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ON SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS DEFINED

BY GENERALIZED SALAGEAN OPERATOR AND RUSCHEWEYH

OPERATOR

MOHAMMAD AL-KASEASBEH AND MASLINA DARUS

Abstract. A subclass of complex-valued harmonic univalent function defined by

generalized Salagean operator and Ruscheweyh operator is introduced. Coefficient
bounds, distortion theorem, and other properties of this class are obtained.

1. Introduction and Definitions

In any complex domain G a continuous function f = u+ iv is said to be harmonic in
G if both u and v are real harmonic in G. A harmonic complex-valued function might
be expressed in terms of analytic functions, h and g, in simply connected domain D ⊂ G
as f = h + g. We call h the analytic part and g the co-analytic part of f . A necessary
and sufficient condition for f to be locally univalent and sense preserving in D is that
|h′(z)| ≥ |g′(z)| in D (see[3]).

Denote by H the family of functions f = h+ g, that are harmonic univalent and sense
preserving in the unit disc U = {z : |z| < 1} for which f(0) = fz(0) − 1 = 0. Thus for
f = h+ g in H we may express the analytic functions h and g as

h(z) = z +

∞∑
k=2

akz
k, g(z) =

∞∑
k=1

bkz
k, 0 ≤ b1 < 1. (1)

Note that the family of harmonic univalent functions H, reduces to the class of analytic
univalent functions S, which can be written in the form

f(z) = z +

∞∑
k=2

akz
k (2)

if the co-analytic part of f = h+ g is identically zero that is g ≡ 0.
Also denote by T (see [7]), the subclass of H consisting of all functions f = h+g where

f and g are given by

h(z) = z −
∞∑
k=2

|ak|zk, g(z) = −
∞∑
k=1

|bk|zk, 0 ≤ b1 < 1. (3)

Definition 1 ([2]). Let f(z) be given by (2), λ ≥ 0, and n ∈ N0. Then the differential
operator Dn

λ is defined by

Dn
λ = z +

∞∑
k=2

[1 + λ(k − 1)]
n
akz

k. (z ∈ U)
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Definition 2 ([4]). Let f(z) be given by (2), β ≥ 0, and n, α ∈ N0. Then the operator
Rnα,β is defined by

Rnα,βf(z) = z +

∞∑
k=2

[1 + β(k − 1)]nC(α, k)akz
k, (z ∈ U)

where C(α, k) =
(
k+α−1
α

)
.

Next definition provides a linear combination between Dn
λ and Rnα,β which was intro-

duced in [1].

Definition 3 ([1]). Let f(z) be given by (2), λ, β, γ ≥ 0, and n, α ∈ N0. Then the operator
Dn
λ,α,β,γ is defined by

Dn
λ,α,β,γf(z) = (1− γ)Rnα,βf(z) + γDn

λf(z). (4)

In 2002, Jahangiri et al. [5] introduced the modified Salagean operator of harmonic uni-
valent function. In 2003,Murugusundaramoorthy [6] introduced the modified Ruscheweyh
of harmonic univalent function. In the next definition we will modify the operator in Def-
inition 3 to harmonic univalent function.

Definition 4. Let f = h + g be given by (1), λ, β, γ ≥ 0, and n, α ∈ N0. We define the
following differential operator

D̃n
λ,α,β,γf(z) = Dn

λ,α,β,γh(z) +Dn
λ,α,β,γg(z),

where Dn
λ,α,β,γf(z) given by(4).

We let DH(n, λ, α, β, γ, µ) denote the family of harmonic functions f = h+g for which

<
{(

D̃n
λ,α,β,γf(z)

)′}
> µ, (z ∈ U)

We further denote by DT (n, λ, α, β, γ, µ), the subclass of DH(n, λ, α, β, γ, µ), where

DT (n, λ, α, β, γ, µ) = T ∩ DH(n, λ, α, β, γ, µ).

2. Coefficient Bounds

In this section, coefficient bound of the classesDH(n, λ, α, β, γ, µ) andDT (n, λ, α, β, γ, µ)
are given.

Theorem 1. Let f = h+ g given by (1), 0 ≤ µ < 1, n, α ∈ N0, a1 = 1, λ, β, γ ≥ 0. If
∞∑
k=2

ψ(n, k, λ, α β, γ)

1− µ
|ak|+

ψ(n, k, λ, α β, γ)

1− µ
|bk| ≤ 2, (5)

where

ψ(n, k, λ, α β, γ) = k (γ[1 + λ(k − 1)]
n

+ (1− γ)[1 + β(k − 1)]
n
)C(α, k). (6)

Then f is sense preserving, harmonic univalent in U and f ∈ DH(n, λ, α, β, γ, µ).

Proof. Note first that

|h′(z)| ≥ 1−
∞∑
k=2

ψ(n, k, λ, α β, γ)|ak||z|k−1

>

∞∑
k=2

ψ(n, k, λ, α β, γ)|bk||z|k−1

≥ |g′(z)|,
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so that f is locally univalent and sense preserving.
To show that f is univalent in U , we consider that (5) holds. If g(z) vanish, then f

is analytic. And then, the univalence of f comes from its close-to-convexity. If g(z) 6= 0
and z1, z2 are any distant points in U, then∣∣∣∣f(z1)− f(z2)

h(z1)− h(z2)

∣∣∣∣ ≥ 1−
∣∣∣∣ g(z1)− g(z2)

h(z1)− h(z2)

∣∣∣∣
= 1−

∣∣∣∣∣
∞∑
k=2

bk(zk1 − zk2 )

(z1 − z2) +
∑∞
k=2 ak(zk1 − zk2 )

∣∣∣∣∣
> 1−

∑∞
k=2 k|bk|

1−
∑∞
k=2 k|ak|

≥ 1−
∑∞
k=2

ψ(n,k,λ,α β,γ)
1−µ |bk|

1−
∑∞
k=2

ψ(n,k,λ,α β,γ)
1−µ |ak|

≥ 0.

Therefore, f is univalent.
Using the fact that <w ≥ µ if and only if |1 − µ + w| ≥ |1 + µ − w|, it is suffices to

show that ∣∣∣∣1− µ+
(
D̃n
λ,α,β,γf(z)

)′∣∣∣∣− ∣∣∣∣1− µ+
(
D̃n
λ,α,β,γf(z)

)′∣∣∣∣ ≥ 0. (7)

Substituting for
(
D̃n
λ,α,β,γf(z)

)′
in (7) yields∣∣∣∣1− µ+

(
D̃n
λ,α,β,γf(z)

)′∣∣∣∣− ∣∣∣∣1− µ+
(
D̃n
λ,α,β,γf(z)

)′∣∣∣∣
≥ 2(1− µ)− 2

∞∑
k=2

ψ(n, k, λ, α β, γ)|ak||z|k−1 − 2

∞∑
k=2

ψ(n, k, λ, α β, γ)|bk||z|k−1

= 2(1− µ)

{
1−

∞∑
k=2

ψ(n, k, λ, α β, γ)

1− µ
|ak| −

∞∑
k=2

ψ(n, k, λ, α β, γ)

1− µ
|bk|

}

> 2(1− µ)

{
1−

( ∞∑
k=2

ψ(n, k, λ, α β, γ)

1− µ
|ak|+

∞∑
k=2

ψ(n, k, λ, α β, γ)

1− µ
|bk|

)}
This last expression is non-negative by (5), and so f ∈ DH(n, λ, α, β, γ, µ). �

Theorem 2. Let f = h+ g be given by (3). Then f ∈ DT (n, λ, α, β, γ, µ) in and only if

∞∑
k=2

ψ(n, k, λ, α β, γ)

1− µ
|ak|+

ψ(n, k, λ, α β, γ)

1− µ
|bk| ≤ 2. (8)

Proof. Since DT (n, λ, α, β, γ, µ) ⊂ DH(n, λ, α, β, γ, µ), we only need to prove the ”only
if” part of the theorem. To do so, assume that f ∈ DT (n, λ, α, β, γ, µ). Then by (8) we
have

<{
(
D̃n
λ,α,β,γf(z)

)′
} = <{

(
D̃n
λ,α,β,γh(z)

)′
+
(
D̃n
λ,α,β,γg(z)

)′
}

= <

{
1−

∞∑
k=2

ψ(n, k, λ, α β, γ)|ak|zk−1k −
∞∑
k=1

ψ(n, k, λ, α β, γ)|bk|zkk−1
}
> µ.
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If we choose z to be real and let z → 1−, we get

1−
∞∑
k=2

ψ(n, k, λ, α β, γ)|ak| −
∞∑
k=1

ψ(n, k, λ, α β, γ)|bk| > µ.

Which is precisely the assertion of Theorem 2. �

3. Distortion Theorem and Extreme Points

In this section, distortion theorem and extreme points of the class DT (n, λ, α, β, γ, µ)
are obtained.

Theorem 3. If f ∈ DT (n, λ, α, β, γ, µ), 0 ≤ µ < 1, n, α ∈ N0, a1 = 1, λ, β, γ ≥ 0, and
|z| = r < 1, then

|f(z)| ≤ (1 + |b1|)r +

(
1− µ

ψ(n, 2, λ, α β, γ)
− ψ(n, 1, λ, α β, γ)

ψ(n, 2, λ, α β, γ)
|b1|
)
r2

and

|f(z)| ≤ (1− |b1|)r −
(

1− µ
ψ(n, 2, λ, α β, γ)

− ψ(n, 1, λ, α β, γ)

ψ(n, 2, λ, α β, γ)
|b1|
)
r2,

where ψ(n, 1, λ, α β, γ) given by (6).

Proof. We will only prove the right hand inequality. The argument for the left hand
inequality is similar. Let f ∈ DT (n, λ, α, β, γ, µ) take the absolute value of f, we obtain

|f(z)| ≤ (1 + |b1|)r +

∞∑
k=2

(|ak|+ |bk|) rk

≤ (1 + |b1|)r +

∞∑
k=2

(|ak|+ |bk|) r2

That is,

|f(z)| ≤ (1 + |b1|)r +
1− µ

ψ(n, 2, λ, α β, γ)

( ∞∑
k=2

ψ(n, 2, λ, α β, γ)

1− µ
|ak|+

ψ(n, 2, λ, α β, γ)

1− µ
|bk|

)
r2

≤ (1 + |b1|)r +
1− µ

ψ(n, 2, λ, α β, γ)

(
1− ψ(n, 1, λ, α β, γ)

1− µ
|b1|
)
r2

≤ (1 + |b1|)r +
1− µ

ψ(n, 2, λ, α β, γ)

(
1− µ

ψ(n, 2, λ, α β, γ)
− ψ(n, 1, λ, α β, γ)

ψ(n, 2, λ, α β, γ)
|b1|
)
r2.

�

Corollary 1. Let f be of the form (3) so that f ∈ DT (n, λ, α, β, γ, µ). Then

{w : |w| < ψ(n, 2, λ, α β, γ) + µ− 1

ψ(n, 2, λ, α β, γ)
− ψ(n, 2, λ, α β, γ)− ψ(n, 1, λ, α β, γ)

ψ(n, 2, λ, α β, γ)
|b1|}

⊂ f(U).

Theorem 4. Let f = h+ g be given by(3). Then f ∈ DT (n, λ, α, β, γ, µ) if and only if

f(z) =

∞∑
k=1

(δkhk(z) + σkgk(z))
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where

h1(z) = z

hk(z) = z − 1− µ
ψ(n, 2, λ, α β, γ)

zk, (k = 2, 3, ...),

gk(z) = z − 1− µ
ψ(n, 2, λ, α β, γ)

zk, (k = 1, 2, ...),

∞∑
k=1

δk + σk = 1,

δk ≥ 0, σk ≥ 0. In particular, the extreme points of DT (n, λ, α, β, γ, µ) are {hk} and {gk}.

Proof. Any function f in DT (n, λ, α, β, γ, µ) can be expressed as

f(z) =

∞∑
k=1

(δkhk(z) + σkgk(z))

=

∞∑
k=1

(δk + σk)z −
∞∑
k=2

1− µ
ψ(n, k, λ, α β, γ)

δkz
k −

∞∑
k=1

1− µ
ψ(n, k, λ, α β, γ)

σkz
k.

Then
∞∑
k=2

ψ(n, k, λ, α β, γ)

1− µ
|ak|+

∞∑
k=1

ψ(n, k, λ, α β, γ)

1− µ
|bk| =

∞∑
k=2

δk +

∞∑
k=1

σk = 1− δ1 ≤ 1.

Therefore, f ∈ DT (n, λ, α, β, γ, µ).
Conversely, suppose that f ∈ DT (n, λ, α, β, γ, µ). Setting

δk =
ψ(n, k, λ, α β, γ

1− µ
ak, (k = 2, 3, ...),

σk =
ψ(n, k, λ, α β, γ

1− µ
bk, (k = 1, 2, ...),

where
∑∞
k=1 δk + σk = 1, we obtain

f(z) =

∞∑
k=1

(δkhk(z) + σkgk(z))

as required. �

4. Convolution Property

The convolution of two harmonic functions

f(z) = z −
∞∑
k=2

|ak|zk −
∞∑
k=1

|bk|zk,

and

F (z) = z −
∞∑
k=2

|Ak|zk −
∞∑
k=1

|Bk|zk,

where |Ak| ≤ 1 and |Bk| ≤ 1, define as

(f ∗ F )(z) = f(z) ∗ F (z)

= z −
∞∑
k=2

|ak||Ak|zk −
∞∑
k=1

|bk||Bk|zk.
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The convolution property of DT (n, λ, α, β, γ, µ) is given in the next theorem.

Theorem 5. For 0 ≤ µ1 ≤ µ2 < 1, let f(z) ∈ DT (n, λ, α, β, γ, µ2) and F (z) ∈
DT (n, λ, α, β, γ, µ1). Then

(f ∗ F )(z) ∈ DT (n, λ, α, β, γ, µ2) ⊂ DT (n, λ, α, β, γ, µ1).

Proof. Since f and F are in DT . Then
∞∑
k=2

ψ(n, k, λ, α β, γ)

1− µ1
|ak||Ak| −

∞∑
k=1

ψ(n, k, λ, α β, γ)

1− µ1
|bk||Bk|

≤
∞∑
k=2

ψ(n, k, λ, α β, γ)

1− µ1
|ak| −

∞∑
k=1

ψ(n, k, λ, α β, γ)

1− µ1
|bk|

≤
∞∑
k=2

ψ(n, k, λ, α β, γ)

1− µ2
|ak| −

∞∑
k=1

ψ(n, k, λ, α β, γ)

1− µ2
|bk|

≤ 1.

Thus,
(f ∗ F )(z) ∈ DT (n, λ, α, β, γ, µ2).

Since 0 ≤ µ1 ≤ µ2 < 1, we get DT (n, λ, α, β, γ, µ2) ⊂ DT (n, λ, α, β, γ, µ1). �
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