
TJMM
5 (2013), No. 2, 103-106

NEW FRACTIONAL INEQUALITIES OF OSTROWSKI TYPE

ASSIA GUEZANE-LAKOUD AND FATIMA AISSAOUI

Abstract. In this work, we establish a new weighted Montgomery identity for Rie-
mann-Liouville fractional integrals. Then using this new fractional Montgomery iden-

tity, we obtain some new fractional inequalities of Ostrowski type.

1. Introduction

The theory of fractional calculus has known an intensive development over the last
few decades. It is shown that derivatives and integrals of fractional type provide an ade-
quate mathematical modeling of real objects and processes see [3, 8, 12]. Therefore, the
study of fractional differential equations need more developmental of inequalities of frac-
tional type. The main aim of this work is to develop new weighted Montgomery identity
for Riemann-Liouville fractional integrals that will be used to establish new weighted Os-
trowski inequalities. Let us begin by introducing this type of inequality. Let f : [a, b]→ R
be a differentiable function such that its derivative f ′ be integrable on [a, b] and let

w : [a, b] → [0,+∞) be a probability density function that satisfies
∫ b
a
w(t) = 1. Set

W (t) =
∫ t
a
w(x)dx for t ∈ [a, b],W (t) = 0 if t < a and W (t) = 1 if t > b.

The weighted generalization of the Montgomery identity, given by Mitrinović et al [10]
is the following:

f(x) =

b∫
a

w(t)f(t)dt+

b∫
a

Pw(x, t)f ′(t)dt (1)

where the weighted Peano kernel is

Pw(x, t) =

{
W (t), a ≤ t ≤ x
W (t)− 1, x ≤ t ≤ b (2)

In [1], Anastassiou et al obtained the weighted Montgomery identity for fractional integrals

f(x) = (b− x)1−αΓ(α)Jαa (w(b)f(b))
−Jα−1

a (Qw(x, b)f(b)) + Jαa (Qw(x, b)f ′(b))
(3)

where α ≥ 1, the weighted fractional Peano kernel is

Qw(x, t) =

{
(b− x)1−αΓ(α)W (t), a ≤ t ≤ x
(b− x)1−αΓ(α)(W (t)− 1), x ≤ t ≤ b (4)

Jαa denotes the Riemann-Liouville integral operator of order α > 0 with a ≥ 0 defined by

Jαa f(x) = 1
Γ(α)

x∫
a

(x − t)α−1f(t) dt and J0
af(x) = f(x), and Γ is Gamma function. Then

2010 Mathematics Subject Classification. 05C38, 15A15.
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the authors derive the following interesting fractional integral inequality:∣∣∣∣f(x)− 1

b− a
(b− x)1−αΓ(α)Jαa (f(b)) + Jα−1

a (P2(x, b)f(b))

∣∣∣∣
≤ M

α(α+1)

[
(b− x)

(
2α
(
b−x
b−a

)
− α− 1

)
+ (b− a)α(b− x)1−α

] (5)

under the assumption that |f ′(x)| ≤ M , for any x ∈ [a, b] and here the Peano kernel P2

is defined by

P2(x, t) =

{ t−a
b−a (b− x)1−αΓ(α), a ≤ t ≤ x
t−b
b−a (b− x)1−αΓ(α), x ≤ t ≤ b (6)

More results and properties of fractional integrals can be found in [8]. We refer the
reader to [4, 5, 6, 7, 8, 9, 11], for more results on Ostrowski type inequalities.

Motived by the above work, we establish new weighted Ostrowski inequalities and new
weighted Montgomery identity for Riemann-Liouville fractional integrals.

2. Weighted Montgomery identity for fractional integrals

Let ϕ : [0, 1]→ R be a differentiable function such ϕ(0) = 0, ϕ(1) 6= 0 and ϕ′ ∈ L1[0, 1].
Our first result is the following.

Theorem 1. The generalization of weighted Montgomery identity for fractional integrals
is:

f(x) = 1
ϕ(1) (b− x)1−αΓ(α)Jαa (w(b)ϕ′(1)f(b))

− 1
ϕ(1)J

α−1
a (Qw,ϕ(x, b)f(b)) + 1

ϕ(1)J
α
a (Qw,ϕ(x, b)f ′(b))

(7)

where the weighted fractional Peano kernel is

Qw,ϕ(x, t) =

{
(b− x)1−αΓ(α)ϕ(W (t)), a ≤ t ≤ x
(b− x)1−αΓ(α)(ϕ(W (t))− ϕ(1)), x ≤ t ≤ b (8)

Proof. Using (8) and properties of fractional integrals we get

Jαa (Qw,ϕ(x, b)f ′(b)) = 1
Γ(α)

b∫
a

(b− t)α−1Qw,ϕ(x, t)f ′(t)dt

= (b− x)1−α

[
x∫
a

(b− t)α−1ϕ(W (t))f ′(t)dt+
b∫
x

(b− t)α−1(ϕ(W (t))− ϕ(1))f ′(t)dt

] (9)

that can be written as

Jαa (Qw,ϕ(x, b)f ′(b)) = (b− x)1−α

[
b∫
a

(b− t)α−1ϕ(W (t))f ′(t)dt

−
b∫
x

(b− t)α−1ϕ(1)f ′(t)dt

] (10)

Taking in consideration that W (a) = 0 and W (b) = 1, the first term in the right hand
side of (10) is equal to

b∫
a

(b− t)α−1ϕ(W (t))f ′(t)dt = −Γ(α)Jαa (w(b)ϕ′(1)f(b))

+(α− 1)
b∫
a

(b− t)α−2ϕ(W (t))f(t)dt

(11)

the second term in the right hand side of (10) gives

b∫
x

(b− t)α−1ϕ(1)f ′(b)dt = −ϕ(1)(b− x)α−1f(x) + (α− 1)ϕ(1)
b∫
x

(b− t)α−2f(t)dt (12)
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Substituting (11) and (12) in (10), we obtain

Jαa (Qw,ϕ(x, b)f ′(b)) = ϕ(1)f(x)− Γ(α)(b− x)1−αJαa (w(b)ϕ′(1)f(b))
+Jα−1

a (Qw,ϕ(x, b)f(b))

that implies

f(x) = 1
ϕ(1) (b− x)1−αΓ(α)Jαa (w(b)ϕ′(1)f(b))

− 1
ϕ(1)J

α−1
a (Qw,ϕ(x, b)f(b)) + 1

ϕ(1)J
α
a (Qw,ϕ(x, b)f ′(b))

(13)

The proof is complete. �

3. An Ostrowski type fractional inequalities

In this section we give and prove our second results. first using the Peano kernel (4)
and the weighted Montgomery identity (3), we get a new Ostrowski fractional inequality:

Theorem 2. Assume that the function f is a differential on [a, b] such that |f ′(x)| ≤M ,
for any x ∈ [a, b]. Then the following Ostrowski fractional inequality holds:∣∣f(x)− (b− x)1−αΓ(α)Jαa (w(b)f(b)) + Jα−1

a (Qw(x, b)f(b))
∣∣

≤ M(b−x)
α (1− 2W (x)) +M(b− x)1−αΓ(α)Jα+1

a (w(b))
(14)

Proof. Using Montgomery identity (3) and assumptions on the function f we obtain

1

Γ(α)

∣∣∣∣∣∣
b∫
a

(b− t)α−1Qw(x, t)f ′(t)dt
∣∣ ≤ M

Γ(α)

b∫
a

(b− t)α−1
∣∣Qw(x, t)

∣∣∣∣∣∣ dt (15)

Consequently

M
Γ(α)

b∫
a

(b− t)α−1
∣∣Qw(x, t)

∣∣dt ≤ M
α (b− x)(1− 2W (x)) + M

α (b− x)1−α

(
b∫
a

(b− t)αw(t)dt

)
= M

α (b− x)(1− 2W (x)) +M(b− x)1−αΓ(α)Jα+1
a (w(b))

which achieves the proof. �

Now using the new weighted Montgomery identity for fractional integrals (7) and the
corresponding weighted fractional Peano kernel (8), we derive a new Ostrowski inequality
of Fractional type.

Theorem 3. Let f be a differentiable function on [a, b] and |f ′(x)| ≤M for any x ∈ [a, b]
and assume that ϕ is an increasing differentiable function on [0, 1]. Then the following
Ostrowski fractional inequality holds:∣∣∣f(x)− 1

ϕ(1) (b− x)1−αΓ(α)Jαa (w(b)ϕ′(1)f(b)) + 1
ϕ(1)J

α−1
a (Qw,ϕ(x, b)f(b))

∣∣∣
≤ M(b−x)

α (1− 2
ϕ(1)ϕ(W (x))) + M

ϕ(1) (b− x)1−αΓ(α)Jα+1
a (ϕ′(W (b))w(b))

(16)

Proof. From Theorem 3 we have∣∣∣f(x)− 1
ϕ(1) (b− x)1−αΓ(α)Jαa (w(b)ϕ′(1)f(b)) + 1

ϕ(1)J
α−1
a (Qw,ϕ(x, b)f(b))

∣∣∣
= 1

Γ(α)ϕ(1)

∣∣∣∣∣ b∫a (b− t)α−1Qw,ϕ(x, t)f ′(t)dt

∣∣∣∣∣
Taking into account the assumptions on the function f and since ϕ is increasing, it yields∣∣∣f(x)− 1

ϕ(1) (b− x)1−αΓ(α)Jαa (w(b)ϕ′(1)f(b)) + 1
ϕ(1)J

α−1
a (Qw,ϕ(x, b)f(b))

∣∣∣
≤ M(b−x)1−α

ϕ(1)

[
x∫
a

(b− t)α−1ϕ(W (t))dt+
b∫
x

(b− t)α−1(ϕ(1)− ϕ(W (t)))dt

]
(17)
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Noting the left hand side of (17) by I1 then integrating by parts the right hand side of
(17), we obtain

I1 ≤ M(b−x)1−α

ϕ(1)

[
− (b−x)α

α ϕ(W (x))− (b−x)α

α ϕ(W (x)) + (b−x)α

α ϕ(1)

+ 1
α

(
x∫
a

(b− t)αϕ′(W (t))w(t)dt−
b∫
x

(b− t)αϕ′(W (t))w(t)dt

)]
that can be written as

I1 ≤ M
α (b− x)

(
1− 2

ϕ(1)ϕ(W (x))
)

+ M
αϕ(1) (b− x)1−α(

2
x∫
a

(b− t)αϕ′(W (t))w(t)dt−
b∫
a

(b− t)αϕ′(W (t))w(t)dt

)
Consequently

I1 ≤ M
α (b− x)

(
1− 2

ϕ(1)ϕ(W (x))
)

+ M
ϕ(1) (b− x)1−αΓ(α)Jα+1

a (ϕ′(W (b))w(b))

This completes the proof. �
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