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NEW INTEGRAL SOLUTIONS FOR A

THERMOELASTIC QUARTER-PLANE

ION CRET, U

Abstract. In this paper new influence functions on the thermal displacements and

stresses of a unit point heat source for a boundary value problems of thermoelastic-

ity for a quarter-plane were obtained. Also, new integral solutions of Green’s for a
boundary value problems were derived, thermal stresses caused by the temperature

gradient acting on a segment of the boundary line were calculated. All these results

are presented in terms of elementary functions for canonical domains of Cartesian sys-
tem coordinates. Using the computer program Maple 18, the graphical presentations

of thermal stresses caused by a unit point of heat source and of thermal stresses for

one boundary value problems caused by the temperature gradient acting on a segment
of the boundary line were constructed.

1. Introduction

Green’s function plays a very important role in finding integral solutions for boundary
value problems. Using the Green’s functions, the integral solutions for various problems
can be determined, but the most difficult in this method is the construction of these
functions. If the integral solutions are determined, then thermoelastic displacements and
thermal stresses can be derived. Thermoelastic displacements can be calculated using
the Maysel’s integral formula [1]. In this case the solution of boundary value problems
is not represented directly via the known values, but via the temperature field, which
must be found. Then a volume integral is calculated. To avoid having to determine the
temperature field in [2, 3, 4, 5, 6] the author V. S, eremet has proposed the generalization
of the Maysel’s and Green’s integral formulas in thermoelasticity:

ui(ξ) = a−1

∫
V

F (x)Ui(x, ξ)dV (x)−
∫

ΓD

T (y)
∂Ui(y, ξ)

∂ny
dΓD(y)

+

∫
ΓN

∂T (y)

∂ny
Ui(y, ξ)dΓN (y) + a−1

∫
ΓM

[
αT (y) + a

∂T (y)

∂ny

]
Ui(y, ξ)dΓM (y); i = 1, 2, 3, (1)

where:
ΓD, ΓN s, i ΓM are the parts of the body surface Γ ( Γ = ΓD ∪ ΓN ∪ ΓM ), which

the Dirichlet’s boundary conditions (temperature T (y)), the Neumann’s boundary condi-

tions (heat flux a∂T (y)
∂ny

)
and mixed boundary conditions (heat exchange between exterior

medium and surface of the body represented by law
[
αT (y) + a∂T (y)

∂ny

])
are prescribed; a

is thermal conductivity; F (x) is the internal heat source; α is the coefficient of convective
heat conductivity; γ = αt(2µ + 3λ) is the thermoelastic constant; αt is the coefficient of
the linear thermal expansion, but λ, µ are Lame’s constants of elasticity.
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If the thermoelastic displacements are determined using formula (1), the temperature
field need not to be determined. The thermoelastic displacements can be derived from
directly via the prescribed internal heat source, temperature, heat flux or a heat exchange
between exterior medium and surface of the body.

The thermal stresses for three-dimensional canonical domains of Cartesian system of
coordinates will be calculated by using the following type of Green’s integral formula [2]:

σij(ξ) = a−1

∫
V

F (x)Σij(x, ξ)dV (x)−
∫

ΓD

T (y)
∂Σij(y, ξ)

∂ny
dΓD(y)+

∫
ΓN

∂T (y)

∂ny
Σij(y, ξ)dΓN (y)

+ a−1

∫
ΓM

[
αT (y) + a

∂T (y)

∂ny

]
Σij(y, ξ)dΓM (y); i, j = 1, 2, 3. (2)

The matrix σij(ξ) and Σij(x, ξ) in Eq. (2) are defined by the components:

σij(ξ) =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 ; Σij(x, ξ) =

Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

 , (3)

where:
Σij represents the influence functions for thermal stresses of a unit point heat source

and σij represent the influence functions for thermal stresses caused by internal heat
source, temperature, heat flux or a heat exchange between exterior medium and surface
of the body.

The thermal stresses Σij and σij can be determined of Duhamel-Neumann law [7]:

Σij = µ(Ui,j + Uj.i) + δij(λΘ− γGT ); Θ = Uk,k(x, ξ); i, j, k = 1, 2, 3; (4)

σij = µ(ui,j + uj.i) + δij(λθ − γT ); θ = uk,k; i, j, k = 1, 2, 3, (5)

where:
δij is Kronecker’s symbol, if i = j −→ 1 and if i 6= j −→ 0.

2. Thermal stresses Σij within quarter-plane of a unit point heat source

It is required to determine thermal stresses σij(ξ); i, j = 1, 2 of a particular boundary
value problems in the quarter-plane P (0 ≤ x1, x2 <∞) with boundary thermal conditions
Dirichlet. In this body acting the temperature gradient T = T (y1, 0) on a segment from
boundary straight lines Γ20(0 ≤ y1 <∞; y2 = 0):

T (y) =


T10(0, y2) = 0, y ∈ Γ10;

T20(y1, 0) = T0 = const, y ∈ (a ≤ y1 ≤ b; y2 = 0), y ∈ Γ20; 0 ≤ a < b;

T20(y1, 0) = 0, y ∈ (0 ≤ y1 < a; y2 = 0) ∪ (b < y1 <∞; y2 = 0), y ∈ Γ20.

(6)

The mechanical boundary conditions:
– on the marginal line Γ10(y1 = 0; 0 ≤ y2 <∞):

Γ10 −→ σ11 = σ12 = 0; (7)

– on the marginal line Γ20(0 ≤ y1 <∞; y2 = 0):

Γ20 −→ u1 = 0;σ22 = 0. (8)

The mechanical and thermal boundary conditions of a particular boundary value prob-
lems within quarter-plane are showed in the Figure 1.

To solve the problem it is necessary to determine thermal stresses Σij(x, ξ); i, j = 1, 2
of a unit point heat source, which are obtained if thermoelastic displacements Ui(x, ξ);
i = 1, 2 of a unit point heat source are known.
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Figure 1. The scheme of the quarter-plane with the mechanical bound-
ary conditions σ11, σ12, σ22, u1 and the thermal boundary conditions T
applied on the boundary straight lines Γ10 and Γ20 for a boundary value
problems.

In this article for the first time the thermoelastic displacements Ui(x, ξ); i = 1, 2 and
thermal stresses Σij(x, ξ); i, j = 1, 2 of a unit point heat source using the structural for-
mulas obtained by the method of harmonic integral representations [2] has been proposed.
Thermal stresses σij(x, ξ); i, j = 1, 2 in the quarter-plane P with thermal boundary condi-
tions (6) and mechanical boundary conditions (7), (8) were obtained by the temperature
gradient acting on a segment of the boundary line using of a particular integral formula
(2). In the field literature [8], [9] boundary value problems within qurter-plane are solved
by using ΘG - convolution method, but other mechanical and thermal boundary condi-
tions .

2.1. Determination of thermoelastic displacements Ui. In the quarter-plane P (0 ≤
x1;x2 < ∞) with thermal boundary conditions Dirichlet thermoelastic displacements
Ui(x, ξ); i = 1, 2 must be calculated for mechanical and thermal boundary conditions:

– on the marginal line Γ10(y1 = 0; 0 ≤ y2 <∞):

Σ11(x, y) = Σ12(x, y) = 0;x ∈ P ;GT (y, ξ) = 0; y ≡ (0, y2) ∈ Γ10; (9)

– on the marginal line Γ20(0 ≤ y1 <∞; y2 = 0):

Σ22(x, y) = 0;U1(x, y) = 0;x ∈ P ;GT (y, ξ) = 0; y ≡ (y1, 0) ∈ Γ20. (10)

All the mechanical and thermal boundary conditions are showed in Figure 2.
To determine the thermal displacement using the structural formulas Ui(x, ξ) and

Θ(x, ξ) which has been demonstrated in 16 theorem of the monograph [2] for three-
dimensional canonical domains of Cartesian system of coordinates with boundary condi-
tions (9) and (10). These structural formulas are valid for a two-dimensional problem. In
this case thermoelastic displacements take the following form:

Ui(x, ξ) =
γ

2(λ+ 2µ)

[
ξiGT (x, ξ)− xiGi(x, ξ)− 2

(
x1ξ1

∂

∂ξi
+ ξi

)
WT (x, ξ)

+2
∂

∂ξi

(∫
ξ1WT (x, ξ)dξ1 −

µ

λ+ µ
(δ2i − δ1i)x1

∫
WT (x, ξ)dξ1

)]
; i = 1, 2, (11)

where:
WT (x, ξ) is regular part of the Green’s functions GT (x, ξ);
δ1i; δ2i are Kronecker’s symbols;
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Figure 2. The scheme of the quarter-plane with the mechanical bound-
ary conditions Σ11, Σ12, Σ22, U1 and the thermal boundary conditions
GT applied on the boundary straight lines Γ10 and Γ20.

and volume dilatation:

Θ(x, ξ) =
γ

λ+ 2µ

(
GT (x, ξ) +

2µ

λ+ µ
x1

∂

∂x1
WT (x, ξ)

)
. (12)

Green’s functions GT , GΘ and Gi; i = 1, 2 are connected with the boundary conditions
(9) and (10) as follows: if on the marginal line a quarter-plane P thermal stresses are
known then derivatives of Green’s functions are equal to zero, and if on the marginal line
thermoelastic displacements are known then Green’s functions are equal to zero:

Σ11 = Σ12 = 0;GT = 0⇒ G1,1 = G2,1 = GΘ,1 = 0, (13)

on the marginal line Γ10(y1 = 0; 0 ≤ y2 <∞) and

Σ22 = 0;U1 = 0;GT = 0⇒ U1,1 = U2,2 = 0⇒ Θ = 0;G1 = G2,2 = GΘ = 0, (14)

on the marginal line Γ20(0 ≤ y1 <∞; y2 = 0).
Green’s functions GT ;GΘ;G1 and G2 for quarter-plane P are extracted from handbook

[3] or encyclopedia [10] and these functions will be calculated by the following expressions:

GT (x, ξ) = G(1)(x, ξ) =
1

4π
ln
r1r2

rr12
; (15)

GΘ(x, ξ) = G1(x, ξ) = G(4)(x, ξ) =
1

4π
ln
r2r12

rr1
; (16)

G2(x, ξ) = G(2)(x, ξ) = − 1

4π
ln r2r12rr1 + c, (17)

where:
r = (x1 − ξ1)2 + (x2 − ξ2)2; r1 = (x1 + ξ1)2 + (x2 − ξ2)2;
r2 = (x1 − ξ1)2 + (x2 + ξ2)2; r12 = (x1 + ξ1)2 + (x2 + ξ2)2.
Green’s function G2(x, ξ) = G(2)(x, ξ) contains an undetermined constant c, because

the solution to this boundary value problems is characterized by the indetermination, but
the result of this problem is obtained with precision of a constant.

The regular part of the Green’s function GT (x, ξ) (15) is that part which contains
inferior index 1 (that part of the GT (x, ξ) which are reflected via marginal line Γ10. So,
WT (x, ξ) of the formulas (11) and (12) is calculated with the following equation:

WT (x, ξ) =
1

4π
ln

r1

r12
. (18)
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Substituting expressions (15),(16), (17), (18) in the formula (11) and undetermined
constant c of Green’s function G2(x, ξ) = G(2)(x, ξ) has been taken equal to zero c = 0.
The final expressions for thermoelastic displacements Ui(x, ξ); i = 1, 2 of a unit point heat
source for quarter-plane P are presented in the following formulas:

U1(x, ξ) =
γ

8π(λ+ 2µ)

[
(x1 + ξ1) ln

r1

r12
+ (x1 − ξ1) ln

r

r2
+ 2x1

(
µ

λ+ µ
+ ξ1

∂

∂x1

)
ln

r1

r12

]
(19)

U2(x, ξ) =
γ

8π(λ+ 2µ)

[
(x2 + ξ2) ln(r1r2) + (x2 − ξ2) ln(rr12)− 2

(
x1ξ1

∂

∂ξ2
+ ξ2

)
ln

r1

r12

+ 2
∂

∂ξ2

(∫
ξ1 ln

r1

r12
dξ1 −

µ

λ+ µ
x1

∫
ln

r1

r12
dξ1

)]
. (20)

2.2. Determination of thermal stresses Σij. The thermal stresses Σij(x, ξ) are cal-
culated using Duhamel-Neumann law (4), which for two-dimensional problems can be
rewritten in the following form:

Σij = µ(Ui,j + Uj.i) + δij(λΘ− γGT ); Θ = Uk,k(x, ξ); i, j, k = 1, 2, (21)

where: Θ(x, ξ) - thermoelastic volume dilatation determined by the formula (12):

Θ(x, ξ) =
γ

4π(λ+ 2µ)

(
ln
r1r2

rr12
+

2µ

λ+ µ
x1

∂

∂x1
ln

r1

r12

)
. (22)

Substituting Green’s function GT (x, ξ) (15), thermoelastic volume dilatation Θ(x, ξ)
(22) and expressions for thermoelastic displacements Ui(x, ξ); i = 1, 2 of a unit point heat
source (19)-(20) in the Duhamel-Neumann law (21), we obtain the expressions for main
thermoelastic functions for thermal stresses Σij(x, ξ):

Σ11(x, ξ) =
γµ

4π(λ+ 2µ)

(
ln
rr12

r1r2
+ (x1 + ξ1)

∂

∂ξ1
ln

r1

r12

+(x1 − ξ1)
∂

∂ξ1
ln

r

r2
− 2x1ξ1

∂2

∂ξ2
1

ln
r1

r12

)
; (23)

Σ22(x, ξ) =
γµ

4π(λ+ 2µ)

(
ln
rr12

r1r2
+ (x2 + ξ2)

∂

∂ξ2
ln(r12r2)

+(x2 − ξ2)
∂

∂ξ2
ln(rr1)− 2x1ξ1

∂2

∂ξ2
2

ln
r1

r12
+ 2(x1 − ξ1)

∂

∂ξ1
ln

r1

r12

)
; (24)

Σ12(x, ξ) =
γµ

4π(λ+ 2µ)

(
(x1 − ξ1)

∂

∂ξ2
ln
rr12

r2r1
+ (x2 + ξ2)

∂

∂ξ2
ln(r12r2)

+(x2 − ξ2)
∂

∂ξ2
ln(rr1) + 2ξ1

∂

∂ξ2
ln

r1

r12
− 4x1ξ1

∂

∂ξ1

∂

∂ξ2
ln

r1

r12

)
. (25)

The graphics of normal thermal stresses Σ11(x, ξ), Σ22(x, ξ) and tangential thermal
stresses Σ12(x, ξ) constructed by using computer program Maple 18 are presented in the
Figures 3,a, 4,a s, i 5,a of the Appendix.
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3. Explicit thermal stresses σij of a particular boundary value problem
within quarter-plane

According to thermal boundary conditions (6): heat flux a∂T (y)
∂ny

= 0, heat exchange

between exterior medium and surface of the body
[
αT (y) + a∂T (y)

∂ny

]
= 0. Quarter-plane

P is acting the temperature gradient T = T (y1, 0) on a segment from boundary straight
lines Γ20(0 ≤ y1 < ∞; y2 = 0), so, the internal heat source F (x) = 0. In this case the
type of Green’s integral formula (2) has the following form:

σij(ξ) = −
∞∫

0

T20(y1, 0)Qij(y1, 0; ξ)dy1, (26)

where:
Qij(y1, 0; ξ) = (∂/∂ny2

)Σij(y, ξ). (27)

The matrix of thermal stresses σ(ξ) and Σ(x, ξ) are defined by the components:

σij(ξ) =

(
σ11 σ12

σ21 σ22

)
; Σij(ξ) =

(
Σ11 Σ12

Σ21 Σ22

)
. (28)

One by one substituting expressions (23) - (25) in the formula (26), we obtain the
formulas for thermal stresses:

σ11(ξ) =
γµ

2π(λ+ 2µ)
T0

b∫
a

∂

∂ξ2

[
ln
r10

r0
− (y1 + ξ1)

∂

∂ξ1
ln r10

−(y1 − ξ1)
∂

∂ξ1
ln r0 + 2y1ξ1

∂2

∂ξ2
1

ln r10

]
dy1, (29)

σ22(ξ) =
γµ

2π(λ+ 2µ)
T0

b∫
a

[
2
∂

∂ξ2
ln r10 − ξ2

∂2

∂ξ2
1

ln(r10r0)

−2y1ξ1
∂2

∂ξ2
1

∂

∂ξ2
ln r10 − 2(y1 − ξ1)

∂

∂ξ1

∂

∂ξ2
ln r10

]
dy1, (30)

σ12(ξ) =
γµ

2π(λ+ 2µ)
T0

b∫
a

[
2ξ1

∂2

∂ξ2
1

ln r10 − (y1 − ξ1)
∂2

∂ξ2
1

ln
r10

r0

+
∂

∂ξ1
ln(r10r0) + ξ2

∂

∂ξ1

∂

∂ξ2
ln(r10r0) + 4y1ξ1

∂

∂ξ1

∂2

∂ξ2
2

ln r10

]
dy1, (31)

where:

r0 = r(y1, 0; ξ) = (y1 − ξ1)2 + ξ2
2 ; r10 = r1(y1, 0; ξ) = (y1 + ξ1)2 + ξ2

2 . (32)

After solving the integrals from the formulas (29) - (31) we obtain the following final
analytical expressions for thermal stresses σij(ξ) in the quarter-plane P caused by the
temperature gradient T0 acting on a segment a ≤ y1 ≤ b of the boundary line Γ20:

σ11(ξ) =
γµT0

2π(λ+ 2µ)

∂

∂ξ2

[
(y1 − ξ1) ln

r10

r0

+4ξ2

(
arctan

y1 + ξ1
ξ2

− arctan
y1 − ξ1
ξ2

)
+ 2ξ1

(
y1

∂

∂ξ1
ln r10 − 4

)]∣∣∣∣b
a

, (33)
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σ22(ξ) =
γµT0

2π(λ+ 2µ)

{
8 arctan

y1 + ξ1
ξ2

− ξ2
∂

∂ξ1
ln
r10

r0

−2

[
y1 − ξ1

(
2− y1

∂

∂ξ1

)]
∂

∂ξ2
ln r10

}∣∣∣∣b
a

, (34)

σ12(ξ) =
γµT0

2π(λ+ 2µ)

[
6ξ1

∂

∂ξ1
ln r10 − (y1 − ξ1)

∂

∂ξ1
ln(r10r0)

+

(
2 + ξ2

∂

∂ξ2

)
ln
r10

r0
+ 4y1ξ1

∂2

∂ξ2
2

ln r10

]∣∣∣∣b
a

. (35)

The graphics of normal thermal stresses σ11(ξ), σ22(ξ) and tangential thermal stresses
σ12(ξ) constructed by using computer program Maple 18 are presented in the Figures 3,b,
4,b s, i 5,b of the Appendix.

4. Conclusions

The expressions for thermoelastic displacements Ui(x, ξ); i = 1, 2 (19) and (20), thermal
stresses Σij(x, ξ); i, j = 1, 2 (23) - (25) and σij(ξ); i, j = 1, 2 (33) - (35) in the quarter-
plane for the boundary conditions (6), (7) and (8) were obtained for the firts time. All
expressions are presented in terms of elementary functions. In determining the thermal
stresses σij(ξ); i, j = 1, 2 for the particular problem it was not necessary to establish the
temperature field and use Maysel’s formula, and then to calculate the integral volume, but
the thermal stresses Σij(x, ξ); i, j = 1, 2 of a unit point heat source and the temperature
gradient T0 acting of the boundary line, then the integral surface is solved. All thermal
stresses Σij(x, ξ); i, j = 1, 2 and σij(ξ); i, j = 1, 2 are presented graphically using computer
program Maple 18 and they are included into the Appendix. Using the thermal stresses
Σij(x, ξ); i, j = 1, 2 (23) - (25) of a unit point heat source, the thermal stresses for a
particular boundary value problems can be determined caused by the internal heat source
and/or the temperature gradient applied to one or both line in the quarter-plane of the
boundary conditions indicated. Using the thermal stresses σij(ξ); i, j = 1, 2 (33) - (35),
it is easy to determine the thermal stresses by the temperature gradient of any value,
applied within any segment of the line Γ20.
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Appendix. Graphics of normal thermal stresses Σ11,Σ22, σ11, σ22 and
tangential thermal stresses Σ12, σ12 in the thermoelastic quarter-plane,
caused by the unit point heat source and by the temperature gradient

Graphics of the thermal stresses Σ11(x, ξ),Σ22(x, ξ) and Σ12(x, ξ) caused by a unit
point heat source applied in the point x1 = 5m,x2 = 5m within quarter-plane P
were constructed using computer program Maple 18. Graphics of the thermal stresses
σ11(ξ), σ22(ξ) and σ12(ξ) caused by the temperature gradient T0 = 50K acting on a seg-
ment a ≤ y1 ≤ b, (a = 4m, b = 6m) of the boundary line Γ20(0 ≤ y1 < ∞; y2 = 0)
were constructed using computer program Maple 18. The value of elastic and thermal
constants are: the Poisson ration ν = 0, 3; modulus of elasticity E = 2, 1 · 105MPa and
coefficient of linear thermal expansion αt = 1, 2 · 10−5(K−1).

Normal thermal stresses Σ11(x, ξ) of a unit heat source applied in the point x1 =
5m,x2 = 5m calculated by the formula (23) are presented in the Figure 3, a. Normal
thermal stresses σ11(ξ) caused by the temperature gradient T0 = 50K calculated by the
formula (33) are presented in the Figure 3, b.

a) b)

Σ
1
1
[M

P
a
]

σ
1
1
[M

P
a
]

Figure 3. Graphics of normal thermal stresses Σ11(x, ξ) and σ11(ξ) in
the quarter-plane P in dependence of 0 ≤ ξ1, ξ2 ≤ 10, caused by a unit
heat source applied in the point x1 = 5m,x2 = 5m - Figure 3, a; and by
the temperature gradient T0 = 50K on the segment 4m ≤ y1 ≤ 6m of
the boundary line Γ20 - Figure 3, b.

Analyzing the Figure 3 graphics one can observe the following:

- the boundary conditions are respected: on the marginal line Γ10(ξ1 = 0; 0 ≤ ξ2 <
∞)→ Σ11(x, ξ) = 0 (Figure 3, a); σ11(ξ) = 0 (Figure 3, b);

- graphics have a local maximum: in the point of application of the unit heat
source x1 = 5m,x2 = 5m (Figure 3, a) and on the segment 4m ≤ y1 ≤ 6m on the
marginal line Γ20 by the temperature gradient (Figure 3, b).
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Normal thermal stresses Σ22(x, ξ) of a unit heat source applied in the point x1 =
5m,x2 = 5m calculated by the formula (24) are presented in the Figure 4, a. Normal
thermal stresses σ22(ξ) caused by the temperature gradient T0 = 50K calculated by the
formula (34) are presented in the Figure 4, b.
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Figure 4. Graphics of normal thermal stresses Σ22(x, ξ) and σ22(ξ) in
the quarter-plane P in dependence of 0 ≤ ξ1, ξ2 ≤ 10, caused by a unit
heat source applied in the point x1 = 5m,x2 = 5m - Figure 4, a; and by
the temperature gradient T0 = 50K on the segment 4m ≤ y1 ≤ 6m of
the boundary line Γ20 - Figure 4, b.

Analyzing the Figure 4 graphics one can observe the following:

- the boundary conditions are respected: on the marginal line Γ20(0 ≤ ξ1 <∞; ξ2 =
0)→ Σ22(x, ξ) = 0 (Figure 4, a); σ22(ξ) = 0 (Figure 4, b);

- the graphic (Figure 4, a) has a local maximum in the point of application of
the unit heat source x1 = 5m,x2 = 5m; and the graphic (Figure 4, b) has a
discontinuity near the points a = 4m, b = 6m on the segment 4m ≤ y1 ≤ 6m of
the boundary line Γ20.

Tangential thermal stresses Σ12(x, ξ) of a unit heat source applied in the point x1 =
5m,x2 = 5m calculated by the formula (25) are presented in the Figure 5, a. Normal
thermal stresses σ12(ξ) caused by the temperature gradient T0 = 50K calculated by the
formula (35) are presented in the Figure 5, b.

Analyzing the Figure 5 graphics one can observe the following:

- the boundary conditions are respected: on the marginal line Γ10(ξ1 = 0; 0 ≤ ξ2 <
∞)→ Σ12(x, ξ) = 0 (Figure 5, a); σ12(ξ) = 0 (Figure 5, b);

- the graphic (Figure 5, a) has a discontinuity in the point of application of the
unit heat source x1 = 5m,x2 = 5m; and the graphic (Figure 5, b) has a local
maximum at the points a = 4m, b = 6m on the segment 4m ≤ y1 ≤ 6m of the
boundary line Γ20 .
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Figure 5. Graphics of tangential thermal stresses Σ12(x, ξ) and σ12(ξ)
in the quarter-plane P in dependence of 0 ≤ ξ1, ξ2 ≤ 10, caused by a unit
heat source applied in the point x1 = 5m,x2 = 5m - Figure 5, a; and by
the temperature gradient T0 = 50K on the segment 4m ≤ y1 ≤ 6m of
the boundary line Γ20 - Figure 5, b.
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