ON THE NATURAL q^2-ANALOGUE OF THE GENERALIZED GEGENBAUER FORM

I. BEN SALAH AND L. KHÉRIJI

Abstract. The aim of this paper is to highlight a q^2-analogue of the generalized Gegenbauer polynomials orthogonal with respect to the form $G(\alpha, \beta, q^2)$. Integral representation and discrete measure of $G(\alpha, \beta, q^2)$ are given for some values of parameters.

1. Introduction

The generalized Gegenbauer orthogonal polynomials is the one of monic orthogonal polynomials sequences which appear in many applications like the weighted ℓ^p mean convergence of Hermite-Fejér interpolation, the Clifford analysis and the Lie algebra A_2 [5] [13] [15]. The generalized Gegenbauer orthogonal polynomials is in connection with the Dunkl-classical character [3].

Denoting by $\{S_n\}_{n \geq 0}$ the (MOPS) of the generalized Gegenbauer polynomials and let $G(\alpha, \beta)$ be its corresponding regular form. The (MOPS) $\{S_n\}_{n \geq 0}$ satisfies the three-term recurrence relation (see (8) below) [4]

$$
\begin{align*}
\beta_n &= 0, \\
\gamma_{2n+1} &= \frac{(n + \alpha + 1)(n + \alpha + \beta + 1)}{(2n + \alpha + \beta + 1)(2n + \alpha + \beta + 2)} (n + 1)(n + \alpha + 1), \\
\gamma_{2n+2} &= \frac{(2n + \alpha + \beta + 2)(2n + \alpha + \beta + 3)}{(2n + \alpha + \beta + 2)(2n + \alpha + \beta + 3)},
\end{align*}
$$

with the positive-definite case occurring for $\alpha > -1$, $\beta > -1$.

In [1], the authors proved that the generalized Gegenbauer form $G(\alpha, \beta)$ is D-semiclassical of class one satisfying the functional equation

$$
D\left(x(x^2 - 1)G(\alpha, \beta)\right) + \left\{ -2(\alpha + \beta + 2)x^2 + 2(\beta + 1) \right\}G(\alpha, \beta) = 0
$$

for $\alpha \neq -n - 1$, $\beta \neq -n - 1$, $\beta \neq -\frac{1}{2}$, $\alpha + \beta \neq -n - 1$, $n \geq 0$ from which they recovered an integral representation and derived the moments of $G(\alpha, \beta)$ for all $f \in P$, $\Re \alpha > -1$, $\Re \beta > -1$

$$
\langle G(\alpha, \beta), f \rangle = \frac{\Gamma(\alpha + \beta + 2)}{\Gamma(\alpha + 1)\Gamma(\beta + 1)} \int_{-1}^{+1} (1 - x^2)^{\alpha} |x|^{2\beta + 1} f(x) dx,
$$

$$
G(\alpha, \beta)_{2n} = \frac{\Gamma(\alpha + \beta + 2)\Gamma(n + \alpha + \beta + 2)}{\Gamma(\beta + 1)\Gamma(n + \alpha + \beta + 2)}, \quad (G(\alpha, \beta))_{2n+1} = 0, \quad n \geq 0.
$$

For other characterizations of the generalized Gegenbauer polynomials as a consequence of its D-semiclassical character see [2]. To enrich the quantum calculus it is interesting to build some q-analogous of the generalized Gegenbauer polynomials. In fact, the problem

2010 Mathematics Subject Classification. 33C45, 42C05.

Key words and phrases. q-difference operator, H_q-semiclassical form, q-distributional equation, moments, discrete measure, integral representation.
of defining q-analogous of symmetrical (MOPS) has been the interest of some authors from different point of views [4, 6, 7, 13].

In [7], the classification of the symmetric H_q-semiclassical orthogonal q-polynomials of class one is given where H_q is the q-difference operator. Among the obtained canonical situations we get the natural H class one is given where

\[
\begin{cases}
\beta_n = 0, \\
\gamma_{2n+1} = q^{2n} \frac{(\alpha + \beta + 2 + [n-1]_q)\beta + 1 + [n]_q}{(\alpha + \beta + 2 + [2n-1]_q)(\alpha + \beta + 2 + [2n]_q)}, \\
\gamma_{2n+2} = q^{2n}[n+1]_q \frac{(\alpha + \beta + 2 + [2n]_q)(\alpha + \beta + 2 + [2n+1]_q)}{\alpha + \beta + 2 - (\beta + 1)q^{2n} + [n]_q^2},
\end{cases}
\]

where

\[|n|_q := \frac{q^n - 1}{q - 1}, \quad q \neq 1, \quad n \geq 0.\]

Also in that work it is showed that the form $\mathcal{G}(\alpha, \beta, q^2)$ is H_q-semiclassical of class one for $\alpha + \beta \neq \frac{2-q^{(n+1)}}{q-1}$. The corresponding $(MOPS)$ is H_q-semiclassical orthogonal with respect to the form $\mathcal{G}(\alpha, \beta, q^2)$ for $\alpha + \beta \neq \frac{2-q^{(n+1)}}{q-1}$, $\gamma = 1$, $\alpha + \beta + 2 - (\beta + 1)q^{2n} + [n]_q^2 \neq 0$, $n \geq 0$ and having the recurrence coefficients

\[
\begin{cases}
\beta_n = 0, \\
\gamma_{2n+1} = q^{2n} \frac{(\alpha + \beta + 2 + [n-1]_q)(\beta + 1 + [n]_q)}{(\alpha + \beta + 2 + [2n-1]_q)(\alpha + \beta + 2 + [2n]_q)}, \\
\gamma_{2n+2} = q^{2n}[n+1]_q \frac{(\alpha + \beta + 2 + [2n]_q)(\alpha + \beta + 2 + [2n+1]_q)}{\alpha + \beta + 2 - (\beta + 1)q^{2n} + [n]_q^2},
\end{cases}
\]

where

\[|n|_q := \frac{q^n - 1}{q - 1}, \quad q \neq 1, \quad n \geq 0.\]

Also in that work it is showed that the form $\mathcal{G}(\alpha, \beta, q^2)$ is H_q-semiclassical of class one for $\alpha + \beta \neq \frac{2-q^{(n+1)}}{q-1}$. The corresponding $(MOPS)$ is H_q-semiclassical orthogonal with respect to the form $\mathcal{G}(\alpha, \beta, q^2)$ for $\alpha + \beta \neq \frac{2-q^{(n+1)}}{q-1}$, $\gamma = 1$, $\alpha + \beta + 2 - (\beta + 1)q^{2n} + [n]_q^2 \neq 0$, $n \geq 0$, $\beta \neq \frac{1}{q^{(n+1)}} - 1$ satisfying the q-distributional equation

\[
H_q \left(x(x-1)\mathcal{G}(\alpha, \beta, q^2) \right) - (q+1) \left((\alpha + \beta + 2)x^2 - (\beta + 1) \right) \mathcal{G}(\alpha, \beta, q^2) = 0.
\]

When $q \to 1$ in (5) and (7) we recover (1)-(2) since $|n|_q$ tends to n and H_q tends to D. So the aim of our contribution is to highlight the moments, integral representation and discrete measure for $\mathcal{G}(\alpha, \beta, q^2)$ when it is possible.

2. Preliminaries

Let \mathcal{P} be the vector space of polynomials with coefficients in \mathbb{C} and let \mathcal{P}' be its dual. We denote by (u, f) the effect of a form $u \in \mathcal{P}'$ (linear functional) on $f \in \mathcal{P}$. In particular, we denote by $(u)_n := (u, x^n)$, $n \geq 0$ the moments of u. Let $\{P_n\}_{n \geq 0}$ be a sequence of monic polynomials with $\deg P_n = n$, $n \geq 0$. The sequence $\{P_n\}_{n \geq 0}$ is called orthogonal (MOPS) if we can associate with it a form u ($(u)_0 = 1$) and a sequence of numbers $\{r_n\}_{n \geq 0}$ ($r_n \neq 0$, $n \geq 0$) such that

\[
(u, P_n P_m) = r_n \delta_{n,m}, \quad n, m \geq 0
\]

and the form u is then said regular. The (MOPS) $\{P_n\}_{n \geq 0}$ fulfills the three-term recurrence relation

\[
\begin{cases}
P_0(x) = 1, \quad P_1(x) = x - \beta_0, \\
P_{n+2}(x) = (x - \beta_{n+1})P_{n+1}(x) - \gamma_{n+1}P_n(x), \quad n \geq 0,
\end{cases}
\]

where

\[
\beta_n = \frac{(u, x P_{n}^2)}{r_n}; \quad \gamma_{n+1} = \frac{r_{n+1}}{r_n} \neq 0, \quad n \geq 0.
\]

The regular form u is positive definite if and only if $\forall n \geq 0$, $\beta_n \in \mathbb{R}$, $\gamma_{n+1} > 0$. Also, its corresponding (MOPS) $\{P_n\}_{n \geq 0}$ is symmetric if and only if $\beta_n = 0$, $n \geq 0$ or equivalently $(u)_{2n+1} = 0$, $n \geq 0$.

\[60 \quad \text{I. BEN SALAH AND L. KHÉRIJI}\]
Let us introduce some useful operations in \mathcal{P}. For any form u, any $a \in \mathbb{C} - \{0\}$, any $c \in \mathbb{C}$ and any $q \neq 1$, we let $Du = u'$, $h_a u$, $(x - c)^{-1} u$ and $H_q u$, be the forms defined by duality [11, 12]

$$\langle u', f \rangle := -\langle u, f' \rangle, \langle h_a u, f \rangle := \langle u, h_a f \rangle,$$

and

$$\langle H_q u, f \rangle := -\langle u, H_q f \rangle,$$

for all $f \in \mathcal{P}$ where

$$\langle h_a f \rangle(x) = f(ax), \quad \langle \theta_c f \rangle(x) = \frac{f(x) - f(c)}{x - c}, \quad \langle H_q f \rangle(x) = \frac{f(qx) - f(x)}{(q - 1)x} \ [8].$$

We will usually suppose that $q \in \tilde{C} := \mathbb{C} - \left(\{0\} \cup \bigcup_{n \geq 0} \{z \in \mathbb{C}, z^n = 1\}\right)$. When $q \to 1$, we again meet the derivative D.

A form u is called H_q-semiclassical when it is regular and there exist two polynomials Φ and Ψ, Φ monic, $\deg \Phi = t \geq 0$, $\deg \Psi = p \geq 1$ such that

$$H_q(\Phi u) + \Psi u = 0 \ (9)$$

the corresponding orthogonal sequence $\{P_n\}_{n \geq 0}$ is called H_q-semiclassical [9]. The H_q-semiclassical form u is said to be of class $s = \max(p - 1, t - 2) \geq 0$ if and only if [10]

$$\prod_{c \in \mathcal{Z}_\Phi} \{|q(h_q \Psi)(c) + (H_q \Phi)(c)| + |(u, q(\theta_c \Psi) + (\theta_c \circ \theta_c \Phi))|\} > 0, \quad (10)$$

where \mathcal{Z}_Φ is the set of zeros of Φ.

Remark 1. When $q \to 1$ in [9]-[10] we meet the D-semiclassical character [11, 12].

Regarding integral representations through weight-functions for a H_q-semiclassical form u satisfying [9], we look for a function U such that

$$\langle u, f \rangle = \int_{-\infty}^{+\infty} U(x) f(x) dx, \quad f \in \mathcal{P}, \quad (11)$$

where we suppose that U is regular as far as necessary. On account of [9], we get [9]

$$\int_{-\infty}^{+\infty} \{q^{-1}(H_{q^{-1}}(\Phi U)) (x) + \Psi(x)U(x)\} f(x) dx = 0, \quad f \in \mathcal{P},$$

with the additional condition [9]

$$\lim_{\varepsilon \to +0} \int_{\varepsilon}^{1} \frac{U(x) - U(-x)}{x} dx \quad (12)$$

exists or is continuous at the origin. Therefore

$$q^{-1}(H_{q^{-1}}(\Phi U)) (x) + \Psi(x)U(x) = \lambda g(x), \quad (13)$$

where $\lambda \in \mathbb{C}$ and g is a locally integrable function with rapid decay representing the null form. For instance

$$g(x) = \begin{cases} 0, & x \leq 0, \\ e^{-x^2} \sin x^2, & x > 0, \end{cases}$$

was given by Stieltjes [16]. When $\lambda = 0$, the equation (13) becomes

$$\Phi(q^{-1}x)U(q^{-1}x) = \{\Phi(x) + (q - 1)x\Psi(x)\} U(x),$$
so that, if \(q > 1 \), we have
\[
U(q^{-1}x) = \frac{\Phi(x) + (q - 1)q\Psi(x)}{\Phi(q^{-1}x)} U(x), \ x \in \mathbb{R}, \quad (14)
\]
and if \(0 < q < 1 \), with \(x \to qx \), we have
\[
U(qx) = \frac{\Phi(x)}{\Phi(qx) + (q - 1)qx\Psi(qx)} U(x), \ x \in \mathbb{R}. \quad (15)
\]
Lastly, let us recall the following standard expressions needed to the sequel \[6, 9\]
\[
\text{Lastly, let us recall the following standard expressions needed to the sequel [6, 9].}
\]
\[
(a; q)_n := \prod_{k=1}^{n} (1 - aq^{k-1}), \ n \geq 1, \quad (16)
\]
\[
(a; q)_\infty := \prod_{k=0}^{+\infty} (1 - aq^k), \ |q| < 1, \quad (17)
\]
\[
(a; q)_n = \frac{(a; q)_\infty}{(aq^n; q)_\infty}, \ 0 < q < 1. \quad (18)
\]
\[
(a; q)_n = (-1)^n a^n(a^{-1}; q^{-1})_n q^{\frac{1}{2}n(n-1)}, \ n \geq 0, \quad (19)
\]
the \(q \)-binomial theorem
\[
\sum_{k=0}^{+\infty} (a; q)_k (q; q)_k z^k = \frac{(a z; q)_\infty}{(z; q)_\infty}, \ |z| < 1, \ |q| < 1, \quad (20)
\]
the \(q \)-analogue of the exponential function
\[
\sum_{k=0}^{+\infty} \frac{q^{\frac{1}{2}k(k-1)}}{(q; q)_k} z^k = (1 - z; q)_\infty, \ |q| < 1. \quad (21)
\]

3. MOMENTS, DISCRETE MEASURE AND INTEGRAL REPRESENTATION OF \(G(\alpha, \beta, q^2) \)

Firstly, let us state this technical lemma needed to the sequel and is easy to establish:

Lemma 1. Let
\[
\xi_{\mu}(q) = 1 + (\mu + 1)(1 - q^2), \quad q > 0, \ \mu > -1, \quad (22)
\]
and
\[
q(\mu, \omega) = \sqrt{1 + \frac{\omega}{\mu + 1}}, \ \mu > -1, \ \omega > -\mu - 1. \quad (23)
\]
We have
\[
\xi_{\mu}(q) = 1 \iff q = 1, \ \xi_{\mu}(q) = 0 \iff q = q(\mu, 1), \ \xi_{\mu}(q) = -1 \iff q = q(\mu, 2), \quad (24)
\]
\[
0 < \xi_{\mu}(q) < 1 \iff q \in [q(\mu, 1), q(\mu, 2)[, \ \xi_{\mu}(q) > 1 \iff q \in]0, 1[. \quad (24)
\]
Secondly, from \[5\] and according to the lemma \[1\], the natural \(q \)-analogue of the generalized Gegenbauer orthogonal polynomials is positive definite for \(0 < q < 1, \ \alpha > -1, \ \beta > -1 \) or \(1 < q < q(\beta, 1), \ \alpha > -1, \ \beta > -1 \).

Thirdly, from the \(H_q \)-semiclassical of class one conditions \(\alpha + \beta \neq \frac{3 - 2q^2}{q^2 - 1}, \ \alpha + \beta \neq -[n]q^2 - 2, \ \beta \neq -[n]q^2 - 1, \ \alpha + \beta + 2 - (\beta + 1)q^{2n} + [n]q^2 \neq 0, \ n \geq 0, \ \beta \neq \frac{1}{q(q+1)} - 1 \) concerning the form \(G(\alpha, \beta, q^2) \) and by virtue of the lemma \[1\], another time we get
\[
\left\{ \begin{array}{l}
\xi_{\alpha + \beta + 1}(q) \neq 0, \ \xi_{\beta}(q) \neq q^{-1}, \\
\xi_{\alpha + \beta + 1}(q) \neq q^{2n}, \ \xi_{\beta}(q) \neq q^{2n}, \ \xi_{\alpha + \beta + 1}(q) \neq q^{2n}\xi_{\beta}(q), \ n \geq 0.
\end{array} \right. \quad (25)
\]
Now, we are able to highlight discrete measure and integral representations of $G(\alpha, \beta, q^2)$ in the positive definite case and for some values of parameters.

Proposition 1. The form $G(\alpha, \beta, q^2)$ has the following properties.

1. The moments of $G(\alpha, \beta, q^2)$ are

$$G(\alpha, \beta, q^2)_{2n+1} = 0,$$

$$G(\alpha, \beta, q^2)_0 = 1, G(\alpha, \beta, q^2)_{2n} = \prod_{k=1}^{n} \left(q^{2k-2} - \xi_\beta(q)\right), \quad n \geq 0. \quad (26)$$

2. For all $\alpha > -1, \beta > -1$ and $0 < q < 1$, the form $G(\alpha, \beta, q^2)$ has the discrete measure

$$G(\alpha, \beta, q^2) = \frac{(\xi_\beta(q)^{-1}; q^2)}{(\xi_{\alpha+\beta+1}(q)^{-1}; q^2)} \sum_{k=0}^{+\infty} \Delta_k \left(q^k \sqrt{\frac{\xi_\beta(q)}{\xi_{\alpha+\beta+1}(q)}} - q^k \sqrt{\frac{\xi_\beta(q)}{\xi_{\alpha+\beta+1}(q)}}\right) \quad (27)$$

where

$$\Delta_k = \frac{\xi_\beta(q)^{-1}}{2} \sum_{l=0}^{k} \frac{q^{2l} \xi_\beta(q)^{l}}{(q^2; q^2)^{l}(q^{-2}; q^{-2})_{k-l}} \left(-\frac{\xi_\beta(q)}{\xi_{\alpha+\beta+1}(q)}\right)^l, \quad k \geq 0. \quad (28)$$

3. For all $\alpha > -1, \beta > -1$ and $1 < q < q(\beta, 1)$, the form $G(\alpha, \beta, q^2)$ has the discrete measure

$$G(\alpha, \beta, q^2) = \frac{(\xi_\beta(q); q^{-2})}{(\xi_{\alpha+\beta+1}(q); q^{-2})} \sum_{k=0}^{+\infty} \Lambda_k \left(q^{-k} - \delta q^{-k}\right) \quad (29)$$

where

$$\Lambda_k = \frac{(\xi_\beta(q)^{-1})^k}{2} \sum_{l=0}^{k} \frac{q^{-2l} \xi_\beta(q)^{l}}{(q^{-2}; q^{-2})^{l}(q^2; q^2)_{k-l}} \left(-\frac{q\xi_{\alpha+\beta+1}(q)}{\xi_\beta(q)}\right)^l, \quad k \geq 0. \quad (30)$$

Proof. For [1], equivalently with [7], we have

$$(H_q \left(x^2 - 1\right) G(\alpha, \beta, q^2)) - (q + 1) \left((\alpha + \beta + 2)x^2 - (\beta + 1)\right) G(\alpha, \beta, q^2), x^n = 0, \quad n \geq 0. \quad (22)$$

Consequently, according to the symmetric character of this form and the definition in [22], this yields the recurrence relation

$$\left\{ \begin{array}{l} (G(\alpha, \beta, q^2))_0 = 1; \ G(\alpha, \beta, q^2))_1 = 0, \\
(q^n - \xi_{\alpha+\beta+1}(q)) (G(\alpha, \beta, q^2))_{n+2} = (q^n - \xi_\beta(q)) \left(G(\alpha, \beta, q^2)\right)_n, \quad n \geq 0. \end{array} \right. \quad (27)$$

Thus the desired result [26] since the properties in [25].

To establish [27] and [29], by virtue of [24]-[25] and [16]-[19] we may write the moment of index even in [26] as follows: for all $n \geq 0$

$$(G(\alpha, \beta, q^2))_{2n} = \left\{ \begin{array}{ll} \left(\frac{\xi_\beta(q)}{\xi_{\alpha+\beta+1}(q)}\right)^n (\xi_\beta(q)^{-1}; q^2)_{\infty}, & 0 < q < 1, \\
\left(\frac{\xi_\beta(q)}{\xi_{\alpha+\beta+1}(q)}\right)^n (\xi_\beta(q)^{-1}; q^{-2})_{\infty}, & q > 1. \end{array} \right. \quad (31)$$

But, by the q-binomial theorem [20], the q-analogue of the exponential function [21], the two latest properties in [24] and since

$$\forall n \geq 0, \quad \forall q \in]0, 1[, \quad 0 < q^{2n} (\xi_\beta(q)^{-1})^{-1} < 1; \quad \forall n \geq 0, \quad \forall q \in]1, q(\beta, 1)[, \quad 0 < q^{-2n} \xi_\beta(q) < 1,$$
the equality in (31) yields to
\[
c^{C}(G(\alpha, q, \beta), x^{2n}) = \left(\frac{\xi_{\beta}(q)}{\xi_{\alpha+\beta+1}(q)} \right)^{n} \frac{((\xi_{\beta}(q))^{-1}; q^{2})_{\infty}}{((\xi_{\alpha+\beta+1}(q))^{-1}; q^{2})_{\infty}} \times \sum_{k=0}^{+\infty} \frac{(-1)^{k}q^{k(1-\beta)}(\xi_{\alpha+\beta+1}(q))^{-k}}{(q^{2}; q^{2})_{k}} \sum_{k=0}^{+\infty} (-1)^{k}q^{k(1-\beta)}(\xi_{\alpha+\beta+1}(q))^{-k} q^{2nk}, \quad 0 < q < 1, \quad n \geq 0,
\]
and
\[
\langle G(\alpha, \beta, q^{2}), x^{2n} \rangle = \frac{((\xi_{\beta}(q))^{-1}; q^{2})_{\infty}}{((\xi_{\alpha+\beta+1}(q)); q^{2})_{\infty}} \times \sum_{k=0}^{+\infty} \frac{(-1)^{k}q^{k(1-\beta)}(\xi_{\alpha+\beta+1}(q))^{-k}}{(q^{2}; q^{2})_{k}} \sum_{k=0}^{+\infty} (-1)^{k}q^{k(1-\beta)}(\xi_{\alpha+\beta+1}(q))^{-k} q^{2nk}, \quad 1 < q < q(\beta, 1), \quad n \geq 0.
\]

Using the Cauchy product between the two power series in (32) since and those in (33), according to the definitions in (28) and (30) we get successively for all \(n \geq 0 \)
\[
\langle G(\alpha, \beta, q^{2}), x^{2n} \rangle = 2 \frac{((\xi_{\beta}(q))^{-1}; q^{2})_{\infty}}{((\xi_{\alpha+\beta+1}(q)); q^{2})_{\infty}} \sum_{k=0}^{+\infty} \Lambda_{k}(q^{2}n), \quad 0 < q < 1,
\]
\[
\langle G(\alpha, \beta, q^{2}), x^{2n} \rangle = 2 \frac{((\xi_{\beta}(q))^{-1}; q^{2})_{\infty}}{((\xi_{\alpha+\beta+1}(q)); q^{2})_{\infty}} \sum_{k=0}^{+\infty} \Lambda_{k}(q^{2}n), \quad 1 < q < q(\beta, 1).
\]

By the fact that the form \(G(\alpha, \beta, q^{2}) \) is symmetric we obtain the desired results and (29). Thus, the points (2)–(3) are proved.

Proposition 2. The form \(G(\alpha, \beta, q^{2}) \) has the following integral representations.

1. For \(-1 < \alpha < 0, \beta > -1, \alpha \geq q(\beta, 1) < q < 1\) and for all \(f \in \mathcal{P} \)
\[
\langle G(\alpha, \beta, q^{2}), f \rangle = K_{1} \int_{-1}^{+1} \left| x \right| \frac{\ln \left(\left| x \right| \right)}{\ln q} \frac{\left(q^{2} \xi_{\alpha+\beta+1}(q) \right) x^{2}; q^{2}}{(x^{2}; q^{2})_{\infty}} \sin \left(2\pi \frac{\ln \left(\left| x \right| \right)}{\ln q} \right) f(x) dx,
\]
where
\[
K_{1}^{-1} = 2 \int_{0}^{+1} x \frac{\ln \left(\left| x \right| \right)}{\ln q} \frac{\left(q^{2} \xi_{\alpha+\beta+1}(q) \right) x^{2}; q^{2}}{(x^{2}; q^{2})_{\infty}} \sin \left(2\pi \frac{\ln \left(\left| x \right| \right)}{\ln q} \right) dx.
\]
2. For \(\alpha \geq 0, \beta > -1, q(\alpha+\beta+1, -\alpha) < q < 1\) and for all \(f \in \mathcal{P} \)
\[
\langle G(\alpha, \beta, q^{2}), f \rangle = K_{2} \int_{-1}^{+1} \left| x \right| \frac{\ln \left(\left| x \right| \right)}{\ln q} \frac{\left(q^{2} \xi_{\alpha+\beta+1}(q) \right) x^{2}; q^{2}}{(x^{2}; q^{2})_{\infty}} \sin \left(2\pi \frac{\ln \left(\left| x \right| \right)}{\ln q} \right) f(x) dx,
\]
where
\[
K_{2}^{-1} = 2 \int_{0}^{+1} x \frac{\ln \left(\left| x \right| \right)}{\ln q} \frac{\left(q^{2} \xi_{\alpha+\beta+1}(q) \right) x^{2}; q^{2}}{(x^{2}; q^{2})_{\infty}} \sin \left(2\pi \frac{\ln \left(\left| x \right| \right)}{\ln q} \right) dx.
\]
(3) For $\alpha \geq 0$, $\beta > -1$, $1 < q < q_{(\alpha + \beta + 1, -1)}$ and for all $f \in \mathcal{P}$

$$\langle G(\alpha, \beta, q^2), f \rangle = K_3 \int_{-q}^{q} |x|^{-\frac{\ln \xi_{\beta}(q)}{\ln q} - 1} \left(\frac{q^{-2}x^2; q^{-2}}{\xi_{\alpha+\beta+1}(q) x^2; q^{-2}} \right) f(x) dx,$$

where

$$K_3^{-1} = 2 \int_{0}^{q} x^{-\frac{\ln \xi_{\beta}(q)}{\ln q} - 1} \left(\frac{q^{-2}x^2; q^{-2}}{\xi_{\alpha+\beta+1}(q) x^2; q^{-2}} \right) dx.$$

(4) For $-1 < \alpha < 0$, $\beta > -1$, $1 < q < q_{(\alpha + \beta + 1, 1)}$ and for all $f \in \mathcal{P}$

$$\langle G(\alpha, \beta, q^2), f \rangle = K_4 \int_{-q}^{q} \left| x \right|^{-\frac{\ln \xi_{\beta}(q)}{\ln q} - 1} \left(\frac{q^{-2}x^2; q^{-2}}{\xi_{\alpha+\beta+1}(q) x^2; q^{-2}} \right) \sin\left(2\pi \frac{\ln \left| \frac{\xi_{\alpha+\beta+1}(q)}{\xi_{\beta}(q)} x \right|}{\ln q^{-1}} \right) f(x) dx,$$

where

$$K_4^{-1} = 2 \int_{0}^{q} x^{-\frac{\ln \xi_{\beta}(q)}{\ln q} - 1} \left(\frac{q^{-2}x^2; q^{-2}}{\xi_{\alpha+\beta+1}(q) x^2; q^{-2}} \right) \sin\left(2\pi \frac{\ln \left| \frac{\xi_{\alpha+\beta+1}(q)}{\xi_{\beta}(q)} x \right|}{\ln q^{-1}} \right) dx.$$

Proof. To establish the integral representations in (3)-(4) and by virtue of (11), we look for a function U representing $G(\alpha, \beta, q^2)$. It is seen from the q-distributional equation (7) that

$$\Phi(x) = x(x^2 - 1); \quad \Psi(x) = -(q + 1) ((\alpha + \beta + 2)x^2 - (\beta + 1)).$$

For (1)-(2), according to (11), (42) and (22), the q-difference equation (15) becomes

$$U(qx) = (q^2\xi_{\beta}(q))^{-1} \left(1 - \frac{q^2}{1 - q^2\xi_{\alpha+\beta+1}(q) x^2} \right) U(x).$$

(43) But, taking $\alpha > -1$, $\beta > -1$, $0 < q < 1$, and using (23)-(24) it is quite straightforward to get the following equivalences

$$0 < \frac{\xi_{\beta}(q)}{q^2\xi_{\alpha+\beta+1}(q)} < 1 \iff q > q_{(\alpha + \beta + 1, -\alpha)},$$

(44)

$$0 < q_{(\alpha + \beta + 1, -\alpha)} < 1 \iff \alpha \geq 0,$$

(45)

and

$$q_{(\alpha + \beta + 1, -\alpha)} > 1 \iff \alpha < 0.$$

(46) Consequently, if $-1 < \alpha < 0$, $\beta > -1$, $0 < q < 1$ we seek U as

$$U(x) = \begin{cases} V(x) \left(\frac{q^2\xi_{\alpha+\beta+1}(q)}{\xi_{\beta}(q)} x^2; q^2 \right) \infty, & |x| < 1, \\ 0, & |x| \geq 1. \end{cases}$$

(47) Replacing in (43) this leads to $V(qx) = (q^2\xi_{\beta}(q))^{-1} V(x)$, therefore

$$V(x) = |x|^{-\frac{\ln \xi_{\beta}(q)}{\ln q} - 1} W(x)$$
with \(W(qx) = W(x) \). Taking into account (47) we choose
\[
W(x) = K_1 \left| \sin \left(2\pi \frac{\ln |x|}{\ln q} \right) \right|.
\]

Thus, for \(0 < |x| < \frac{1}{2} \) we have
\[
0 \leq U(x) \leq K_1 |x|^{-\frac{\ln \xi_\beta(q)}{\ln q} - 1} \frac{\left(q^2 \xi_{\alpha+\beta+1}(q) x^2; q^2 \right)_\infty}{(x^2; q^2)_\infty} \sim_{x \to 0} \frac{K_1}{|x|^{-\frac{\ln \xi_\beta(q)}{\ln q} - 1}} \frac{\ln \xi_\beta(q)}{\ln q} + 1 < 1,
\]
and
\[
U(x) \sim_{|x| \to 1} 2\pi K_1 \left(q^2 \xi_{\alpha+\beta+1}(q); q^2 \right)_\infty \ln |x| |\prod_{k=0}^{\infty} (1 - q^{2k})|^{-1} x^2 |x|^{-1} \frac{\ln q}{|\prod_{k=0}^{\infty} (1 - q^{2k})|^{-1}}.
\]

It follows the result in (34) with (35) since the first condition in (12) is valid.

Also, if \(\alpha \geq 0, \beta > -1, q(\alpha+\beta+1,-\alpha) < q < 1 \) we seek \(U \) as
\[
U(x) = \begin{cases} V(x) \frac{\left(q^2 \xi_{\alpha+\beta+1}(q) x^2; q^2 \right)_\infty}{(x^2; q^2)_\infty}, & |x| \leq \sqrt{\frac{\xi_\beta(q)}{q^2 \xi_{\alpha+\beta+1}(q)}}, \\ 0, & |x| > \sqrt{\frac{\xi_\beta(q)}{q^2 \xi_{\alpha+\beta+1}(q)}}. \end{cases}
\]

Replacing in (43) this leads to \(V(qx) = (q \xi_\beta(q))^{-1} V(x) \), therefore
\[
V(x) = K_2 |x|^{-\frac{\ln \xi_\beta(q)}{\ln q} - 1}.
\]

It follows the result in (36) with (37) since the first condition in (12) is valid.

From the hypothesis of (3)-(4), we have \(\alpha > -1, \beta > -1, 1 < q < q(\alpha+\beta+1,1) \). By virtue of (11), (42) and (22), the \(q \)-difference equation (14) becomes
\[
U(q^{-1}x) = q \xi_\beta(q) \frac{1 - \xi_{\alpha+\beta+1}(q) x^2}{1 - q^{-2} x^2} U(x).
\]

According to (24) and (45)-(46) we have
\[
0 < \xi_{\alpha+\beta+1}(q) < \xi_\beta(q) < 1, 1 < q < \min(q(\alpha+\beta+1,1), q(\beta,1)) = q(\alpha+\beta+1,1),
\]
\[
\frac{\xi_\beta(q)}{\xi_{\alpha+\beta+1}(q)} > q^2 \iff q > q(\alpha+\beta+1,-\alpha).
\]

Consequently, if \(\alpha \geq 0, \beta > -1, 1 < q < q(\alpha+\beta+1,1) \) we seek \(U \) as
\[
U(x) = \begin{cases} V(x) \frac{\left(q^{-2} x^2; q^{-2} \right)_\infty}{\xi_\beta(q)}, & |x| \leq q, \\ 0, & |x| > q. \end{cases}
\]

Replacing in (48) this leads to \(V(qx) = q \xi_\beta(q) V(x) \), therefore
\[
V(x) = K_3 |x|^{-\frac{\ln \xi_\beta(q)}{\ln q} - 1}.
\]

It follows the result in (38) with (39) since the first condition in (12) is valid.
Moreover, if \(-1 < \alpha < 0, \beta > -1, 1 < q < \min(q(\alpha + \beta + 1, -\alpha), q(\alpha + \beta + 1, 1)) = q(\alpha + \beta + 1, 1)\) we seek \(U\) as

\[
U(x) = \begin{cases}
V(x) \left(\frac{q^{-2} x^2; q^{-2}}{\xi(q)} \right), & |x| < \sqrt{\frac{\xi(q)}{\xi(\alpha + \beta + 1)}} \\
0 & |x| \geq \sqrt{\frac{\xi(q)}{\xi(\alpha + \beta + 1)}}.
\end{cases}
\]

(49)

Replacing in (48) this leads to \(V(qx) = q\xi(q) V(x)\), therefore

\[
V(x) = |x|^{-\ln \xi(q)} W(x),
\]

with \(W(q^{-1}x) = W(x)\). According to (49), one may choose

\[
W(x) = K_4 \left| \frac{\ln \xi(q)}{\ln q^{-1}} \right| \sin \left(2\pi \frac{\xi(q)}{\xi(q)} x \right).
\]

It follows the result in (40) with (41) since the first condition in (12) is valid and by a similar reasoning likewise in (1).

\[\square\]

REFERENCES

Faculté des Sciences de Monastir
Département de Mathématiques
5019, Monastir, Tunisia.
E-mail address: b.s.lina@voila.fr

Institut Préparatoire aux Études d’Ingénieurs El Manar
Campus universitaire El Manar
B.P. 244 El Manar II - 2092 Tunis, Tunisia.
E-mail address: kheriji@yahoo.fr