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PERIODIC SOLUTIONS FOR TOTALLY NONLINEAR NEUTRAL

DELAY DIFFERENCE EQUATIONS

ERNEST YANKSON AND EMMANUEL K. ESSEL

Abstract. We obtain sufficient conditions under which solutions of certain classes

of totally nonlinear neutral delay difference equations are periodic. A reformulated

version of a fixed point theorem of Krasnoselskii is used to arrive at the main results.
The results obtained in the paper generalizes the work in [8].

1. Introduction

Periodic solutions of difference equations has been studied extensively in recent times.
We refer to [1]-[2], [5]-[9] and the references therein for a wealth of information on this
subject.

In this paper we study the existence of periodic solutions of the equation

∆x(n) = −a(n)h(x(n+ 1)) + c(n)∆x(n− τ(n))

+ G(n, x(n), x(n− τ(n))), ∀n ∈ Z, (1)

where

G : Z× R× R→ R,

with Z and R being the set of integers and real numbers respectively. Throughout this
paper ∆ denotes the forward difference operator ∆x(n) = x(n+1)−x(n) for any sequence
{x(n), n ∈ Z}. In [8] the authors considered (1) when h(x(n+ 1)) = x(n).

2. Preliminaries

Let T be an integer such that T ≥ 1. Define PT = {ϕ ∈ C(Z,R) : ϕ(n + T ) = ϕ(n)}
where C(Z,R) is the space of all real valued functions. Then (PT , ||.||) is a Banach space
with the maximum norm

||ϕ|| = max
n∈[0,T−1]

|ϕ(n)|.

Also, for any L > 0, define

M = {ϕ ∈ PT : ||ϕ|| ≤ L}.

In this paper we assume that

a(n+ T ) = a(n), c(n+ T ) = c(n), τ(n+ T ) = τ(n), τ(n) ≥ τ∗ > 0, (2)

for some constant τ∗. Suppose further that

a(n) > 0, (3)
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and

G(n+ T, x, y) = G(n, x, y). (4)

Moreover, we also assume that G is Lipschitz continuous in x and y. That is, there are
positive constants k1, k2 such that

|G(n, x, y)−G(n, z, w)| ≤ k1||x− z||+ k2||y − w||, for x, y, z, w ∈ R. (5)

Lemma 1. Suppose that (2) and (3) hold. If x ∈ PT , then x is a solution of equation
(1) if and only if

x(n) =
c(n− 1)

1 + a(n− 1)
x(n− τ(n)) +

(
1−

n−1∏
s=n−T

(1 + a(s))−1
)−1

×
[ n−1∑
r=n−T

a(r)(x(r + 1)− h(x(r + 1)))

n−1∏
s=r

(1 + a(s))−1

+

n−1∑
r=n−T

{x(r − τ(r))φ(r) +G(r, x(r), x(r − τ(r)))}
n−1∏
s=r

(1 + a(s))−1
]
,

(6)

where

φ(r) =
c(r − 1)

1 + a(r − 1)
− c(r). (7)

Proof. Let x ∈ PT be a solution of (1). Rewrite (1) as

∆x(n) + a(n)x(n+ 1)

= a(n)x(n+ 1)− a(n)h(x(n+ 1)) + c(n)∆x(n− τ(n)) +G(n, x(n), x(n− τ(n))).

We consider two cases; n ≥ 1 and n ≤ 0. Considering first the case when n ≥ 1
by multiplying both sides of the above equation by

∏n−1
s=0 (1 + a(s)) and summing from

(n− T ) to (n− 1) we obtain

n−1∑
r=n−T

∆
[ r−1∏
s=0

(1 + a(s))x(r)
]

=

n−1∑
r=n−T

a(r){x(r + 1)− h(x(r + 1))}
r−1∏
s=0

(1 + a(s))

+

n−1∑
r=n−T

{c(r)∆x(r − τ(r)) +G(r, x(r), x(r − τ(r)))}
r−1∏
s=0

(1 + a(s)).

Which gives

n−1∏
s=0

(1 + a(s))x(n)−
n−T−1∏
s=0

(1 + a(s))x(n− T )

=

n−1∑
r=n−T

a(r){x(r + 1)− h(x(r + 1))}
r−1∏
s=0

(1 + a(s))

+

n−1∑
r=n−T

{c(r)∆x(r − τ(r)) +G(n, x(r), x(r − τ(r)))}
r−1∏
s=0

(1 + a(s)).
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By dividing both sides of the above expression by
∏n−1
s=0 (1 + a(s)) and the fact that

x(n) = x(n− T ), we obtain

x(n) =
(

1−
n−1∏

s=n−T
(1 + a(s))−1

)−1
(8)

×
[ n−1∑
r=n−T

a(r)(x(r + 1)− h(x(r + 1)))

n−1∏
s=r

(1 + a(s))−1

+

n−1∑
r=n−T

{c(r)∆x(r − τ(r)) +G(r, x(r), x(r − τ(r)))}
n−1∏
s=r

(1 + a(s))−1
]
.

By performing a summation by parts on the above equation we obtain

n−1∑
r=n−T

c(r)∆x(r − τ(r))

n−1∏
s=r

(1 + a(s))−1 (9)

=
c(n− 1)

1 + a(n− 1)
x(n− τ(n))

(
1−

n−1∏
s=n−T

(1 + a(s))−1
)

+

n−1∑
r=n−T

x(r − τ(r))φ(r)

n−1∏
s=r

(1 + a(s))−1,

where φ is given by (7). Finally, substituting (9) into (8) completes the proof.
Now for n ≤ 0, equation (1) is equivalent to

∆
[ 0∏
s=n−1

(1 + a(s))x(n)
]

= a(t){x(n+ 1)− h(x(n+ 1))}
0∏

s=n−1
(1 + a(s))

+ {c(n)∆x(n− τ(n)) +G(n, x(n), x(n− τ(n)))}
0∏

s=n−1
(1 + a(s)).

Summing the above equation from (n− T ) to n− 1 we obtain (6). �

In the proof of our main theorem, we employ a fixed point theorem in which the notion
of a large contraction is required as one of the sufficient conditions. First, we give the
following definition which can be found in [4].

Definition 1. Let (M, d) be a metric space and B : M → M. B is said to be a large
contraction if ψ,ϕ ∈ M, with ψ 6= ϕ then d(Bϕ,Bψ) < d(ϕ,ψ) and if for all ε > 0 there
exists δ < 1 such that

[ψ,ϕ ∈M, d(ϕ,ψ) ≥ ε]⇒ d(Bϕ,Bψ) ≤ δd(ϕ,ψ).

The next theorem, which constitutes a basis for our main result, is a reformulated
version of Krasnoselskii’s fixed point theorem.

Theorem 1 (Krasnoselskii-Burton [4]). Let M be a bounded convex non-empty subset of
a Banach space (S, ||.||). Suppose that A, B map M into M and that

(i) for all x, y ∈M⇒ Ax+By ∈M,
(ii) A is continuous and AM is contained in a compact subset of M,



88 ERNEST YANKSON AND EMMANUEL K. ESSEL

(iii) B is a large contraction.

Then there is a z ∈M with z = Az +Bz.

For the next lemma we make the following assumptions on the function h : R→ R.

(H1) h is continuous on UL = [−L,L].
(H2) h is strictly increasing on UL.
(H3) sups∈UL∩Z ∆h(s) ≤ 1.

(H4) (s − r)
{

supi∈UL∩Z ∆h(i)
}
≥ h(s) − h(r) ≥ (s − r)

{
infi∈UL∩Z ∆h(i)

}
≥ 0 for

s, r ∈ UL with s ≥ r.

Lemma 2. Let L be a positive constant and h : R → R be a function satisfying (H1) −
(H4). If (Hϕ)(n) = ϕ(n+ 1)− h(ϕ(n+ 1)), then H is a large contraction on the set M.

Proof. Let φ, ϕ ∈ M with φ 6= ϕ. Then φ(n + 1) 6= ϕ(n + 1) for some n ∈ Z. Define the
set

D(φ, ϕ) =
{
n ∈ Z : φ(n+ 1) 6= ϕ(n+ 1)

}
.

Note that ϕ(n+ 1) ∈ UL for all n ∈ Z whenever ϕ ∈M. Since h is strictly increasing

h(ϕ(n+ 1))− h(φ(n+ 1))

ϕ(n+ 1)− φ(n+ 1)
=
h(φ(n+ 1))− h(ϕ(n+ 1))

φ(n+ 1)− ϕ(n+ 1)
> 0 (10)

holds for all n ∈ D(φ, ϕ). By (H3) we have

1 ≥ sup
i∈UL∩Z

∆h(i) ≥ inf
s∈UL∩Z

∆h(s) ≥ 0. (11)

Define the set Un ⊂ UL by Un = [ϕ(n + 1), φ(n + 1)] ∩ UL if φ(n + 1) > ϕ(n + 1), and
Un = [φ(n+ 1), ϕ(n+ 1)]∩UL if φ(n+ 1) < ϕ(n+ 1), for n ∈ D(φ, ϕ). Hence, for a fixed
n0 ∈ D(φ, ϕ) we get by (H4) and (10) that

sup{∆h(u) : u ∈ Un0
∩ Z} ≥ h(φ(n0 + 1))− h(ϕ(n0 + 1))

φ(n0 + 1)− ϕ(n0 + 1)
≥ inf{∆h(u) : u ∈ Un0

∩ Z}.

Since Un ⊂ UL for every n ∈ D(φ, ϕ), we find

sup
u∈UL∩Z

∆h(u) ≥ sup{∆h(u) : u ∈ Un0
∩ Z} ≥ inf{∆h(u) : u ∈ Un0

∩ Z} ≥ inf
u∈UL∩Z

∆h(u),

and therefore,

1 ≥ sup
u∈UL∩Z

∆h(u) ≥ h(ϕ(n+ 1))− h(φ(n+ 1))

ϕ(n+ 1)− φ(n+ 1)
≥ inf
u∈UL∩Z

∆h(u) ≥ 0 (12)

for all n ∈ D(φ, ϕ). So, (12) yields

|(Hφ)(n)− (Hϕ)(n)| = |φ(n+ 1)− h(φ(n+ 1))− ϕ(n+ 1) + h(ϕ(n+ 1))|

= |φ(n+ 1)− ϕ(n+ 1)|
∣∣∣1− (h(φ(n+ 1))− h(ϕ(n+ 1))

φ(n+ 1)− ϕ(n+ 1)

)∣∣∣
≤ |φ(n+ 1)− ϕ(n+ 1)|

(
1− inf

u∈UL∩Z
∆h(u)

)
(13)

for all n ∈ D(φ, ϕ). Thus, (12) and (13) imply that H is a large contraction in the
supremum norm. To see this choose a fixed ε ∈ (0, 1) and assume that φ and ϕ are two
functions in M satisfying

‖φ− ϕ‖ = sup
n∈[−L,L]∩Z

|φ(n+ 1)− ϕ(n+ 1)| ≥ ε.
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If |φ(n+ 1)− ϕ(n+ 1)| ≤ ε/2 for some n ∈ D(φ, ϕ), then from (13)

|(Hφ)(n)− (Hϕ)(n)| ≤ |φ(n+ 1)− ϕ(n+ 1)| ≤ 1

2
‖φ− ϕ‖. (14)

Since h is continuous and strictly increasing, the function h(u + ε
2 ) − h(u) attains its

minimum on the closed and bounded interval [−L,L]. Thus, if ε
2 < |φ(n+ 1)− ϕ(n+ 1)|

for some n ∈ D(φ, ϕ), then from (12) and (H3) we conclude that

1 ≥ h(φ(n+ 1))− h(ϕ(n+ 1))

φ(n+ 1)− ϕ(n+ 1)
> λ,

and therefore,

|(Hφ)(n)− (Hϕ)(n)| ≤ |φ(n+ 1)− ϕ(n+ 1)|
{

1− h(φ(n+ 1))− h(ϕ(n+ 1))

φ(n+ 1)− ϕ(n+ 1)

}
≤ (1− λ)‖φ(n+ 1)− ϕ(n+ 1)‖, (15)

where

λ :=
1

2L
min

{
h(u+

ε

2
)− h(u), u ∈ [−L,L]

}
> 0.

Consequently, it follows from (14) and (15) that

|(Hφ(n)− (Hϕ)(n)| ≤ δ‖φ− ϕ‖,

where δ = max
{

1
2 , 1− λ

}
< 1. The proof is complete. �

3. Existence of periodic solutions

In this section we prove our main results. We begin by defining the maps A,B : M→M
as follows

(Aϕ)(n) =
c(n− 1)

1 + a(n− 1)
ϕ(n− τ(n)) +

(
1−

n−1∏
s=n−T

(1 + a(s))−1
)−1

×
n−1∑

r=n−T
{ϕ(r − τ(r))φ(r) +G(r, ϕ(r), ϕ(r − τ(r)))}

n−1∏
s=r

(1 + a(s))−1,

(16)

and

(Bϕ)(n) =
(

1−
n−1∏

s=n−T
(1 + a(s))−1

)−1
×

n−1∑
r=n−T

a(r)(x(r + 1)− h(x(r + 1)))

n−1∏
s=r

(1 + a(s))−1. (17)

For the rest of the paper we make the following assumptions.

(k1 + k2)L+ |G(n, 0, 0)| ≤ βLa(n), (18)

|φ(n)| ≤ δa(n), (19)

max
n∈[0,T−1]

∣∣∣ c(n− 1)

1 + a(n− 1)

∣∣∣ = α, (20)

J(β + α+ δ) ≤ 1, (21)

where α, β, δ and J are positive constants with J ≥ 3.
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Lemma 3. Suppose (2)-(5) and (18)-(21) hold. Then the mapping A : M → M defined
in (16) is continuous in the maximum norm and maps M into compact subsets of M.

Proof. We first show that A : M→M. Let ϕ ∈M. Then

(Aϕ)(n+ T ) =
c(n+ T − 1)

1 + a(n+ T − 1)
ϕ(n+ T − τ(n+ T )) +

(
1−

n+T−1∏
s=n

(1 + a(s))−1
)−1

×
n+T−1∑
r=n

{ϕ(r − τ(r))φ(r) +G(r, ϕ(r), ϕ(r − τ(r)))}
n+T−1∏
s=r

(1 + a(s))−1

=
c(n− 1)

1 + a(n− 1)
ϕ(n− τ(n)) +

(
1−

n+T−1∏
s=n

(1 + a(s))−1
)−1

×
n+T−1∑
r=n

{ϕ(r − τ(r))φ(r) +G(r, ϕ(r), ϕ(r − τ(r)))}
n+T−1∏
s=r

(1 + a(s))−1

Let j = r − T, then

(Aϕ)(n+ T ) =
c(n− 1)

1 + a(n− 1)
ϕ(n− τ(n)) +

(
1−

n+T−1∏
s=n

(1 + a(s))−1
)−1

×
n+T−1∑
j=n−T

{ϕ(j + T − τ(j + T ))φ(j + T )

+ G(j + T, ϕ(j + T ), ϕ(j + T − τ(j + T )))}
n+T−1∏
s=j+T

(1 + a(s))−1.

Now let k = s− T , then

(Aϕ)(n+ T ) =
c(n− 1)

1 + a(n− 1)
ϕ(n− τ(n)) +

(
1−

n−1∏
k=n−T

(1 + a(k))−1
)−1

×
n−1∑

j=n−T
{ϕ(j − τ(j))φ(j)

+ G(j, ϕ(j), ϕ(j − τ(j)))}
n−1∏
k=j

(1 + a(k))−1 = (Aϕ)(n).

Consequently, A : PT → PT .
In view of (5) we have that

|G(n, x, y)| = |G(n, x, y)−G(n, 0, 0) +G(n, 0, 0)|
≤ |G(n, x, y)−G(n, 0, 0)|+ |G(n, 0, 0)|
≤ k1‖k1‖+ k2‖y‖+ |G(n, 0, 0)|.
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Also it follows from (3) that 1−
∏n−1
s=n−T (1 + a(s))−1 > 0. So, for any ϕ ∈M, we obtain

|(Aϕ)(n)| ≤
∣∣∣ c(n− 1)

1 + a(n− 1)

∣∣∣|ϕ(n− τ(n))|+
(

1−
n−1∏

s=n−T
(1 + a(s))−1

)−1
×

n−1∑
r=n−T

{|ϕ(r − τ(r))||φ(r)|+ |G(r, ϕ(r), ϕ(r − τ(r)))|}
n−1∏
s=r

(1 + a(s))−1,

≤ αL+
(

1−
n−1∏

s=n−T
(1 + a(s))−1

)−1
×

n−1∑
r=n−T

{δLa(r) + (k1 + k2)L+ |G(r, 0, 0)|}
n−1∏
s=r

(1 + a(s))−1

≤ αL+
(

1−
n−1∏

s=n−T
(1 + a(s))−1

)−1 n−1∑
r=n−T

{(δ + β)La(r)}
n−1∏
s=r

(1 + a(s))−1

≤ αL+
(

1−
n−1∏

s=n−T
(1 + a(s))−1

)−1
(δ + β)L

n−1∑
r=n−T

∆r

[ n−1∏
s=r

(1 + a(s))−1
]

= (α+ δ + β)L ≤ L

J
< L.

Thus Aϕ ∈M. Consequently, we have A : M→M.
We next show that A is continuous in the maximum norm. Let ϕ,ψ ∈M, and let

µ1 = max
n∈[0,T−1]

∣∣∣ c(n− 1)

1 + a(n− 1)

∣∣∣, µ2 = max
n∈[0,T−1]

(
1−

n−1∏
s=n−T

(1 + a(s))−1
)−1

,

µ3 = max
r∈[n−T,T−1]

|φ(r)|.

Let ε > 0 be given. Choose η = ε/ρ where ρ = µ1 + µ2T (µ3 + k1 + k2) such that

‖ϕ− ψ‖ < η. Note that from (3), we have maxr∈[n−T,T−1]
∏n−1
s=r (1 + a(s))−1 ≤ 1. Thus,

|(Aϕ)(n)− (Aψ)(n)|

≤
∣∣∣ c(n− 1)

1 + a(n− 1)

∣∣∣‖ϕ− ψ‖
+
(

1−
n−1∏

s=n−T
(1 + a(s))−1

)−1 n−1∑
r=n−T

{
‖ϕ− ψ‖|φ(r)|

+|G(r, ϕ(r), ϕ(r − τ(r)))−G(r, ψ(r), ψ(r − τ(r)))|
} n−1∏
s=r

(1 + a(s))−1

≤ µ1‖ϕ− ψ‖+ µ2

n−1∑
r=n−T

{
µ3‖ϕ− ψ‖+ (k1 + k2)‖ϕ− ψ‖

}
≤
{
µ1 + µ2T (µ3 + k1 + k2)

}
‖ϕ− ψ‖ < ε.

Therefore showing that A is continuous.
Next, we show that A maps bounded subsets into compact sets. Since M is bounded

and A is continuous, AM is a subset of RT which is bounded. So, AM is contained in a
compact subset of M. The proof is complete. �
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Lemma 4. Suppose (2)-(5) and (18) hold. Also, suppose that

max(|H(−L)|, |H(L)|) ≤ (J − 1)L

J
. (22)

For A,B defined by (16) and (17) respectively, if ϕ,ψ ∈M are arbitrary, then

Aϕ+Bψ : M→M.

Proof. Let ϕ,ψ ∈M be arbitrary. Using the result of Lemma 3 we obtain

|(Aϕ)(n) + (Bψ)(n)|

≤
∣∣∣ c(n− 1)

1 + a(n− 1)

∣∣∣|ϕ(n− τ(n))|+
(

1−
n−1∏

s=n−T
(1 + a(s))−1

)−1
×

n−1∑
r=n−T

{|ϕ(r − τ(r))||φ(r)|+ |G(r, ϕ(r), ϕ(r − τ(r)))|}
n−1∏
s=r

(1 + a(s))−1

+
(

1−
n−1∏

s=n−T
(1 + a(s))−1

)−1
×max(|H(−L)|, |H(L)|)

n−1∑
r=n−T

a(r)

n−1∏
s=r

(1 + a(s))−1

≤ L

J
+
(

1−
n−1∏

s=n−T
(1 + a(s))−1

)−1
×max(|H(−L)|, |H(L)|)

n−1∑
r=n−T

∆
[ n−1∏
s=r

(1 + a(s))−1
]

≤ L

J
+

(J − 1)L

J
= L.

Thus Aϕ+Bψ ∈M. This completes the proof. �

The next result gives a relationship between the mappings H and B in the sense of a
large contraction.

Lemma 5. Let B be defined by (17) and assume that (2)-(3) and (22) hold. If H is a
large contraction on M then so is the mapping B : M→M.

Proof. We will first show that B maps M into itself. Let ϕ ∈M then

(Bϕ)(n+ T ) =
(

1−
n+T−1∏
s=n

(1 + a(s))−1
)−1

×
n+T−1∑
r=n

a(r)(x(r + 1)− h(x(r + 1)))

n+T−1∏
s=r

(1 + a(s))−1

Let j = r − T , then

(Bϕ)(n+ T ) =
(

1−
n+T−1∏
s=n

(1 + a(s))−1
)−1

×
n+T−1∑
r=n

a(j + T )(x(j + T + 1)− h(x(j + T + 1)))

n+T−1∏
s=j+T

(1 + a(s))−1
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Now let k = s− T, then

(Bϕ)(n+ T ) =
(

1−
n−1∏

s=n−T
(1 + a(s))−1

)−1
×

n−1∑
r=n−T

a(j)(x(j + 1)− h(x(j + 1)))

n−1∏
k=j

(1 + a(s))−1

= (Bϕ)(n).

That is, B : PT → PT .
In view of (22), we have

|(Bϕ)(n)| ≤
(

1−
n−1∏

s=n−T
(1 + a(s))−1

)−1
×

n−1∑
r=n−T

|a(r)||H(ϕ(r + 1))|
n−1∏
s=r

(1 + a(s))−1 (23)

≤ (J − 1)L

J
< L. (24)

That is Bϕ ∈M and consequently we have B : M→M.
We next show that B is a large contraction. If H is a large contraction on M, for

x, y ∈M, with x 6= y, we have ‖Hx−Hy‖ ≤ ‖x− y‖. Thus, it follows from the equality

a(r)

n−1∏
s=r

(1 + a(s))−1 = ∆
[ n−1∏
s=r

(1 + a(s))−1
]

that

|Bx(n)−By(n)| ≤
(

1−
n−1∏

s=n−T
(1 + a(s))−1

)−1
×

n−1∑
r=n−T

a(r)|H(x(r + 1))−H(y(r + 1))|
n−1∏
s=r

(1 + a(s))−1

≤ ‖x− y‖
(

1−
n−1∏

s=n−T
(1 + a(s))−1

)−1
×

n−1∑
r=n−T

a(r)

n−1∏
s=r

(1 + a(s))−1 = ‖x− y‖.

Thus

‖Bx−By‖ ≤ ‖x− y‖.

One may also show in a similar way that

‖Bx−By‖ ≤ δ‖x− y‖

holds if we know the existence of a δ ∈ (0, 1) and that for all ε > 0

[x, y ∈M, ‖x− y‖ > 0]⇒ ‖Hx−Hy‖ ≤ δ‖x− y‖.

The proof is complete. �
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Theorem 2. Let (PT , ‖.‖) be the Banach space of T -periodic real valued functions and
M = {ϕ ∈ PT : ‖ϕ‖ ≤ L}, where L is a positive constant. Suppose that (2)-(5) and
(18)-(21) hold. Then equation (1) has a T -periodic solution ϕ in M.

Proof. By Lemma 1, ϕ is a solution of (1) if

ϕ = Aϕ+Bϕ,

where A and B are given by (16) and (17) respectively. By Lemma 3, A : M → M is
completely continuous. By Lemma 4, Aϕ + Bψ ∈ M whenever ϕ,ψ ∈ M. Moreover,
B : M→ M is a large contraction by lemma 5. Thus all the hypotheses of Theorem 1 of
Krasnoselskii are satisfied. Thus, there exists a fixed point ϕ ∈M such that ϕ = Aϕ+Bϕ.
Hence (1) has a T− periodic solution. �
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