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ON THE MAXIMUM TERM AND LOWER ORDER OF ENTIRE

MONOGENIC FUNCTIONS

SUSHEEL KUMAR AND G.S. SRIVASTAVA

Abstract. In the present paper, we study the growth properties of entire monogenic

functions. The characterizations of lower order of entire monogenic functions have

been obtained in terms of their Taylor’s series coefficients. Also we have obtained
some inequalities between order, type, maximum term and central index of entire

monogenic functions.

1. Introduction

Clifford analysis offers possibility of generalizing complex function theory to higher di-
mensions. It considers Clifford algebra valued functions that are defined in open subsets of
Rn for arbitrary finite n ∈ N and that are solutions of higher dimensional Cauchy-Riemann
systems. These are often called Clifford holomorphic or monogenic functions. In order to
make calculations more concise we use following notations, where m = (m1, . . . ,mn) ∈ Nn0
be n−dimensional multi-index and x ∈ Rn:

xm = xm1
1 . . . xmn

n . m! = m1! . . .mn!, |m| = m1 + . . .+mn.

Following Constales, Almeida and Krausshar ([2], [3]), we give some definitions and asso-
ciated properties.

By {e1, e2, . . . , en} we denote the canonical basis of the Euclidean vector space Rn.
The associated real Clifford algebra Cl0n is the free algebra generated by Rn modulo
x2 = −||x||2e0. where e0 is the neutral element with respect to multiplication of the
Clifford algebra Cl0n. In the Clifford algebra Cl0n following multiplication rule holds:

eiej + ejei = −2δije0, i, j = 1, 2, . . . , n,

where δij is Kronecker symbol. A basis for Clifford algebra Cl0n is given by the set
{eA : A ⊆ {1, 2, . . . , n}} with eA = el1el2 . . . elr , where 1 ≤ l1 < l2 < . . . < lr ≤ n,
eφ = e0 = 1. Each a ∈ Cl0n can be written in the form a =

∑
A aAeA with aA ∈

R. The conjugation in Clifford algebra Cl0n is defined by ā =
∑
A aAēA, where ēA =

ēlr ēlr−1
. . . ēl1 and ēj = −ej for j = 1, 2, . . . , n, ē0 = e0 = 1. The linear subspace

spanR{1, e1, . . . , en} = R ⊕ Rn ⊂ Cl0n is the so called space of para vectors z = x0 +
x1e1 + x2e2 + . . .+ xnen which we simply identify with Rn+1. Here x0 = Sc(z) is scalar
part and x = x1e1 + x2e2 + . . . + xnen = Vec(z) is vector part of para vector z. The
Clifford norm of an arbitrary a =

∑
A aAeA is given by

||a|| =

(∑
A

|aA|2
)1/2

.

Each para vector z ∈ Rn+1\{0} has an inverse element in Rn+1 which can be represented
in the form z−1 = z/||z||2.
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The generalized Cauchy-Riemann operator in Rn+1 is given by

D ≡ ∂

∂x0
+

n∑
i=1

ei
∂

∂xi
.

If U ⊆ Rn+1 is an open set, then a function g : U → Cl0n is called left (right) monogenic
at a point z ∈ U if Dg(z) = 0 (gD(z) = 0). The functions which are left (right) monogenic
in the whole space are called left (right) entire monogenic functions.

Let An+1 be n-dimensional surface area of (n + 1)-dimensional unit ball and q0(z) =
z

||z||n+1 be Cauchy kernel function. Then every function g which is monogenic in a neigh-

borhood of closure G of domain G satisfies the following equation ([3, p. 766])

g(z) =
1

An+1

∫
∂G

q0(z − ζ) dτ(ζ)g(ζ), for all z ∈ G,

where

dτ(ζ) =
n∑
j=0

(−1)jej d̂ζj

with

d̂ζj = dζ0 ∧ . . . ∧ dζj−1 ∧ dζj+1 ∧ . . . ∧ dζn
is the oriented outer normal surface measure. If g is a left monogenic function in a ball
||z|| < R, then for all ||z|| < r with 0 < r < R,

g(z) =

∞∑
|m|=0

Vm(z)am. (1)

In (1) Vm(z) are called Fueter polynomials and are given as

Vm(z) =
m!

|m|!
∑

π∈perm(m)

zπ(m1) . . . zπ(mn),

where perm(m) is the set of all permutations of the sequence (m1,m2, . . . ,mn) and
zi = xi − x0ei for i = 1, . . . , n and V0(z) = 1. Also in (1), {am} are Clifford numbers
which are defined by

am =
1

m!An+1

∫
||ζ||<r

qm(ζ) dτ(ζ)g(ζ)

and satisfy the inequality

||am|| ≤ c(n,m)
M(r)

r|m|
.

Here M(r) = M(r, g) = max
||z||=r

{||g(z)||} denotes the maximum modulus of the function g

in the closed ball of radius r and

qm(z) =
∂m0+m1+...+mn

∂xm0
0 ∂xm1

1 . . . ∂xmn
n

q0(z),

c(n,m) =
n(n+ 1) . . . (n+ |m| − 1)

m!
.

Let g : Rn+1 → Cl0n be an entire monogenic function. Constales, Almeida and
Krausshar [3], defined the order ρ and lower order λ of g(z) as

ρ
λ

= lim
r→∞

sup
inf

log logM(r)

log r
. (2)
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Also the lower order λ of g(z) satisfies following inequality [3, Thm. 2]

λ ≥ lim
|m|→∞

inf
|m| log |m|

log ||am/c(n,m)||−1
.

In the present paper, we have obtained a sharp estimate of lower order of entire mono-
genic functions in terms of their Taylor’s series expansion which generalized the result of
Constales, Almeida and Krausshar [3, Thm. 2].

Let g : Rn+1 → Cl0n be an entire monogenic function having order ρ(0 < ρ < ∞),
then the type σ of g(z) is given by [2]

σ = lim
r→∞

sup
logM(r)

rρ
.

We define the lower type of entire monogenic function g(z) as

$ = lim
r→∞

inf
logM(r)

rρ
.

Almeida and Krausshar [1], introduced the concept of the maximum term and central
index of entire monogenic functions. Hence, let g : Rn+1 → Cl0n be a left entire monogenic
function whose Taylor’s series representation is given by (1). Then for r > 0 the maximum
term of this entire monogenic function is given by

µ(r) = µ(r, g) = max
|m|≥0

{||am||r|m|}.

Also the index m with maximal length |m| for which maximum term is achieved is called
the central index and is denoted by

ν(r) = ν(r, g) = m.

Let g : Rn+1 → Cl0n be a left entire monogenic function with the property that in its
Taylor’s series expansion, first coefficient a0 6= 0. Then Almeida and Krausshar proved
that [1, p. 803]

log {µ(r)} − log ||a0|| =
∫ r

0

|v(t)|
t

dt.

Let g : Rn+1 → Cl0n be a left entire monogenic function of order ρ and lower order λ
and put

ρ1
λ1

= lim
r→∞

sup
inf

log logµ(r)

log r

and
ρ2
λ2

= lim
r→∞

sup
inf

log |ν(r)|
log r

. (3)

Then Almeida and Krausshar proved that [1, Prop. 5.3]

ρ ≤ ρ1 = ρ2

and

λ ≤ λ1 = λ2.

Also we define
ω1

ω2
= lim
r→∞

sup
inf

logµ(r)

rρ

and
τ1
τ2

= lim
r→∞

sup
inf

|ν(r)|
rρ

.
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2. Main results

We now prove

Theorem 1. Let g : Rn+1 → Cl0n be an entire monogenic function whose Taylor’s series
representation is given by g(z) =

∑∞
|m|=0 amVm(z). Then the lower order λ of this entire

monogenic function g(z) satisfies

λ ≥ lim
|m|→∞

inf
|m| log |m|

− log ||am/c(n,m)||
. (4)

Also if

ψ(k) = max
|m|=k

{
||am||
||am′ ||

, ||m′|| = ||m||+ 1

}
is a non-decreasing function of k, then equality holds in (4).

Proof. Write

Φ =
|m| log |m|

− log ||am/c(n,m)||
.

First we prove that λ ≥ Φ. The coefficients of an entire monogenic Taylor’s series
satisfy Cauchy’s inequality, that is

||am|| ≤M(r)c(n,m)r−|m|. (5)

From (2), for arbitrary ε > 0 and a sequence r = rk →∞ as k →∞, we have

M(r) ≤ exp
(
rλ
)
, λ = λ+ ε.

Now from (5), we get

||am|| ≤ c(n,m)r−|m| exp
(
rλ
)
.

Putting r =
(
|m|/λ

)1/λ
in the above inequality we get

||am|| ≤
(
|m|/λ

)−|m|/λ
exp

(
|m|/λ

)
or

− log ||am|| ≥
|m| log |m|

λ

[
1− log λ

log |m|
− 1

log |m|

]
or

lim
|m|→∞

inf
|m| log |m|
− log ||am||

≤ λ

or
Φ ≤ λ.

Since ε > 0 is arbitrarily small so finally we get

Φ ≤ λ.
Now we prove that λ ≤ Φ. From the assumption on ψ, ψ(k) → ∞ as k → ∞.

By the definition given in section 1, if ||am||r|m| is the maximum term for r, then for
|m1| ≤ |m| < |m2|,

||am1
||r|m1| ≤ ||am||r|m| > ||am2

||r|m2|

and for |m| = k
ψ(k − 1) ≤ r < ψ(k).

Now suppose that ||am1 ||r|m1| and ||am2 ||r|m2| are two consecutive maximum terms. Then

|m1| ≤ |m2| − 1.
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Let

|m1| ≤ k ≤ |m2|.
Then

|ν(r)| = |m1|
for

ψ(|m1∗ |) ≤ r < ψ(|m1|),
where |m1∗ | = |m1| − 1. Hence from (3) and [1, prop. 5.3], for arbitrary ε > 0 and all
r > r0(ε), we have

|m1| = |ν(r)| > rλ
′
, λ′ = λ− ε

or

|m1| = |ν(r)| ≥
{
ψ(|m1|)− q

}λ′
,

where q is a constant such that 0 < q < min
{

1, [ψ(|m1|)− ψ(|m1∗ |)]/2
}

or

logψ(|m1|) ≤ O(1) +
log |m1|
λ′

.

Further we have

ψ(|m1|) = ψ(|m1|+ 1) = . . . = ψ(|m| − 1).

Now we can write

ψ(|m0|) . . . ψ(|m∗|) =
||am0 ||
||am||

≤ [ψ(|m∗|)]|m|−|m
0|,

where |m∗| = |m| − 1 and |m| � |m0|.
Hence

||c(n,m)|| ||am
0 ||

||am||
≤ ||c(n,m)||[ψ(|m∗|)]|m|−|m

0|

or

log ||am/c(n,m)||−1 ≤ |m| logψ(|m1|) +O(1)

≤ |m| log |m1|
λ′

[1 + o(1)]

or
1

|m|
log ||am/c(n,m)||−1 ≤ log |m1|

λ′
[1 + o(1)]

or
1

|m|
log ||am/c(n,m)||−1 ≤ log |m|

λ′
[1 + o(1)]

or

λ′ ≤ |m| log |m|
− log ||am/c(n,m)||

[1 + o(1)].

Now taking limits as |m| → ∞, we get λ ≤ Φ. Hence the Theorem 1 is proved. �

Next we prove

Theorem 2. Let g : Rn+1 → Cl0n be an entire monogenic function whose Taylor’s series
representation is given by g(z) =

∑∞
|m|=0 amVm(z). Also let ρ2 <∞. Then

lim
r→∞

sup
logM(r)

logµ(r)
≤ 1.
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Proof. From [1, p.806], we have

M(r) ≤ µ(r)(2r)nρ2+ε

or
logM(r) ≤ logµ(r) + (nρ2 + ε) log(2r)

or
logM(r)

logµ(r)
≤
[
1 +

(nρ2 + ε) log(2)

logµ(r)
+

(nρ2 + ε) log(r)

logµ(r)

]
.

Proceeding to limits as r →∞ on both sides we get

lim
r→∞

logM(r)

logµ(r)
≤ 1.

Hence the Theorem 2 is proved. �

Next we prove

Theorem 3. Let g : Rn+1 → Cl0n be an entire monogenic function whose Taylor’s series
representation is given by g(z) =

∑∞
|m|=0 amVm(z). Also if 0 < ρ ≤ ρ2 <∞, then σ ≤ ω1

and $ ≤ ω2.

Proof. From Theorem 2, we have

logM(r) ≤ logµ(r)

[
1 +

(nρ2 + ε) log(2)

logµ(r)
+

(nρ2 + ε) log(r)

logµ(r)

]
or

logM(r)

rρ
≤ logµ(r)

rρ

[
1 +

(nρ2 + ε) log(2)

logµ(r)
+

(nρ2 + ε) log(r)

logµ(r)

]
.

Proceeding to limits as r →∞ on both sides we get

σ ≤ ω1

and
$ ≤ ω2.

Hence the Theorem 3 is proved. �

Next we prove

Theorem 4. Let g : Rn+1 → Cl0n be an entire monogenic function whose Taylor’s series
representation is given by g(z) =

∑∞
|m|=0 amVm(z). Then following inequalities hold

lim
r→∞

sup
logµ(r)

|ν(r)|
≥ 1

λ1

and

lim
r→∞

inf
logµ(r)

|ν(r)|
≤ 1

ρ1
.

Proof. Let

lim
r→∞

sup
logµ(r)

|ν(r)|
= A.

Then for ε > 0 and r > r0(ε), we have

logµ(r) < (A+ ε)|ν(r)|. (6)

Now from ([1, p.806], we have
µ′(r)

µ(r)
=
|ν(r)|
r

. (7)
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Now from (6) and (7), we get

logµ(r) < (A+ ε)
µ′(r)

µ(r)
r

or
µ′(r)

µ(r) logµ(r)
>

1

(A+ ε)r
or

log logµ(r) >
1

(A+ ε)
log r +O(1)

or
log logµ(r)

log r
>

1

(A+ ε)
+ o(1).

Proceeding to limits as r →∞ and taking inf on both sides we get

λ1 ≥
1

A
.

Hence the first part of theorem is proved. To prove second part let us assume that

lim
r→∞

inf
logµ(r)

|ν(r)|
= B.

Then for ε > 0 and r > r0(ε), we have

logµ(r) > (B − ε)|ν(r)|. (8)

Now from (7) and (8), we get

logµ(r) > (B − ε)µ
′(r)

µ(r)
r

or
µ′(r)

µ(r) logµ(r)
<

1

(B − ε)r
or

log log µ(r) <
1

(B − ε)
log r +O(1)

or
log logµ(r)

log r
<

1

(B − ε)
+ o(1).

Proceeding to limits as r →∞ and taking sup on both sides we get

ρ1 ≤
1

B
.

Hence the second part of Theorem 4 is proved. �

Next we prove

Theorem 5. Let g : Rn+1 → Cl0n be an entire monogenic function whose Taylor’s series
representation is given by g(z) =

∑∞
|m|=0 amVm(z). If the order of g is ρ(0 < ρ < ∞),

then following inequalities hold

τ2 ≤
τ1
e
eτ2/τ1 ≤ τ2ω1 ≤ τ1,

τ2 ≤ ρω2 ≤ τ2(1 + log
τ1
τ2

) ≤ τ1

and

τ1 + τ2 ≤ eτ2ω1.
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Proof. From [1, p.806], for r ≥ r0 and k ≥ 1, we have

logµ(kr) = O(1) +

∫ r

r0

|ν(t)|
t

dt+

∫ kr

r

|ν(t)|
t

dt (9)

or

logµ(kr) ≥ O(1) +
(τ2 − ε)rρ

ρ
+ |ν(r)| log k.

Dividing both sides by (kr)ρ, we get

logµ(kr)

(kr)ρ
≥ o(1) +

(τ2 − ε)
ρkρ

+
|ν(r)|
rρ

log k

kρ
. (10)

Proceeding to limits as r →∞ and taking sup on both sides, we get

ω1 ≥
τ2 + ρτ1 log k

ρkρ
. (11)

Also proceeding to limits as r →∞ and taking inf on both sides of (10), we get

ω2 ≥
τ2(1 + ρ log k)

ρkρ
. (12)

Now taking k = exp[(τ1 − τ2)/(ρτ2)] in (11), we get

eρω1 ≥ τ1eτ2/τ1 .
Since exp(t) ≥ et for all t ≥ 0. Therefore finally, we get

eρω1 ≥ τ1eτ2/τ1 ≥ eτ2. (13)

Also taking k = 1 in (12), we get

ω2 ≥
τ2
ρ
. (14)

Now again from (9), we have

logµ(kr) ≤ O(1) +
(τ1 + ε)rρ

ρ
+ |ν(kr)| log k.

Dividing both sides by (kr)ρ, we get

logµ(kr)

(kr)ρ
≤ o(1) +

(τ1 + ε)

ρkρ
+
|ν(kr)|
(kr)ρ

log k. (15)

So here we get

ω1 ≤
τ1(1 + ρkρ log k)

ρkρ
(16)

and

ω2 ≤
τ1 + ρτ2k

ρ log k

ρkρ
. (17)

Now taking k = 1 in (16), we get

ω1 ≤
τ1
ρ
. (18)

Also taking k = (τ1/τ2)1/ρ in (17), we get

ρω2 ≤ τ2
(

1 + log
τ1
τ2

)
.

Since log(1 + t) ≤ t for all t ≥ 0. Therefore finally we get

ρω2 ≤ τ2
(

1 + log
τ1
τ2

)
≤ τ1. (19)
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Now from (13), (14), (18) and (19), we get

τ2 ≤
τ1
e
eτ2/τ1 ≤ τ2ω1 ≤ τ1 (20)

and

τ2 ≤ ρω2 ≤ τ2(1 + log
τ1
τ2

) ≤ τ1.

From (20), we have
τ1
e
eτ2/τ1 ≤ τ2ω1

or

τ1

[
1 +

τ2
τ1

+ . . .

]
≤ eτ2ω1

or

τ1

[
1 +

τ2
τ1

]
≤ eτ2ω1

or

τ1 + τ2 ≤ eτ2ω1.

Hence the Theorem 5 is proved. �

Next we prove

Theorem 6. Let g : Rn+1 → Cl0n be an entire monogenic function whose Taylor’s series
representation is given by g(z) =

∑∞
|m|=0 amVm(z). If the order of g is ρ(0 < ρ < ∞),

then

τ1 + ρω2 ≤ eρω1

and

eρω2 ≤ ρω1 + eτ2.

Proof. From [1, p.806] for r ≥ r0 and k ≥ 1, we have

logµ(kr) = logµ(r) +

∫ kr

r

|ν(t)|
t

dt (21)

or

logµ(kr) > (ω2 − ε)rρ + |ν(r)| log k.

Dividing both sides by (kr)ρ, we get

logµ(kr)

(kr)ρ
>

(ω2 − ε)
kρ

+
|ν(r)|
rρ

log k

kρ
.

Proceeding to limits as r →∞ and taking sup on both sides, we get

ω1 ≥
ω2

kρ
+
τ1 log k

kρ
.

Now taking k = e1/ρ in above inequality, we get

ω1 ≥
ω2

e
+
τ1
ρe
. (22)

Now again from (21), we have

logµ(kr) < (ω1 + ε)rρ + |ν(kr)| log k.

Dividing both sides by (kr)ρ, we get

logµ(kr)

(kr)ρ
<

(ω1 + ε)

kρ
+
|ν(kr)|
(kr)ρ

log k.
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Proceeding to limits as r →∞ and taking inf on both sides, we get

ω2 ≤
ω1

kρ
+ τ2 log k.

Now again taking k = e1/ρ in above inequality, we get

ω2 ≤
ω1

e
+
τ2
ρ
. (23)

Now from (22) and (23), we get

τ1 + ρω2 ≤ eρω1.

and
eρω2 ≤ ρω1 + eτ2.

Hence the Theorem 6 is proved. �

Note: Similar results were obtained for entire functions of one variable by Shah ([4],
[5], [6] and [7]).
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