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ANTIPERIODIC SOLUTIONS FOR SHUNTING INHIBITORY
CELLULAR NEURAL NETWORKS WITH NONLINEAR BEHAVED
FUNCTIONS AND MIXED DELAYS

WENGUI YANG AND QINGBO ZHAO

ABSTRACT. In this paper, a class of shunting inhibitory cellular neural networks (SIC-
NNs) with nonlinear behaved functions and mixed delays are are considered. Sufficient
conditions for the existence and globally exponentially stability of the antiperiodic so-
lutions are established, which are new and complement previously known results. An
example is employed to illustrate our feasible results.

1. INTRODUCTION

Recently, the dynamical behaviors of the shunting inhibitory cellular neural networks
(SICNNs) with delays and constant coefficients have also been widely investigated. Many
important results on the existence and uniqueness of equilibrium point, global asymptotic
stability, and global exponential stability have been established and successfully applied
to signal processing, pattern recognition, associative memories, and so on. There exist
some results on the existence and stability of periodic and almost periodic solutions for
the SICNNs with delays and constant coefficients. We refer readers to [I]-[I0] and the
references cited therein. Peng and Huang [I1] and Wu and Zhou [12] obtained the exis-
tence and exponential stability of anti-periodic solutions for SICNNs with continuously
distributed delays. To the best of author’s knowledge, few authors have considered the
existence and global exponential stability of antiperiodic solutions for SICNNs with non-
linear behaved functions and time-varying and continuously distributed delays (mixed
delays). Obviously, SICNNs with nonlinear behaved functions and mixed delays is gen-
eral and is worth to continue to investigate its dynamical properties such as existence and
global exponential stability of antiperiodic solutions.

In this paper, we shall continue to consider the following SICNNs with mixed delays:

x;j (t) = —a (t, Tij (t)) - Z szjl (t)fij (wkl (t))xij (t)

BFLeN,(i,5)
— ) CH®)gij(@r(t — (1)) (t)
CkeN,.(i,7)
- DN [ Kstwhs (ot - 0)duss () + Ly, ()
DMEN, (i,5) 0
where i =1,...,m, j =1,...,n, 74;(t) represents axonal signal transmission delay and is

continuous with 0 < 7;;(¢t) < 7; C;;(t) denotes the cell at the (4, j) position of the lattice
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at the t; the r-neighborhood N;.(i,7) of C;(t) is
Ny (i,§) = {CF - max(|k —i|,|l — j]) <r, 1<k <m,1 <1< n},

x;j(t) is the activity of the cell Cj;(t) at time ¢, L;;(t) is the external input to Cy;(¢),
a;j(t, z;;(t)) represents an appropriately behaved function of the cell Cj;(t) at time ¢,
which may be linear or nonlinear; nonnegative functions By (t), Cfl(t) and D! (t) are the
connection or coupling strength of postsynaptic activity of the cell transmitted to the cell
C;;(t) depending upon at time ¢, discrete delays and distributed delays, respectively; the
activity functions f;;(-), gi;(-) and h;;(-) are continuous function representing the output
or firing rate of the cell C;;(t), respectively.

Let u(t) : R — R be continuous in ¢. wu(t) is said to be T-anti-periodic on R if
u(t+T) = —u(t) for all ¢ € R. The initial conditions associated with system (Il) are of
the form

zij(s) = ¢ij(s), s€(—00,0],i=1,...,m,j=1,...,n,
where ;;(t) denotes a real-valued bounded continuous function on (—oo, 0].

The objective of this paper is to give some sufficient conditions ensuring the existence
and globally exponential stability of antiperiodic solution of system (), which are new and
complement the previously known results. Moreover, an example is provided to illustrate
the effectiveness of our results.

For the sake of simplicity, we introduce some notations as follows.

T = sup max 7y (), Ffjl = sup ijl(t), oy = sup ijl (t), Ef]l
teR teR

ter (4.5) K e ijl ®)-

teR
Throughout this paper, we always consider system (] together with the following
assumptions.
(Hy) Bif,Cl, D}, 7ij € C(R,[0,+00)), Iij € C(R,R), BY/(t +T) = Bf/(t), Cl/(t +
T) = CH(t), DI}t +T) = Dj(t), 71;(t + T) = 7i;(t), Lij(t + T) = —Li;(t),
t1=1,....om,5=1,...,n.
H>) a;; € C(R%2,R), a;;(t + T,u) = —a;;(t,—u). Furthermore, there exist positive
( J J J P
constants a,; such that 0 < a;; < dagj(t,u)/0u, ai(t,0) = 0, i = 1,...,m,
j=1,...,n.
(Hs) fij,gij, hij € C(R*, R), fi;(0 ) = ¢,;(0) = h;;(0) = 0, and there exist nonnegative
constants M{j,ufj,uw and M., M2 M} such that for Vu,v € R, i = 1,...,m,

i PG
j=1,...,n,
fzj( u): (’U,), |fij(t7u>7fij(tﬂv)| SILLZCJ|’LL*’U|, |fz](u)| < ”5
gu( u) = gij(u), 19i(tw) = gij(t, )| < pfilu—vl, |gij(uw)| < M z]’
hij(—u) = hij(u), |hij(t,u) — hij(t,0)] < plslu— o, [hij(u)] < M,

(H4) We assume that there exists a constant L;} such that
Ly > Lij = sup | Li;(t)|.
teR

Hj) There exist constants §;; > 0, n > 0 and A > 0 such that for ¢ = 1,...,m,
J
j=1...,n,

(Sij = Qz’j — Z Ekle Z 6ZIMQ

BFLEN,.(1,5) CKLeN, (i,5)

. DMh/ | () du,

D*eN,.(3,5)
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_ LT _ L’
kl i kl T i
(A-a;)+ S B <Mf; +ul, 5;) + Y T (Mg T+, 6ij>

BFLEN, (i,)) CHLEN, (i,])

—kl e
+ Z D;; (MZ/O |Kij(u)|d’u+ﬂ?j

DKL eN,.(i,5)

IR
5” / |Kij(u)|e)‘“du> <-n<0.
iy JO

Definition 1. Let 2*(t) = {z};(t)} be an anti-periodic solution of system (l) with initial
value ©*(t) = {p};}. If there exist constants X > 0 and M > 1 such that for every solution
x(t) = {zi;(t)} with initial value o(t) = {pi;(t)},

i (t) — 235 ()] < Ml — ¢*|le™™, V>0, i=1,....m, j=1,....n,
where || — ¢ [|oo = SUP_ oo cs<o MaX(i j) [ij(s) — 5 (s)|. Then x*(t) is said to be globally
exponentially stable.

2. MAIN RESULTS

In this section, we will state and prove our main results of this paper.
System () can be written as the following system

zi(t) = —ag(t,zig(t)zig(t) — Z By (t) fij (@ (8))ai; (t)

BMEN.(i,5)
=Y CHOgi (@t — ma(t)))wi ()
CKLeN,.(3,5)
- X DHO [ Kl - )i 0+ Ly, ()
DM EN,(i,5) 0

where o (t, 2i;(t)) = (8ai;(t,u)/0u)|u=¢,,, (Dai;(t,u)/0u)|,—¢, denotes the derivative
of a;;(t,u) at point u = &, e;;j € R, 0 < || < |z;;(¢)]. From (Hz), we know that
a;j(t, z;;(t)) is strictly monotone increasing about x;;. Hence, a;(t,z;;(t)) is unique for
any x;;. Obviously, one can obtain that a;;(t, z;;(t)) > ;-

Lemma 1. Let (H1)-(Hs) hold. Let Z(t) = {Z;;(t)} be a solution of system () with
initial conditions

L
Tij(s) = @ij(s), |@ij(s)| < 5.7, s € (—00,0].
ij
Then
Lt
T () < 5”, t>0,i=1,....,m, j=1,...,n. (3)
ij

Proof. Assume, by way of contradiction, that ([3)) does not hold. Then, there must exist
1€{1,2,...,m}, j€{L1,2,...,n} and tp > 0 such that

L Lt
Zij(to) = 575, and @i(t) < ==, £ € (=00, to). (4)
) 1]

Calculating the upper left derivative of |Z;;(to)|, together with (H)-(Hy), (@) and (@),
we can obtain

0

IN

D |ai;(to)|

< —aijlto, wig(to) |z (b))l + > BE(to)| fij(wri(to)) s (to)]
BkLEN,.(1,5)

AN



140 WENGUI YANG AND QINGBO ZHAO

+ Y CH(to)lgij(@rlto — Tha(to)))la (to)]

CkLeN,(i,7)

) ijl(tO)/Ooo | K (w)|| i (2 (to — w))|dulzi; (to)] + [Lij (to)]

DKLEN,(i,5)

L B g7 L Sy o s
< Qw(g + Z BijMij(gﬂ + Z CJMzJ(g
gl BkleNr(iJ) * CkleNT(iJ) K
DFEN,(i,5) 0 E
—kl o f —kl
= —qa;— Y, ByMi- > CyMf
BFLeN,(i,5) CkleN,(i,5)
— L _
kl %,
_ Z D Mh / | U(u)|du 5—J + Lij < 0.
DMEN,(i,5) 0 El
This is a contradiction and hence [B]) holds. This completes the proof. (I

Remark 1. In view of the boundedness of this solution, from the theory of functional
differential equations in [13], it follows that Z(t) can be defined on [0, +00).

Lemma 2. Let (H1)-(Hs) hold. Let x*(t) = (a3, (t), 255 (t), ..., 2%, ()T be the solution

of system (@) with initial value ©*(t) = (11 (t), ¥12(t), -, @hn ()T, |05 (1) <
2(t) = (x11(), 212(t), - - -, T (1)) be the solution of system () with initial value p(t) =
(011(t), 012(t), .. ., @mn(t))T. Then there exist constants X\ > 0 and M > 1 such that

ij
dij

i (t) — a;(t)] < Ml — o[, V>0, i=1,...,m, j=1,...,n.
Proof. Let y(t) = {yi;()} = {ws; (£) — 27, (1)} = w(t) — a*(£). Then
Yi; (t)
= —(ag(tzi; (1) — ai(t, 23;(t)))
— > BE®) (fij ()i (t) — fij(@h, (8)a];(1))

BFLEN,.(4,5)

— > CH®) (gi (it — ()2 () — gij (@i (t — Tra(£)))2; (1))

CkLeN,.(i,5)

_ Z D (/ Kij(u)hij(zp (t — w))duz;(t)

DFeN,.(i,5)
/ Ky g ¢ = ) (1))
= —Bii(t,yi(t))yis (t) — B (1) (fij (mra(8)2i; () — fij(@h (8)z5; (1))

BMGN (4,7)

— > CH®) (gi (it — ()2 () — gij (@i (t — Tra(£)))2; (1))

CkLeN,.(i,5)
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- Y D < / Ko (u)hig (g (t — ) )z ()

D*'eN,.(i,5)
- [ Kt el - 0)dus <t>) ,

i1=1,....m, 7=1,...,n, (5)
where S;;(t,y;(t)) = (8aij(t,u)/au)|u:ﬁj(t)+9y”(t), 0 <6 < 1. Similarly to (), we have
Bij(t, yiz () = aij.

We consider the Lyapunov functional
Vii(t) = lyij ()], i=1,...,m, j=1,...,n. (6)
Calculating the upper right derivative of V;;(t) along the solution y(t) = {y;;(t)} of system
) with the initial value g = ¢ — ¢*, we have

D™ (yi;(t))
< Ay (0] — Bij(t, i (8)|yi; (t) |
+eM N BE) | fig(wna ()i (1) — fig (2, ()23, (2)]

BFLEN,(,5)

+e Z CH () |gij (@ri(t — T (8))2is (t) — gij (@i (t — T (1)) (8)]
CkleN,.(i,5)

+eN Y Dyl ] / Kij (u)hi (i (t — w))duai; (1)

DFLEN,(i,5)

_ / " K whey (e (¢ — u))dua (1)

IN

(X —a;;) lyi (t)|eM
+eM 3 By (i)l (O] + i (a(0) = Fii (25 0) |z (1))
B*LeN,.(1,7)
+M S T (gt — 7))y )
CkleN,(i,5)
g (@r(t — () — gig (why (8 — T (8))] |25 (2)])
+et Z D / |K1J )||th (Tr(t —u)) — hij (gt — U))|du|:crj )|

DkleN,.(3,5)

Y D [l (e~ )dul 0

D¥*eN,.(i,5)
i1=1,....m, 7=1,...,n. (7)
Let M > 1 denote an arbitrary real number and set
o= ¢*lloo = sup maXIsﬂu pijl > 0.
—00<s<0 (4,5

It follows from (@) that
Vij() = |yi;()|eM < Mlg — ¢*||loo, VEE (—00,0], i=1,....m, j=1,...,n.
We claim that the following statement is true:

%J(t):|yw(t)|e)\t<M||90750*”007 Vt>0, ’L:L,m, ]:Lvn (8)
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Contrarily, there must exist some i € {1,2,...,m}, 7 € {1,2,...,n} and > 0 such that
Vij(t) = Mlle — ¢*lloos Via(t) = Mllp = ¢"|loc V¥t € (=00, 1), (9)
fork=1,...,m,1=1,...,n. Together with (7)) and (@), we obtain
0 < D*(yi5(8) — Mllp — ¢ lloo) = DT (yi;(F))

S ()‘ —z]) |y1]( | )\t
+eM > By (|fz'j($kl(f))||yz‘g( )+ | fig (i (£) — fig (xi (O) |55 (B)])
BkleN,.(i,5)
z —kl
+eM N T (194 (@r(E = T (D))l ()]
CkleN,.(1,5)
Hgij (@r(t = T (8))) = gij (@ (F = ma (£)))[127;(2)])
~ — il [e'S) 5 . > .
+e Z D;; | KGij (w)|[hig (er (E = ) — hig (g (8 — u))|dulz; (1)]
DFLEN, (i.5) 0
7 —kt [ - -
4SS DY [ Kl by - 0)ldulyss )
DFLEN, (i.5) 0
- 7 —kl - 7 - T
< (A=ay)ly DM+ > By (Mzélyz‘j(t)leM + il (£) a7 (t)l)
Bk eN,.(1,5)
—hkl n ¢ T ey
Y O (Ml D1 4 e i (= @)D (D))
CkleN,.(i,7)
_kl 0 _ -~
+ > Dy (Mh/ | K (u) | dulyi; (F) e
DFEN,(i,5) 0
+u£;- [ 1 1l = el 0
< Ml —¢" oo {
B 6“ Mg AT, 9 L:_
+ +'uZJ5 + Z tj g Te 'uZJ(S
BMGN (4,7) CHFEN,(4,5)
L+ oo
+ ( )|du + :ul] 5 |KZJ(U)|6/\udu>
D“€N (4,9)
Thus,

L _ Lt

—=kl f f Hij kl g At og g

(A-ay)+ > By (MijJF“ijf_j)’L Z Cy (M e 5ij>
B*leN,.(1,7) CkleN,.(i,5)

0 )

DkLEN,.(i,5)

o0

|Kij(u)|e>‘“du> >0,

which contradicts (Hs). Hence, (8) holds. It follows that
@i () — xfj(t)| = |y (t)] < M| — g0*||ooefM, Vi>0,i=1,....,m, j=1,...,n.
This completes the proof of Lemma O
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Remark 2. If 2*(t) = (2%,(t),25,(t), ..., 2%, ()T be the T -anti-periodic solution of

? mn

system (), it follows from Lemmald and Definition ] that x*(t) is globally exponentially
stable.

Theorem 1. Let (Hy)-(Hs) hold. Then system () has exactly one T-antiperiodic solu-
tion x*(t), which is globally exponentially stable.

Proof. Let v(t) = {v;;(t)} be a solution of system (IJ) with initial conditions
+
ij

According to Remark [T} v(t) exists on [0, +00). Moreover, by Lemmal[Il the solution v(t)
is bounded and
LT
v (B)] < 6—”, teR, i=1,....m, j=1,... n.
ij
From () and (Hy)-(Hs), we have
[(=1)P ot + (p+ DT)) = (=P Hog(t + (p+ 1)T)
= (1P {—a(t+ (p+ )T, v5(t + (p+1)T))
- Y B+ @+ VD) fion(t+ (p+ DT))vy(t+ (p+ 1T)
BFleN,.(4,5)
- Y. G+ e+1D)
CkleN,(i,7)
xgij(r(t + (p+ DT — 7 (t + (p+ 1)T)))vi;(t + (p+ 1)T)
— Z DI (t+ (p+ 1)T)/ Kij(u)hij(vi(t+ (p+ 1)T — u))du
DMEN,.(,5) 0
xvij(t+(p+1)T) + Lij(t+ (p+ 1)T)}
= —ay(t, (=1 vyt + (p+ 1)T))
— > B ()P ot + (0 + DT (=D)P Mgt + (p+ 1)T)
BFLeN,(4,5)
- ) CH®gi (1) ot + (p+ DT — 7a(1))
CkleN,.(i,7)
x(=1)P ot + (p+ 1)T)
=X DHO [ K@hy(-1 e+ o+ DT - u)du
DFLEN,.(i,7) 0
X(—l)erl’Uij(t—f— (p+ 1)T) +L1](t)’ (10)
wherei =1,...,m, j = 1,...,n. Thus, for any natural number p, (—1)?*1v;; (t+(p+1)T)

are the solutions of system (II). Then, by Lemma [2] there exists a constant M > 0 such
that

[(=1)P gt + (p+ 1)T) — (=1)Pv;(t + pT)|

< MeMttPT) sup max |vii(s+T) — v (s)]
—00<s<0 (4,9)
LT
< oMM max {2 Y Vi 4 pT >0, i=1,...,m, j=1,...,n. (11)

(4,9) ij
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Thus, for any natural number ¢, we obtain

q
(=) (t+ (g + DT) = i (8) + D [(=1)P g (t + (p+ DT) — (=1)Pvy (¢ + pT)].
p=0
Then, fori=1,...,m, j=1,...,n, we have

(=1)"* “(t +(¢+1)7)|

< gt |+Z| DPFug(t+ (p+ DT) = (=1)Pvi; (t + pT)|- (12)

In view of ([Il), we can choose a sufficiently large constant N > 0 and a positive constant
~ such that

(=1 i (¢ + (p+ 1)T) = (=1)Pvi5(t +pT)| < v(eX)7, (13)

forany p> N,i=1,...,m, j=1,...,n, on any compact set of R. It follows from (2]
and (I3) that {(—1)%;;(¢t + ¢T')} uniformly converges to a continuous function z*(t) =
(x5, (1), 255 (t), . .., 25, (1))T on any compact set of R.

Now we will show that x*(¢) is the T-anti-periodic solution of system (). First, x*(¢)
is T-anti-periodic, since

ot +T)= lim v*(t+T +qT) =~ lim (=17 "+ (¢+1)T) = —z*(t).
q—00 (q+1)—o00

Next, we prove that 2*(t) is a solution of (). In fact, together with the continuity of the
right side of (@) and ([0) implies that {((—1)" v;; (¢t + (¢ +1)T))’} uniformly converges
to a continuous function on any compact set of R. Thus, letting ¢ — oo, we obtain

San0) = —asba@) - Y BEOSGn )0
B¥leN,.(i,5)
- Y CHWg il @) 0

CHkLEN,.(1,5)
- D) [ Ky oot = u)dusty 0 + Lig ),
DMGN (4,7)

Therefore, due to the above equation, we have z*(¢) is a solution of (). At last, by
Lemma [2] we can prove that z*(¢) is globally exponentially stable. This completes the
proof. (Il

3. AN ILLUSTRATIVE EXAMPLE

In this section, we shall give an illustrative example to show the effectiveness of the
main results. We consider the following SICNNs with nonlinear behaved functions and
mixed delays:

w(t) = —ai(tag) — > CH®)gij(@rlt — T (t))a; (t)

CKLeN,(i,5)

- X DN [ Kylhs ot - 0)dusg©) + Ly, (4)

DkleN,.(3,5)
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where 7 = 1, 7;;(t) = 0.2cos?t, gij(u) = 0.6|sinu|, h;j(u) = 0.8 arctanu|, K;;(u) =
|sinule=2%, i,j = 1,2,3. Take

6x 4+ sinx — xcost 6x —sinx —xcost Hxr +sinx + xcost
(aij(t,x))3x3 = | bx+sinx+xcost Tr—sinz+xzcost 6x+sinz — xcost
Tr —sinx +xcost 6x +sinx —xcost bx —sinx + xcost

)

0.1| cost| 0.2]sint| 0.2]|cost|
(Cij(t))gxg = 02|Slnt| 0 03|smt|
0.2|sint| 0.1]sint| 0.4|cost|

)

0.1|sint| 0.3|cost| 0.1]sint|
(D;j(t))sx3 = | 0.2]|cost| 0 0.2| cost|
0.3]sint| 0.1]cost| 0.3]sint|

)

2.3sint 1.2sint 2.4sint 25 15 25
(Lij(t)sxs = | 21sint 2.7sint 25sint |, (Lf)sxs=| 2.3 3.1 28
2.6sint 1.3sint 1.9sint 28 1.5 21

Through simple computation, we can easily obtain that 7 = 0.2, M}, = u; = 0.6,

h _  h _ _ _ _ _ _ _ _ _ _
Mij = Hij = 0.8, a3 = ay; = agz =3, a1 = A1p = Qo3 = A3y = 4, Ay = a3, =5,

- 0.5 1.0 0.7
YT = 08 17 12 |,
CkLe Ny (i,5) 33 0.5 1.2 0.8
. 0.6 0.9 05
> D = 10 16 1.0
DHEN (1)) s 0.6 1.1 0.6
Define continuous function I';;(w) by setting
r = o (a7 4 v L
ij(w) = (w_Qz'j)‘f' Z ij i te Mij(sij
CkLeN,.(i,5)

kl % wu
+ Y D (M;;- | i 32 [ e du>,

DKLeN,.(i,5)
where w € [0,1.5], i,7 = 1,2,3. Then, we obtain
max{I';;(0)}

(4,9)

_ LT
= maxq-g;+ ) o <ij + s 5”)
(LJ) CkLGNT(i,j) 17

+

—kl o L o
T Z Di; <Mi};‘/0 |Kij(u)|du+uﬁlj 5; /0 | Kj(u)|du < —1.5.

DkLEN,.(i,5)

Thus, there exists A € [0,1.5] such that T';;(A) < 0 for i, = 1,2,3. It follows that
system (4] satisfies all the conditions in Theorem [Il Hence, system (4] has exactly one
m-anti-periodic solution. Moreover, the m-antiperiodic solution is globally exponentially
stable.
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4. CONCLUSION

In this paper, the shunting inhibitory cellular neural networks (SICNNs) with nonlin-
ear behaved functions and time-varying and distributed delays (mixed delays) are inves-
tigated. For this model, we have given some sufficient conditions ensuring the existence
and globally exponential stability of antiperiodic solution. Behaved functions a; (¢, z;; ())
is linear in [I1], 12], but in our model, behaved functions a;;(t, z;;(t)) may be nonlinear.
This show that our results extend and improve some earlier publications. Moreover, a
simple example is given to illustrate the effectiveness of our results. Thus, our results are
valuable in the design of SICNNs.
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