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A NOTE TO GEOMETRY OF COSSERAT MEDIA AND

DEFORMATION BUNDLES

MIROSLAV KUREŠ

Abstract. We study Cosserat media from the geometric point of view; in particular,

we present a construction of Cosserat deformation bundles and demonstrate the role

of the velocities bundles.

1. Introduction

In the paper, we present some ideas on two views on Cosserat media: both are geo-
metric, but the second one uses more modern formalism of higher order frame bundles.
Surely, the development of appropriate mathematical tools for a characterization of new
materials is lagging behind the technological advances. Materials, in which changes occur
in the molecular or crystalline texture at various microscopic scales (substructure) and
influence the macroscopic behaviour through peculiar interactions are commonly known,
used and created. Materials such as liquid crystals, ferroelectrics, quasicrystals, poly-
meric fluids are paradigmatic examples. The attribute complex is assigned to bodies
made of these materials in order to underline that significant substructural effects must
be accounted for.

So, our mathematical tools are mainly differential geometry methods. In modern cat-
egorical approach to differential geometry, if we interpret geometric objects as bundle
functors, then natural transformations represent a number of geometric constructions. In
this context, the result finding the bijection between natural transformations between two
Weil functors (generalizing well-known functors of higher order velocities and, of course,
the tangent functor as first of them) and corresponding morphisms of Weil algebras has the
fundamental importance. Roughly speaking, Weil bundles generalize higher order veloci-
ties bundles including also higher order semiholonomic velocities bundles.Semiholonomic
jets and velocities play an important role in the modern physics. However, the descrip-
tion of Weil algebras associated to functors of higher order semiholonomic velocities is
not known in general because of their complicated structure mainly in view of some tech-
nical problems of a combinatorial character. The case of the order 1 is trivial, the second
order case is known in the community of specialists (and described e.g. in [6], where
one reference is also to unpublished notes of Ivan Kolář) and we have some new results
about third order nonholonomic and semiholonomic velocities bundles and corresponding
Weil algebras, see e.g. [6]. In this paper, we present applications of such methods to
microstructures as was studied by Marcelo Epstein and his collaborators, see [1], [2], [3].

The brief introduction to the theory of Cosserat continua is in the Section 2, based
mainly on [4], but using also [5] and [7].

In the Section 3, we present a construction of Cosserat deformation bundles and demon-
strate the role of the velocities bundles in this geometric approach. When studied the
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prolongations of a differential system of higher order connections, Claude Ehresmann was
led to use the terminology of mechanics: so, he called jets in question nonholonomic and
semiholonomic jets. The construction of their generalized involution, the classification
of all symmetrised nonholonomic jets and the geometrical interpretation are studied in
detail only for the second order up to now; however, third order semiholonomic velocities
are newly described (as mentioned) in [6] by the stucture of their Weil algebra. Hence the
her order gradient theory for Cosserat bodies is in a relation with such results and one
may find in future very interesting application of what now appears as a pure algebra.

2. Some basics from the Cosserat brothers’ theory

Traditional mechanics of continua endowes particles of a material body with trans-
lational degrees of freedom, the Cosserat brothers’ approach endowes them with both
translational and rotational degrees of freedom. In elementary approach a body B of
dimension 1 (rods, beams) or 2 (plates, shells) or 3 in R3 is considered. For each particle

of such a body we denote by ~X an initial position and by ~d 10, ~d 20 and ~d 30 initial settings
of orthornormal directors (they are 3 for dimB = 4). In time t we have

~x( ~X, t) the actual position of the particle having the initial position ~X

~d i( ~X, t) the actual orientation of the i-th director of the particle having

the initial position ~X (i = 1, 2, 3);

so, ~x( ~X, t0) = ~X, ~d i( ~X, t0) = ~d i0 and

~x( ~X, t) = ~X + ~u( ~X, t)

~d i( ~X, t) = R( ~X, t)~d i0,

where ~u( ~X, t) is the displacement field, ~u( ~X, t0) = ~o, and R( ~X, t) is the rotation field,

R( ~X, t0) = I (the identity matrix), R( ~X, t)R>( ~X, t) = I, detR( ~X, t) = 1; naturally,

these fields are assumed smooth. Hence R( ~X, t) ∈ SO(3,R). Associating to the Lie
group G = SO(3,R) its Lie algebra g = TeG = so(3,R), we recall the well known

construction: for W( ~X, t) ∈ so(3,R) we consider the one-parameter subgroup γW : R→
so(3,R) corresponding to W (i.e. γ̇W(0) = W); then expW = I+W+W2

2! +W3

3! +· · · = R
and W is a skew-symmetric matrix field called the infinitesimal rotation. We associate a

vector field (which is called the microrotation field) ~Φ( ~X, t) to W( ~X, t) by

W = −ε~̇Φ (where ε is the Levi-Civita tensor),

in coordinates 1, Wij = −εijkΦ̇k, i.e.(
0 W12 −W31

−W12 0 W23

W31 −W23 0

)
=

(
0 −Φ̇3 Φ̇2

Φ̇3 0 −Φ̇1

−Φ̇2 Φ̇1 0

)
.

Then we obtain virtual velocities of a Cosserat continuum as

V =
(
~̇u( ~X, t), ~̇Φ( ~X, t)

)
=
(

(u̇1, u̇2, u̇3), (Φ̇1, Φ̇2, Φ̇3)
)

1in three dimensions, εijk is 1 if (i, j, k) is an even permutation of (1, 2, 3), −1 if it is an odd permu-

tation, 0 if any index is repeated
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where ~̇u and ~̇Φ are independent. In the first gradient theory, gradients of fields ~̇u, ~̇Φ are
considered and put into the set

V∇ =
(
∇~̇u,∇~̇Φ

)
=

 ∂u̇1

∂x1
∂u̇1

∂x2
∂u̇1

∂x3

∂u̇2

∂x1
∂u̇2

∂x2
∂u̇2

∂x3

∂u̇3

∂x1
∂u̇3

∂x2
∂u̇3

∂x3

 ,

 ∂Φ̇1

∂x1
∂Φ̇1

∂x2
∂Φ̇1

∂x3

∂Φ̇2

∂x1
∂Φ̇2

∂x2
∂Φ̇2

∂x3

∂Φ̇3

∂x1
∂Φ̇3

∂x2
∂Φ̇3

∂x3

 .

However, second and higher order gradient theory is also studied.
Further, the deformation measures distortion β and contortion κ are defined (see [5])

by

βij = ∇iuj −Wij

κijk = ∇iWjk;

in classical elasticity, the only deformation measure is the strain εij = 1
2 (βij + βji).

We can incorporate also the macrorotation field ~ω defined by ωi = 1
4εijk (∇kuj −∇juk)

into the picture. As the usual macrostrain is ε̄ij = 1
2 (∇iuj +∇jui), the relative strain

(cf. e. g. [7])

εrel
ij = ε̄ij + εijk

(
ωk + Φ̇k

)
and we can directly verify εij = εrel

ij − εijkωk.

3. The Cosserat configuration

In the modern differential geometry language, the material body B is a manifold without
boundary of dimension 1, 2 or 3 covered by a single coordinate chart. The configuration
of a material body B is an embedding

κ : B → R3

(R3 is understood as an affine space with the euclidean inner product). Some fixed
configuration

κ0 : B → R3

is usually called the reference configuration and for an other configuration κ a composition
χ = κ◦κ0 is called the deformation (of the macrostructure) relative to the chosen reference
configuration κ0. Denoting the coordinates in the reference configuration by Xi (i =
1, 2, 3) and in a new configuration by xi the deformation χ has a coordinate expression

xi = χi( ~X)

where smooth functions χi have smooth inverses.
Further, by the Cosserat body B we mean the frame bundle FB where microparticles

are represented by fibers FxB. The group GL(3,R) acts on the bundle FB. Here we dis-
tinguish between the micromorphic continuum (action of GL(3,R)) and micropolar con-
tinuum (action of SO(3,R)), more generally, we can consider even arbitrary G-structures.

Then the Cosserat configuration of a material body B is a principal bundle morphism

FB
K

//

π

��

FR3

π

��
B

κ
// R3
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in coordinates

xi = κi(X) = xi(X)

Ki
j = Ki

j(X);

then ∂xi

∂Xj represents the deformation gradient. So, the Cosserat deformation means the
change of vectors with respect to the deformation gradient of macromedia or indepen-

dently, i.e. in general ∂xi

∂Xj 6= Ki
j . However, they can occur kinematic restrictions or

constitutive restrictions (depending on the material).

4. Nonholonomic, semiholonomic and holonomic jets of deformations

Let us denote

xij =
∂xi

∂Xj
, Ki

jk =
∂Ki

j

∂Xk
.

Then the deformation gradient is represented by the nonholonomic second order frame
bundle with local coordinates xi, Ki

j , x
i
j , K

i
jk. Nevertheless, if we require in a neighbor-

hood of X ∈ B
Ki
j = xij

we easily derive

Ki
jk =

∂Ki
j

∂Xk
=

∂xij
∂Xk

=
∂2xi

∂Xj∂Xk
=

∂xik
∂Xj

= Ki
kj

(symmetry in lower indexes) and obtain the holonomic second order frame bundle. It is
more difficult to realize the semiholonomic Cosserat media, but Marcelo Epstein in [1]
proposes a suitable constitutive rule for the material. Then we have obtained just the
semiholonomic second order frame bundle, in which Ki

j = xij but there is no symmetry

in lower indexes of Ki
jk.

For a clearer geometric point of view, let us deal with a more general situation now.
Now, more general geometric point of view. Let us consider the nonholonomic bundle of
k–dimensional velocities of r–th order T̃ rkM = J̃r0 (Rk,M). The functor T̃ rk is naturally
equivalent to the r-times iterated functor T 1

k . Given some local coordinates xi on M i =
1, . . . ,m = dimM and tj on Rk, j = 1, . . . , k, the iterated differentiation of xi(t1, . . . , tk)

determines the induced coordinates on T̃ rkM as yij1...jr , j1, . . . , jr = 0, 1, . . . , k, which are
not symmetric in the subscripts.

For every s, 0 ≤ s ≤ r, we denote by πs : T̃ skM → M the canonical projection to

the base. Further, we denote πsb = πs
T̃ b
kM

: T̃ sk (T̃ bkM) → T̃ bkM projection with T̃ bkM as

the base space, aπ
s = T̃ ak π

s : T̃ ak (T̃ skM) → T̃ akM induced projection originating by the

posterior application of the functor T̃ ak and aπ
s
b = T̃ aπs

T̃ bM
the general case containing

both previous cases. If a or b equal zero, we do not write them. In local coordinates,
just the coordinates with s adjoining zero subscripts (the (b + 1)–th subscript is at the

beginning) are remained after the application of aπ
s
b . Projections T̃ pM → T̃ qM are of a

type aπ
s
b or they are a composition of projections of such types.

In general, we can obtain subbundles of T̃ rkM by equalizations of some projections. An

element Z ∈ T̃ rkM is called the semiholonomic k–dimensional velocity of r–th order, if for
all q = 1, . . . , r

π1
r−1(Z) = q−1π

r
r−q(Z)

is satisfied. We denote by T̄ rkM the bundle of semiholonomic k–dimensional velocities of
r–th order. In local coordinates, we identify the coordinates subscripts of which become
equal if we delete zeros in each of them.
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We say that Z ∈ J̃ra(M,N)b is invertible if there exists a Z−1 ∈ J̃rb (N,M)a such that

Z−1◦Z = jra idM and Z◦Z−1 = jrb idN . We denote by inv J̃ra(M,N)b the open submanifold
of all invertible nonholonomic r–jets and we define the r–th order nonholonomic frame
bundle as F̃ rM = inv J̃r0 (Rm,M). The group G̃rm = inv J̃r0 (Rm,Rm)0 acts smoothly on

F̃ rM on the right by the jet composition. Similarly for the semiholonomic and holonomic
cases.

So, we can apply this approach for a material body B on the place of a manifold M ,
then m = dimB = 3; we take invertible jets from R3 to B and obtain

F 2B = inv J2(R3, B), F̄ 2B = inv J̄2(R3, B) and F̃ 2B = inv J̃2(R3, B)

as holonomic, semiholonomic and nonholonomic Cosserat deformation bundles, respec-
tively.

We have thus shown what is the role of the velocities bundles in the geometric approach
to Cosserat media.
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Technická 2, 61669 Brno, Czech Republic
E-mail address: kures@fme.vutbr.cz

mailto:<kures@fme.vutbr.cz>

	1. Introduction
	2. Some basics from the Cosserat brothers' theory
	3. The Cosserat configuration
	4. Nonholonomic, semiholonomic and holonomic jets of deformations
	References

