two theorems (see [13], [16], [23] and [27]).

Theorem 6. (Dobriţoiu M., [12], [16]). Suppose that

(i) K ∈ C
(
[a, b]× [a, b]×B3,B

)
;

(ii) f ∈ C ([a, b] ,B);
(iii) there exists MK > 0 such that |K(t, s, u, v, w)| ≤MK , for all t, s ∈ [a, b], u, v, w ∈

B.

Then the integral equation (1) has at least one solution x∗ ∈ C ([a, b] ,B).

Theorem 7. (Dobriţoiu M., [12], [16]). Suppose that

(i) K ∈ C
(
[a, b]× [a, b]×B3,B

)
;

(ii) f ∈ C ([a, b] ,B);
(iii) there exists LK > 0 such that

|K(t, s, u1, u2, u3)−K(t, s, v1, v2, v3)| ≤ LK (|u1 − v1|+ |u2 − v2|+ |u3 − v3|)
for all t, s ∈ [a, b], ui, vi ∈ B, i = 1, 2, 3;

(iv) 3LK(b− a) < 1.

Then the integral equation (1) has a unique solution x∗ ∈ C ([a, b] ,B).

Now, for the integral equation (1), suppose that the conditions of Theorem 7 are
satisfied and then, it results that this equation has a unique solution x∗ ∈ C ([a, b] ,B).

Also, for the perturbed integral equation (4), suppose that the following conditions are
satisfied:

(d1) H ∈ C
(
[a, b]× [a, b]×B3,B

)
;

(d2) h ∈ C ([a, b] ,B);
(d3) there exists MH > 0 such that |H(t, s, u, v, w)| ≤MH , for all t, s ∈ [a, b], u, v, w ∈

B.
Then, from the Theorem 6 it results that the integral equation (4) has at least one

solution y∗ ∈ C ([a, b] ,B).
Finally, using the General Data Dependence Theorem we obtained the following result of
continuous data dependence of the solution of integral equation (1).

Theorem 8. (Dobriţoiu M., [12]) Suppose that the conditions of Theorem 7 are full-
filed, and denote with x∗ ∈ C ([a, b] ,B) the unique solution of the integral equation (1).
Moreover, suppose that the conditions (d1)− (d3) are satisfied. In addition, suppose that:
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(i) there exists η1, η2 > 0 such that
|K(t, s, u1, u2, u3)−H(t, s, u1, u2, u3)| ≤ η1, for all t, s ∈ [a, b], u1, u2, u3 ∈ B,

and
|f(t)− h(t)| ≤ η2, for all t ∈ [a, b].

Under these conditions, if y∗ ∈ C ([a, b] ,B) is a solution of the perturbed integral
equation (4), then the following estimate is true:

‖x∗ − y∗‖ (C[a,b],B) ≤ η1(b− a) + η2
1− 3LK(b− a)

. (5)

In order to obtain the second result of continuous data dependence of the solution,
we consider the integral equation with modified argument (1) and the perturbed integral
equation

y(t) =

∫ b

a

H(t, s, y(s), y(a), y(b))ds+ f(t), t ∈ [a, b (4’)

where K,H : [a, b] × [a, b] × J3 → B, J ⊂ B is a compact subset, f : [a, b] → B and
(B,+,R, | · |) is a Banach space.

We applied the following two theorems (see [13], [16], [23] and [27]).

Theorem 9. (Dobriţoiu M., [12], [16]). Suppose that:

(i) K ∈ C([a, b]× [a, b]× J3,B), J ⊂ B is a compact subset;
(ii) f ∈ C([a, b],B);

(iii) MK(b − a) ≤ r, where MK > 0, such that, |K(t, s, u, v, w)| ≤ MK , for all
t, s ∈ [a, b], u, v, w ∈ J .

Then the integral equation (1) has at least one solution x∗ ∈ B(f ; r) ⊂ C ([a, b] ,B).

Theorem 10. (Dobriţoiu M., [12], [16]). Suppose that the following conditions are sat-
isfied:

(i) K ∈ C([a, b]× [a, b]× J3,B), J ⊂ B is a compact subset;
(ii) f ∈ C([a, b],B);

(iii) MK(b − a) ≤ r, where MK > 0, such that, |K(t, s, u, v, w)| ≤ MK , for all
t, s ∈ [a, b], u, v, w ∈ J ;

(iv) there exists LK > 0 such that
|K(t, s, u1, u2, u3)−K(t, s, v1, v2, v3)| ≤ LK (|u1 − v1|+ |u2 − v2|+ |u3 − v3|),
for all t, s ∈ [a, b], ui, vi ∈ J , i = 1, 2, 3;

(v) 3LK(b− a) < 1.

Then the integral equation (1) has a unique solution x∗ ∈ B(f ; r) ⊂ C ([a, b] ,B).

Now, for the integral equation (1), suppose that the conditions of Theorem 10 are satisfied
and then, it results that this integral equation has a unique solution x∗ ∈ B(f ; r) ⊂
C ([a, b] ,B).

Also, for the perturbed integral equation (4’) suppose that the following conditions are
satisfied:

(d
′

1) H ∈ C([a, b]× [a, b]× J3,B), J ⊂ B is a compact subset;

(d
′

2) MH(b − a) ≤ r, where MH > 0, such that, |H(t, s, u, v, w)| ≤ MH , for all
t, s ∈ [a, b], u, v, w ∈ J ⊂ B compact subset.

Then by the Theorem 9 it results that the perturbed integral equation (4’) has at least
one solution y∗ ∈ B(h; r) ⊂ C ([a, b] ,B).

Now, using the General Data Dependence Theorem it was obtained the following result
of continuous data dependence of the solution of integral equation (1).
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Theorem 11. (Dobriţoiu M., [12]). Suppose that the conditions of Theorem 10 are
fullfiled, and denote with x∗ ∈ B(f ; r) ⊂ C ([a, b] ,B) the unique solution of the inte-

gral equation (1). Moreover, suppose that the conditions (d
′

1) and (d
′

2) are satisfied. In
addition, suppose that

(i) there exists η > 0 such that
|K(t, s, u, v, w)−H(t, s, u, v, w)| ≤ η, for all t, s ∈ [a, b], u, v, w ∈ J ⊂ B

compact subset.

Under these conditions, if y∗ ∈ B(f ; r) ⊂ C ([a, b] ,B) is a solution of the perturbed
integral equation (4’), then we have:

‖x∗ − y∗‖ (C[a,b],B) ≤
η(b− a)

1− 3LK(b− a)
. (6)

3.2. Data dependence of the solution of integral equations system (1’).
In the particular case B = Rm, we have the system of nonlinear integral equations

x(t) =

∫ b

a

K(t, s, x(s), x(a), x(b))ds+ f(t), t ∈ [a, b] (1’)

where t ∈ [a, b], K : [a, b] × [a, b] × Rm × Rm × Rm −→ Rm and f : [a, b] −→ Rm, that
have the form:

x1(t) =
∫ b
a
K1(t, s, x(s), x(a), x(b))ds+ f1(t)

x2(t) =
∫ b
a
K2(t, s, x(s), x(a), x(b))ds+ f2(t)

· · · · · · · · · · · · · · ·
xm(t) =

∫ b
a
Km(t, s, x(s), x(a), x(b))ds+ fm(t)

, t ∈ [a, b] (1”)

and we consider the perturbed system of integral equations

y(t) =

∫ b

a

K(t, s, y(s), y(a), y(b))ds+ h(t), t ∈ [a, b], (7)

where H ∈ C([a, b] × [a, b] × Rm × Rm × Rm,Rm) and h ∈ C([a, b],Rm), that have the
form: 

y1(t) =
∫ b
a
K1(t, s, y(s), y(a), y(b))ds+ h1(t)

y2(t) =
∫ b
a
K2(t, s, y(s), y(a), y(b))ds+ h2(t)

· · · · · · · · · · · · · · ·
ym(t) =

∫ b
a
Km(t, s, y(s), y(a), y(b))ds+ hm(t)

, t ∈ [a, b]. (7’)

In order to obtain a result of continuous data dependence of the solution of integral
equations system (1’) it was used the following result (see [13], [16], [23] and [27]).

Theorem 12. (Dobriţoiu M., [14]) We suppose that:

(i) K ∈ C([a, b]× [a, b]× Rm × Rm × Rm,Rm);
(ii) f ∈ C([a, b],Rm);

(iii) there exists a matrix Q ∈Mmm(R+) such that |K1(t, s, u1, u2, u3)−K1(t, s, v1, v2, v3)|
· · · · · · · · · · · · · · ·

|Km(t, s, u1, u2, u3)−Km(t, s, v1, v2, v3)|

 ≤
≤ Q

 |u11 − v11|+ |u21 − v21|+ |u31 − v31|
· · · · · · · · · · · · · · ·

|u1m − v1m|+ |u2m − v2m|+ |u3m − v3m|


for all t, s ∈ [a, b], ui, vi ∈ Rm, i = 1, 2, 3;



AN INTEGRAL EQUATION FROM PHYSICS - A SYNTHESIS SURVEY - PART II 123

(iv) [3(b− a)Q]
n → 0 as n→∞.

Then the system of integral equations (1’) has a unique solution x∗ ∈ C([a, b],Rm).
This solution can be obtained by the successive approximations method, starting at any
element x0 ∈ C([a, b],Rm). Moreover, if xn is the nth successive approximation, then we
have the following estimate:

‖x∗ − xn‖Rm ≤ [3(b− a)Q]
n · [I − 3(b− a)Q]

−1 ‖x0 − x1‖Rm . (8)

Now, for the system of integral equations (1’), we suppose that the conditions of
Theorem 12 are satisfied and then, it results that this system has a unique solution
x∗ ∈ C([a, b],Rm).

We have the following data dependence theorem:

Theorem 13. (Dobriţoiu M., [14]) We suppose that:

(i) the conditions of the Theorem 12 are satisfied and we denote by x∗ the unique
solution of the system of integral equations (6) in the Banach space C([a, b],Rm);

(ii) there exists T 1, T 2 ∈Mm1(R+) such that
‖K(t, s, u1, u2, u3)−H(t, s, u1, u2, u3)‖C ≤ T1, for all t, s ∈ [a, b], ui ∈ Rm,

i = 1, 2, 3,
and
‖f(t)− h(t)‖C ≤ T2, for all t ∈ [a, b] .

Under these conditions, if y∗ ∈ C([a, b],Rm) is a solution of the perturbed system of
integral equations (6), then the following estimate is true:

‖x∗ − y∗‖C ≤ [I − 3 (b− a)Q]
−1

[(b− a)T1 + T2] . (9)

4. The differentiability of the solution

In this section we will prove two theorems of differentiability of the solution of the
integral equation (1).

4.1. The differentiability of the solution with respect to a and b.
We consider the integral equation with modified argument (1)

x(t) =

∫ b

a

K(t, s, x(s), x(a), x(b))ds+ f(t),

where t ∈ [α, β], α, β ∈ R, α ≤ β, a, b ∈ [α, β] and K ∈ C([α, β] × [α, β] × Rm × Rm ×
Rm,Rm), f ∈ C([α, β],Rm) and x ∈ C([α, β],Rm). We have:

Theorem 14. Suppose that there exists a matrix Q ∈Mm×m(R+) such that:

(i) [3(β − α)Q]
n → 0 as n→∞;

(ii)

 |K1(t, s, u1, u2, u3)−K1(t, s, v1, v2, v3)|
. . .

|Km(t, s, u1, u2, u3)−Km(t, s, v1, v2, v3)|

 ≤
≤ Q

 |u11 − v11|+ |u21 − v21|+ |u31 − v31|
. . .

|u1m − v1m|+ |u2m − v2m|+ |u3m − v3m|

,

for all t, s ∈ [α, β], ui, vi ∈ Rm, i = 1, 3.

Then

(a) the integral equation (1) has a unique solution, x∗( ., a, b) ∈ C([α, β],Rm);



124 MARIA DOBRIT, OIU

(b) for all x0 ∈ C([α, β],Rm), the sequence (xn)n∈N , defined by the relation:

xn+1(t; a, b) :=

∫ b

a

K(t, s, xn(s; a, b), xn(a; a, b), xn(b; a, b))ds+ f(t),

converges uniformly to x∗, for all t, a, b ∈ [α, β] and ‖xn1 − x∗1‖C
. . .

‖xnm − x∗m‖C

 ≤ [Im − 3 (β − α)Q]
−1

[3 (β − α)Q]
n


∥∥x11 − x01∥∥C
. . .∥∥x1m − x0m∥∥C

 ;

(c) the function x∗ : [α, β]× [α, β]× [α, β] −→ Rm, (t, a, b) 7→ x∗(t; a, b) is continuous;
(d) if K(t, s, ., ., .) ∈ C1(Rm × Rm × Rm,Rm) for all t, s ∈ [α, β], then

x∗(t; ., .) ∈ C1([α, β]× [α, β],Rm) for all t ∈ [α, β]..

Proof. Denote X := C([α, β]3,Rm). We consider on X the generalized norm defined by
the relation (3).

Also, we consider the operator B : X −→ X defined by the relation:

B(x)(t; a, b) : =

∫ b

a

K(t, s, x(s; a, b), x(a; a, b), x(b; a, b))ds, (10)

for all t, a, b ∈ [α, β].
Using the conditions (i), (ii) and applying the Perov’s theorem 4, it results that the

conclusions (a), (b) and (c) are fulfilled.

(d) We prove that there exists ∂x∗

∂a , ∂x∗

∂b ∈ X .

If we assume that there exists ∂x∗

∂a , then from (1) it results that:

∂x∗(t; a, b)

∂a
= −K(t, a, x∗(a; a, b), x∗(a; a, b), x∗(b; a, b))+

+

∫ b

a

[(
∂Kj(t, s, x

∗(s; a, b), x∗(a; a, b), x∗(b; a, b))

∂x∗i (s; a, b)

)
·
(
∂x∗(s; a, b)

∂a

)
+

+

(
∂Kj(t, s, x

∗(s; a, b), x∗(a; a, b), x∗(b; a, b))

∂x∗i (a; a, b)

)
·
(
∂x∗(a; a, b)

∂a

)
+

+

(
∂Kj(t, s, x

∗(s; a, b), x∗(a; a, b), x∗(b; a, b))

∂x∗i (b; a, b)

)
·
(
∂x∗(b; a, b)

∂a

)]
ds.

This relation leads us to consider the operator C : X×X −→ X defined by the relation:

C(x, y)(t; a, b) := −K(t, a, x(a; a, b), x(a; a, b), x(b; a, b))+

+

∫ b

a

[(
∂Kj(t, s, x(s; a, b), x(a; a, b), x(b; a, b))

∂xi(s; a, b)

)
· y (s; a, b) +

+

(
∂Kj(t, s, x(s; a, b), x(a; a, b), x(b; a, b))

∂xi(a; a, b)

)
· y (a; a, b) +

+

(
∂Kj(t, s, x(s; a, b), x(a; a, b), x(b; a, b))

∂xi(b; a, b)

)
· y (b; a, b)

]
ds. (11)

Using the condition (ii) we obtain:(∣∣∣∣∂Kj(t, s, u1, u2, u3)

∂u1i

∣∣∣∣)m
i,j=1

≤ Q, (12)

(∣∣∣∣∂Kj(t, s, u1, u2, u3)

∂u2i

∣∣∣∣)m
i,j=1

≤ Q, (13)
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∂u3i

∣∣∣∣)m
i,j=1

≤ Q, (14)

for all t, s ∈ [α, β], u1, u2, u3 ∈ Rm.
Using (11), (12), (13) and (14) it results that:

‖C(x, y1)− C(x, y2)‖ ≤ 3(β − α)Q · ‖y1 − y2‖
for all x, y1, y2 ∈ X .

Now, if we consider the operator A : X × X −→ X × X, A = (B,C) then we observe
that the conditions of the Fiber Generalized Contractions Theorem 5, are fulfilled and
therefore it results that A is a PO and the sequence

(
xn+1(t; a, b), yn+1(t; a, b)

)
, defined

by the relations:

xn+1(t; a, b) :=

∫ b

a

K(t, s, xn(s; a, b), xn(a; a, b), xn(b; a, b))ds+ f(t),

yn+1(t; a, b) := −K(t, a, xn(s; a, b), xn(a; a, b), xn(b; a, b))+

+

∫ b

a

[(
∂Kj(t, s, x

n(s; a, b), xn(a; a, b), xn(b; a, b))

∂u1i

)
· yn (s; a, b) +

+

(
∂Kj(t, s, x

n(s; a, b), xn(a; a, b), xn(b; a, b))

∂u2i

)
· yn (a; a, b) +

+

(
∂Kj(t, s, x

n(s; a, b), xn(a; a, b), xn(b; a, b))

∂u3i

)
· yn (b; a, b)

]
ds

converges uniformly (with respect to t, a, b ∈ [α, β]) to (x∗, y∗) ∈ FA, for all (x0, y0) ∈
X ×X.

If we take x0 = y0 = 0, then y1 = ∂x1

∂a and we prove through induction that yn = ∂xn

∂a .
Thus, we have:

xn
uniformly−→ x∗ as n→∞,

∂xn

∂a

uniformly−→ y∗ as n→∞,

and it results that there exists ∂x∗

∂a (i.e. x∗ is differentiable with respect to a) and ∂x∗

∂a = y∗.

By an analogous reasoning we prove that there exists ∂x∗

∂b . �

4.2. The differentiability of the solution with respect to a parameter.
In what follows we apply the Fiber Generalized Contractions Theorem 5, to study the

differentiability with respect to a parameter of the solution of the integral equation (1):

x(t) =

∫ b

a

K(t, s, x(s), x(a), x(b);λ)ds+ f(t), t ∈ [a, b]

where K ∈ C([a, b] × [a, b] × Rm × Rm × Rm × J,Rm), J ⊂ R is a compact interval,
f ∈ C([a, b],Rm) and x ∈ C([a, b],Rm).

The following theorem of differentiability of the solution is true.

Theorem 15. Suppose that there exists a matrix Q ∈Mm×m(R+) such that:

(i) [3(b− a)Q]n −→ 0 as n→∞;

(ii)

 |K1(t, s, u1, u2, u3)−K1(t, s, v1, v2, v3)|
. . .

|Km(t, s, u1, u2, u3)−Km(t, s, v1, v2, v3)|

 ≤
≤ Q

 |u11 − v11|+ |u21 − v21|+ |u31 − v31|
. . .

|u1m − v1m|+ |u2m − v2m|+ |u3m − v3m|

,
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for all t, s ∈ [a, b], ui, vi ∈ Rm, i = 1, 3.

Then

(a) for all λ ∈ J , the integral equation (1) has a unique solution, x∗( ., λ) ∈ C([a, b],Rm);
(b) for all x0 ∈ C([a, b]× J,Rm), the sequence (xn)n∈N, defined by the relation:

xn+1(t;λ) :=

∫ b

a

K(t, s, xn(s;λ), xn(a;λ), xn(b;λ))ds+ f(t),

converges uniformly to x∗, for all t ∈ [a, b], λ ∈ J and ‖xn1 − x∗1‖C
. . .

‖xnm − x∗m‖C

 ≤ [Im − 3 (b− a)Q]
−1

[3 (b− a)Q]
n


∥∥x11 − x01∥∥C
. . .∥∥x1m − x0m∥∥C

;

(c) the function x∗ : [a, b]× J −→ Rm, (t;λ) 7→ x∗(t;λ) is continuous ;
(d) if K(t, s, ., ., ., .) ∈ C1(Rm ×Rm ×Rm × J,Rm) for all t, s ∈ [a, b], then x∗(t; .) ∈

C1(J,Rm) for all t ∈ [a, b].

Proof. Denote X := C([a, b] × J,Rm). We consider the generalized norm on X, defined
by the relation (3).

Also, we consider the operator B : X −→ X defined by the relation:

B(x)(t;λ) :=

∫ b

a

K(t, s, x(s;λ), x(a;λ), x(b;λ))ds+ f(t), (15)

for all t ∈ [a, b], λ ∈ J .
From conditions (i), (ii) and applying the Perov’s Theorem 4, it results that the

conclusions (a), (b) and (c) are fulfilled.

(d) We prove that there exists ∂x∗

∂λ and ∂x∗

∂λ ∈ X .

We assume that there exists ∂x∗

∂λ . Then using (1) we obtain:

∂x∗(t;λ)

∂λ
=

∫ b

a

[(
∂Kj(t, s, x

∗(s;λ), x∗(a;λ), x∗(b;λ);λ)

∂x∗i (s;λ)

)m
i,j=1

·
(
∂x∗(s;λ)

∂λ

)
+

+

(
∂Kj(t, s, x

∗(s;λ), x∗(a;λ), x∗(b;λ);λ)

∂x∗i (a;λ)

)m
i,j=1

·
(
∂x∗(a;λ)

∂λ

)
+

+

(
∂Kj(t, s, x

∗(s;λ), x∗(a;λ), x∗(b;λ);λ)

∂x∗i (b;λ)

)m
i,j=1

·
(
∂x∗(b;λ)

∂λ

)
+

+

(
∂Kj(t, s, x

∗(s;λ), x∗(a;λ), x∗(b;λ);λ)

∂λ

)m
i=1

]
ds. (16)

This relation leads us to consider the operator C : X×X −→ X defined by the relation:

C(x, y)(t, λ) :=

∫ b

a

[(
∂Kj(t, s, x(s;λ), x(a;λ), x(b;λ);λ)

∂xi(s;λ)

)m
i,j=1

· y(s;λ) +

+

(
∂Kj(t, s, x(s;λ), x(a;λ), x(b;λ);λ)

∂xi(a;λ)

)m
i,j=1

· y(a, λ) +

+

(
∂Kj(t, s, x(s;λ), x(a;λ), x(b;λ);λ)

∂xi(b;λ)

)m
i,j=1

· y(b;λ)+

+

(
∂Kj(t, s, x(s;λ), x(a;λ), x(b;λ);λ)

∂λ

)m
j=1

]
ds, (17)

for all x, y ∈ X.
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From condition (ii) we obtain:(∣∣∣∣∂Kj(t, s, u1, u2, u3)

∂u1i

∣∣∣∣)m
i,j=1

≤ Q, (18)

(∣∣∣∣∂Kj(t, s, u1, u2, u3)

∂u2i

∣∣∣∣)m
i,j=1

≤ Q, (19)(∣∣∣∣∂Kj(t, s, u1, u2, u3)

∂u3i

∣∣∣∣)m
i,j=1

≤ Q, (20)

for all t, s ∈ [a, b], u1, u2, u3 ∈ Rm .
From (17), (18), (19) and (20) it results that

‖C(x, y1)− C(x, y2)‖ ≤ 3(b− a)Q · ‖ y1 − y2‖ ,
for all x, y1, y2 ∈ X.

Now, if we consider the operator A : X × X −→ X × X, A = (B,C), A(x, y) =
(B(x), C(x, y)), then we observe that the conditions of the Fiber Generalized Contrac-
tions Theorem 5 are fulfilled and therefore it results that A is a PO and the sequences:

xn+1(t, λ) := B(xn(t, λ))

yn+1(t, λ) := C(xn(t, λ), yn(t, λ)),

converge uniformly (with respect to t ∈ [a, b] and λ ∈ J) to (x∗, y∗) ∈ FA, for all
(x0, y0) ∈ X ×X.

If we take x0 ∈ X, y0 ∈ X, such that y0 = ∂x0

∂λ , then we prove by induction that

yn = ∂xn

∂λ . Thus, we have:

xn
uniformly−→ x∗ as n→∞,

∂xn

∂λ

uniformly−→ y∗ as n→∞.

Using the Weierstrass’s Theorem it results that there exists ∂x∗

∂λ (x∗ is differentiable

with respect to λ) and ∂x∗

∂λ = y∗. �

5. Examples

Example 5.1. We consider the integral equation with modified argument:

x(t) =

∫ 1

0

[
sin(x(s))

7
+
x(0) + x(1)

5

]
ds+ 2 cos t+ 1, t ∈ [0, 1] (21)

where K ∈ C([0, 1]× [0, 1]× R3), K(t, s, u1, u2, u3) = sin(u1)
7 + u2+u3

5 ,
f ∈ C[0, 1], f(t) = 2cost+ 1, x ∈ C[0, 1] and the perturbed integral equation:

y(t) =

∫ 1

0

[
sin(y(s))

7
+
y(0) + y(1)

5
− t− 2

]
ds+ cos t, t ∈ [0, 1] (22)

where H ∈ C([0, 1]× [0, 1]× R3), H(t, s, v1, v2, v3) = sin(v1)
7 + v2+ v3

5 − t− 2,
h ∈ C[0, 1], h(t) = cost, and y ∈ C[0, 1].
The operator A : C[0, 1] −→ C[0, 1], attached to equation (21 and defined by the

relation:

A(x)(t) =

∫ 1

0

[
sin(x(s))

7
+
x(0) + x(1)

5

]
ds+ 2 cos t+ 1, t ∈ [0, 1] (23)

is an α-contraction with the coefficient α = 19
35 .
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Since the conditions of theorem 10 (Dobritoiu M., [16]), of existence and uniqueness
of the solution in the space C[0, 1] are fulfilled, it results that the integral equation (21)
has a unique solution x∗ ∈ C[0, 1].

We have:
|K(t, s, u1, u2, u3)−H(t, s, u1, u2, u3) | = | t+ 2 | ≤ 3, for all t, s ∈ [0, 1]

and
| f(t)− h(t) | = | cos t+ 1 | ≤ 2, for all t ∈ [0, 1].
The conditions of theorem 8 are fulfilled and therefore, if y∗ ∈ C[0, 1] is a solution of

the integral equation (22), then the following estimate is true:

‖x∗ − y∗‖C[0,1] ≤
175

16
.

Example 5.2. In what follows we consider the system of integral equations:{
x1(t) =

∫ 1

0

[
t+2
15 x1(s) + t

5x1(0) + t
5x1(1)

]
ds+ 2t+ 1

x2(t) =
∫ 1

0

[
t+2
21 x2(s) + t

7x2(0) + t
7x2(1)

]
ds+ sin t

, t ∈ [0, 1], (24)

where K ∈ C([0, 1]× [0, 1]× R2 × R2 × R2,R2),
K(t, s, u1, u2, u3) = (K1(t, s, u1, u2, u3) , K2(t, s, u1, u2, u3)),
K1(t, s, u1, u2, u3) = t+2

15 u11 + 1
5u21 + 1

5u31,

K2(t, s, u1, u2, u3) = t+2
21 u12 + 1

7u22 + 1
7u32,

f ∈ C([0, 1],R2), f(t) = (f1(t), f2(t)), f1(t) = 2t+ 1, f2(t) = sin t, x ∈ C([0, 1],R2),
and the perturbed system of integral equations:{

y1(t) =
∫ 1

0

[
s+3
15 y1(s) + 1

5y1(0) + 1
5y1(1)− 3

]
ds+ 2t− 1

y2(t) =
∫ 1

0

[
s+3
21 y2(s) + 1

7y2(0) + 1
7y2(1)− 1

]
ds+ cos t

, t ∈ [0, 1] (25)

where H ∈ C([0, 1]× [0, 1]× R2 × R2 × R2,R2),
H(t, s, v1, v2, v3) = (H1(t, s, v1, v2, v3) , H2(t, s, v1, v2, v3)),
H1(t, s, v1, v2, v3) = s+3

15 v11 + 1
5v21 + 1

5v31 − 3,

H2(t, s, v1, v2, v3) = s+3
21 v12 + 1

7v22 + 1
7v32 − 1,

h ∈ C([0, 1],R2), h(t) = (h1(t), h2(t)), h1(t) = 2t−1, h2(t) = cos t and x ∈ C([0, 1],R2).
The operator A : C([0, 1],R2) −→ C([0, 1],R2), A(x)(t) = (A1(x)(t), A2(x)(t)), at-

tached to system (24) and defined by the relation:

A1(x)(t) =
∫ 1

0

[
t+2
15 x1(s) + t

5x1(0) + t
5x1(1)

]
ds+ 2t+ 1

A2(x)(t) =
∫ 1

0

[
t+2
21 x2(s) + t

7x2(0) + t
7x2(1)

]
ds+ sin t

, t ∈ [0, 1], (26)

satisfies a generalized Lipschitz condition with the matrix Q =

(
1/5 0
0 1/7

)
and ac-

cording to theorem 2, it results that the matrix 3(1− 0)Q =

(
3/5 0
0 3/7

)
converges to

zero. So, the operator A is a contraction with the matrix

(
3/5 0
0 3/7

)
.

The conditions of theorem 12 (Dobritoiu M., [14]) of existence and uniqueness of the
solution of a system of integral equations, being satisfied, it results that the system of
integral equations (24) has a unique solution x∗ ∈ C([0, 1],R2) and the following estimates
are true:

‖K(t, s, u1, u2, u3)−H(t, s, u1, u2, u3)) ‖R2 ≤
(

3
1

)
,
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for all t, s ∈ [0, 1] and

‖f(t)− h(t)‖R2 ≤
(

2
2

)
, for all t ∈ [0, 1].

Under these conditions, if y∗ ∈ C([0, 1],R2) is a solution of the system of integral
equations (24), then according to theorem 13 (Dobritoiu M., [14]), the following estimate
is true:

‖x∗ − y∗‖R2 ≤
(

25/2
21/4

)
.

Example 5.3. We consider the system of integral equations:{
x1(t) =

∫ b
a

[
1
10 (t+ s)x1(s) + 2t+1

15 x1(a) + t+2
15 x1(b)

]
ds + 1− cos t

x2(t) =
∫ b
a

[
1
2x1(s) + 2t+s

24 x2(s) + 2t+1
24 x2(a) + t+2

24 x2(b)
]
ds + sin t

(27)

where t, a, b ∈ [0, 1], K ∈ C([0, 1]× [0, 1]× R2 × R2 × R2,R2),
K(t, s, u1, u2, u3) = (K1(t, s, u1, u2, u3) , K2(t, s, u1, u2, u3)),
K1(t, s, u1, u2, u3) = 1

10 (t+ s)u11 + 2t+1
15 u21 + t+2

15 u31,

K2(t, s, u1, u2, u3, u4) = 1
2u11 + 2t+s

24 u12 + 2t+1
24 u22 + t+2

24 u32,

f ∈ C([0, 1],R2), f(t) = (f1(t), f2(t)), f1(t) = 1− cos t, f2(t) = sin t, x ∈ C([0, 1],R2),
and applying the theorem 14 it was studied the differentiability of the solution of this
system with respect to a and b.

From the condition (ii) of the theorem 14, we have:(
|K1(t, s, u1, u2, u3)−K1(t, s, v1, v2, v3)|
|K2(t, s, u1, u2, u3)−K2(t, s, v1, v2, v3)|

)
≤

≤
(

1/5 0
1/2 1/8

)(
|u11 − v11 |+ |u21 − v21 |+ |u31 − v31 |
|u12 − v12 |+ |u22 − v22 |+ |u32 − v32 |

)
, t, s ∈ [0, 1].

According to theorem 2, it results that the matrix 3(b− a)Q = (b− a)

(
3/5 0
3/2 3/8

)
,

0 < b− a < 1, Q ∈M2×2(R+) converges to zero.
Hence, the conditions of theorem 14 being satisfied, it results that:

- the system of integral equations (27) has a unique solution x∗(., a, b) in the space
C([0, 1],R2);

- for all x0 ∈ C([0, 1],R2), the sequence (xn)n∈N, defined by the relation:

xn+1(t; a, b) :=
∫ b
a
K(t, s, xn(s; a, b), xn(a; a, b), xn(b; a, b))ds+ f(t)

converges uniformly to x∗, for all t, a, b ∈ [0, 1] and(
‖xn1 − x∗1‖C
‖xn2 − x∗2‖C

)
≤
(

5/2 0
6 8/5

)
·
(

3/5 0
3/2 3/8

)n
·
( ∥∥x11 − x01∥∥C∥∥x12 − x02∥∥C

)
;

- the function x∗ : [0, 1]× [0, 1]× [0, 1] −→ R2), (t; a, b) 7→ x∗(t; a, b) is continuous;
- if K(t, s, ., ., ., .) ∈ C1(R2 × R2 × R2,R2) for all t, s ∈ [0, 1], then x∗(t; ., .) ∈
C1([0, 1]× [0, 1],R2) for all t ∈ [0, 1].
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