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A CLASS OF NONLINEAR INTEGRAL EQUATIONS

MARIA DOBRIT, OIU

Abstract. Using the Contraction Principle and the General Data Dependence The-

orem, several results of existence and uniqueness and of continuous dependence of
data of the solution of a class of integral equations with modified argument from
physics, that is a mathematical model reference with to the turbo-reactors working:

x(t) =

∫
b

a

K(t, s) · h(s, x(s), x(a), x(b))ds+ f(t), t ∈ [a, b],

where a, b ∈ R, a < b, K : [a, b] × [a, b] → R, h : [a, b] × R
3
→ R, f : [a, b] → R and

x : [a, b] → R are given. Also, an example is given.

1. Introduction

The integral equations, in general, and those with modified argument, in particular,
form an important part of applied mathematics, with links with many theoretical fields,
especially with practical fields.

In the ’70, in the research on some problems from turbo-reactors industry, a nonlinear
Fredholm integral equation with modified argument appears, and has the following form:

x(t) =

∫ b

a

K(t, s, x(s), x(a), x(b))ds + f(t), t ∈ [a, b], (1)

where K : [a, b]× [a, b]× R
3 → R, f : [a, b] → R.

This integral equation is a mathematical model reference with to the turbo-reactors
working.

Starting with this Fredholm integral equation, we have considered a modification of
the argument through a continuous function g : [a, b] → [a, b], thus obtaining another
integral equation with modified argument:

x(t) =

∫ b

a

K(t, s, x(s), x(g(s)), x(a), x(b))ds + f(t), t ∈ [a, b], (2)

where K : [a, b]× [a, b]× R
4 → R, f : [a, b] → R, g : [a, b] → [a, b].

A generalization of the integral equation (2) is the following integral equation with
modified argument

x(t) =

∫

Ω

K(t, s, x(s), x(g(s)), x|∂Ω)ds+ f(t), t ∈ Ω, (3)

where Ω ⊂ R
m is a bounded domain, K : Ω × Ω × R

m × R
m × C (∂Ω,Rm) → R

m,
f : Ω → R

m, g : Ω → Ω.
The results of the studies of the integral equations (1), (2) and (3) regarding the

existence and uniqueness, the continuous dependence of data, the differentiability with
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respect to a and b, the differentiability with respect to a parameter, and the numerical
methods for approximating the solution using the method of successive approximations
with the trapezoids fomula, the Simpson’s formula and the rectangle quadrature formula,
respectively, have been published in [2], [5], [6], [7], [8], [9], [10] and [11]. Also, some
properties of the solution of the integral equation (1) that were obtained using the Picard
operators technique and the Abstract Gronwall lemma, have been studied in the papers
mentioned above. In order to obtain these results were consulted several theorems, lemmas
and basic results from [3], [4], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24] and [25].

This paper is focused mostly on the study of a class of integral equations with modified
argument of type of integral equation (1) having the form:

x(t) =

∫ b

a

K(t, s) · h(s, x(s), x(a), x(b))ds + f(t), t ∈ [a, b], (4)

where K : [a, b]× [a, b] → R, h : [a, b]× R
3 → R, f : [a, b] → R.

The purpose of this paper is to give several results of existence and uniqueness and
continuous dependence of data of the solution of integral equation (4).

In order to establish these results, the Contraction Principle and the General Data
Dependence Theorem have been used. Also some results presented in the treatises [4] and
[20] are useful. Finally, an example is given.

2. Notations and preliminaries

Let X be a nonempty set, d a metric on X and A : X → X an operator. In this paper
we shall use the following notations:

P (X) := {Y ⊂ X / Y 6= ∅} - the set of all nonempty subsets of X
I(A) := {Y ∈ P (X) / A(Y ) ⊂ Y } - the family of the nonempty subsets of X , invariant

for A
FA := {x ∈ X | A(x) = x} - the fixed points set of A
A0 := 1X , A1 := A, An+1 := A ◦An, n ∈ N - the iterate operators of A.
In order to study the existence and uniqueness of the solution of integral equation (4),

in section 3 we use the Contraction Principle that we present below (see [22]).

Theorem 1. (Contraction Principle) Let (X, d) be a complete metric space and A : X →
X an α-contraction (α < 1). In these conditions we have:

(i) A has a unique fixed point, i.e. FA = {x∗};
(ii) x∗ = lim

n→∞

An(x0), for all x0 ∈ X;

(iii) d (x∗, An(x0)) ≤
αn

1−α
d (x0, A(x0)).

In order to study the continuous dependence of data of the solution of integral equation
(4), we use also in section 3, the General Data Dependence Theorem that we present below.
(see [22]).

Theorem 2. (General Data Dependence Theorem) Let (X, d) be a complete metric space,
f , g : X → X two operators and suppose that:

(i) f is α-contraction and Ff =
{

x∗

f

}

;

(ii) x∗

g ∈ Fg;
(iii) there exists η > 0 such that

d (f(x), g(x)) ≤ η, for all x ∈ X.
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In these conditions we have:

d
(

x∗

f , x
∗

g

)

≤
η

1− α
.

3. The main results

In this section we present two theorems of existence and uniqueness of the solution
of the integral equation with modified argument (4), that were obtained by applying the
Contraction Principle. Also, we present one theorem of data dependence of the solution of
this integral equation with modified argument, that was obtained by applying the General
Data Dependence Theorem.

I. The existence and uniqueness of the solution

The existence and uniqueness of the solution of the integral equation (4) has been
studied in the space C[a, b] and also, in the sphere B (f ; r) ⊂ C[a, b].

A. The solution in the space C[a, b]
We consider that the following conditions are fulfilled:

(a1) K ∈ C([a, b]× [a, b]);
(a2) h ∈ C([a, b]× R

3);
(a3) f ∈ C[a, b].

In addition, we denote by MK a positive constant, such that

|K(t, s)| ≤ MK , for all t, s ∈ [a, b].

Now, in order to obtain a theorem of existence and uniqueness of the solution of
integral equation (4) in the space C[a, b], we will reduce the problem of determination
of the solutions of this integral equation to a fixed point problem. For this purpose we
consider the operator A : C[a, b] → C[a, b], defined by the relation:

A(x)(t) :=

∫ b

a

K(t, s) · h(s, x(s), x(a), x(b))ds + f(t), t ∈ [a, b]. (5)

The set of the solution of the integral equation (4) in the space C[a, b] coincides with
the fixed points set of the operator A defined by the relation (5).

Applying the Contraction Principle, we obtain:

Theorem 3. Suppose that the conditions (a1), (a2) and (a3) are fulfilled. In addition we
suppose that:

(i) there exists α, β, γ > 0 such that

|h(s, u1, u2, u3)− h(s, v1, v2, v3)| ≤ α|u1 − v1|+ β |u2 − v2|+ γ |u3 − v3|,

for all s ∈ [a, b], ui, vi ∈ R , i = 1, 3;
(ii) MK (α+ β + γ) (b− a) < 1.

Under these conditions the integral equation (4) has a unique solution x∗ ∈ C[a, b], which
can be obtained by the successive approximations method starting at any element x0 ∈
C[a, b]. Moreover, if xn is the n-th successive approximation, then we have:

|x∗−xn| ≤
[MK (α+ β + γ) (b− a)]

n

1−MK (α+ β + γ) (b− a)
· |x0−x1| . (6)

Proof. From the conditions (a1), (a2) and (a3) it results that the operator A is correctly
defined. Now we check if the conditions of the Contraction Principle are fulfilled. Let we
prove that the operator A is a contraction.
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Using the condition (i) we have:

|A(x)(t) −A(y)(t)| ≤

≤
∣

∣

∣

∫ b

a
K(t, s) [h(s, x(s), x(a), x(b)) − h(s, y(s), y(a), y(b))] ds

∣

∣

∣
≤

≤
∣

∣

∣

∫ b

a
|K(t, s)| · |h(s, x(s), x(a), x(b)) − h(s, y(s), y(a), y(b))| ds

∣

∣

∣
≤

≤ MK

∣

∣

∣

∫ b

a
[α |x(s) − y(s)|+ β |x(a)− y(a)|+ γ |x(b)− y(b)|] ds

∣

∣

∣

and using the Chebyshev norm, we obtain:

‖A(x) −A(y)‖C ≤ MK (α+ β + γ) (b − a)‖x− y‖C .

Therefore the operator A satisfies the Lipschitz condition with the constant MK(α +
β + γ) (b− a) > 0 and from condition (ii) it results that the operator A is a contraction
with the coefficient MK (α+ β + γ) (b− a). Now, applying the Contraction Principle it
results the conclusion of this theorem and the proof is complete. �

B. The solution in the sphere B (f ; r) ⊂ C[a, b]
We consider that the conditions (a1) and (a3) are fulfilled and we replace the condition

(a2) by the following condition:
(a′2) h ∈ C([a, b]× J3), where J ⊂ R is a closed interval.
In addition, we denote with Mh a positive constant such that, for the restriction

h|[a,b]×J3 , J ⊂ R compact, we have:

|h(s, u, v, w)| ≤ Mh, for all s ∈ [a, b], u, v, w ∈ J .

The following result is a theorem of existence and uniqueness of the solution of the
integral equation (4) in the sphere B (f ; r) ⊂ C[a, b].

Theorem 4. Suppose that the conditions (a1), (a
′

2) and (a3) are fulfilled. In addition we
suppose that:

(i) there exists α, β, γ > 0 such that

|h(s, u1, u2, u3)− h(s, v1, v2, v3)| ≤ α|u1 − v1|+ β |u2 − v2|+ γ |u3 − v3|,

for all s ∈ [a, b], ui, vi ∈ J , i = 1, 3, J ⊂ R is closed interval;
(ii) MK (α+ β + γ) (b− a) < 1.

If there exists r > 0 such that
[

x ∈ B (f ; r)
]

=⇒ [x(t) ∈ J ⊂ R] (7)

and the following condition is fulfilled:
(iii) MKMh (b− a) < r,

then the integral equation (4) has a unique solution x∗ ∈ B (f ; r) ⊂ C[a, b], which can be
obtained by the successive approximations method starting at any element from the sphere
B (f ; r). Moreover, if xn is the n-th successive approximation, then the estimation (6) is
met.

Proof. We consider the operator A : B(f ; r) → C[a, b], defined by the relation (5), where
r is a real positive number which satisfies the condition (7) and we suppose that there
exists at least one number r > 0 with this property.

From the conditions (i) and (ii) it results that this operator satisfies the contraction
condition and from the condition (iii) it results that A

(

B (f ; r)
)

⊂ B (f ; r), i.e. B (f ; r) ∈
I (A).

Now, we consider the operator A : B(f ; r) → B(f ; r), also denoted by A and defined
by the same relation (5).
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The set of the solution of the integral equation (4) in the sphere B (f ; r) ⊂ C[a, b]
coincides with the fixed points set of the operator A defined by the relation (5).

Since B (f ; r) ⊂ C[a, b] is a closed subset in the Banach space C[a, b], it can apply the
Contraction Principle and the proof is complete. �

II. The data dependence of the solution

In order to study the data dependence of the solution of the integral equation (4) we
consider the following perturbed integral equation:

y(t) =

∫ b

a

K(t, s) · k(s, y(s), y(a), y(b))ds+ g(t), t ∈ [a, b], (8)

where K : [a, b]× [a, b] → R, k : [a, b]× R
3 → R, g : [a, b] → R.

Now we have the following data dependence theorem of the solution of the integral
equation (4):

Theorem 5. Suppose that:

(i) the conditions of the theorem 3 are satisfied and we denote by x∗ ∈ C[a, b] the
unique solution of the integral equation (4);

(ii) k ∈ C
(

[a, b]× R
3
)

, g ∈ C[a, b];
(iii) there exists η1, η2 > 0 such that

|h(s, u, v, w)− k(s, u, v, w)| ≤ η1, for all s ∈ [a, b], u, v, w ∈ R

and

|f(t)− g(t)| ≤ η2, for all t ∈ [a, b].

Under these conditions, if y∗ ∈ C[a, b] is a solution of the integral equation (8), then we
have:

‖x∗ − y∗‖C ≤
MKη1 (b − a) + η2

1−MK (α+ β + γ) (b− a)
(9)

Proof. Let we consider the operator from the proof of the theorem 3, A : C[a, b] → C[a, b],
attached to the integral equation (4) and defined by the relation (5):

A(x)(t) :=

∫ b

a

K(t, s) · h(s, x(s), x(a), x(b))ds + f(t), t ∈ [a, b].

Now, we attach to the integral equation (8) the operator D : C[a, b] → C[a, b], defined
by the relation:

D(y)(t) :=

∫ b

a

K(t, s) · k(s, y(s), y(a), y(b))ds+ g(t), t ∈ [a, b]. (10)

From the conditions (a1) and (ii) it results that the operator D is correctly defined.
The set of the solutions of the perturbed integral equation (8) in the space C[a, b]

coincides with the fixed points set of the operator D defined by the relation (10).
We have:

|A(x)(t) −D(x)(t)| ≤

≤
∣

∣

∣

∫ b

a
|K(t, s)| · |h(s, x(s), x(a), x(b)) − k(s, x(s), x(a), x(b))| ds

∣

∣

∣
+

+ |f(t)− g(t)|

and from the condition (iii) it results that

|A(x)(t) −D(x)(t)| ≤ MKη1 (b− a) + η2,

for all t ∈ [a, b].
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Now, using the Chebyshev norm, we obtain:

‖A(x) −D(x)‖C ≤ MKη1 (b− a) + η2 (11)

and applying the General Data Dependence Theorem it results the estimation (9):

‖x∗ − y∗‖C ≤
MKη1(b − a) + η2

1−MK (α+ β + γ) (b− a)

and the proof is complete. �

4. Example

We consider the following integral equation with modified argument:

x(t) =

∫ 1

0

t+ s

2

[

sin (x(s))

7
+

x(0) + x(1)

5

]

ds+ 2 cos t+ 1, t ∈ [0, 1], (12)

where K ∈ C([0, 1] × [0, 1]), K = t+s
2 , h ∈ C([0, 1] × R

3), h(s, u, v, w) = sinu
7 + v+w

5 ,
f ∈ C[0, 1], f(t) = 2 cos t+ 1, x ∈ C[0, 1] and the perturbed integral equation:

y(t) =

∫ 1

0

t+ s

2

[

sin (y(s))

7
+

y(0) + y(1)

5
− s− 2

]

ds+ cos t, t ∈ [0, 1], (13)

where K ∈ C([0, 1]× [0, 1]), K = t+s
2 , k ∈ C([0, 1]×R

3), k(s, u, v, w) = sinu
7 + v+w

5 −s−2,
g ∈ C[0, 1], g(t) = cos t, y ∈ C[0, 1].

Using the theorem 3 we prove that the integral equation (12) has a unique solution
x∗ ∈ C[0, 1], and then we apply the theorem 5 in order to check the conditions of the
continuous dependence of data of the solution of this integral equation.

The operator A : C[0, 1] → C[0, 1] attached to the equation (12) and defined by the
relation:

A(x)(t) :=

∫ 1

0

t+ s

2

[

sin (x(s))

7
+

x(0) + x(1)

5

]

ds+ 2 cos t+ 1, t ∈ [0, 1], (14)

is an α1-contraction with the coefficient α1 = 19
35 .

Since the conditions of the theorem 3 are satisfied, it results that the integral equation
(12) has a unique solution, that we denote by x∗ ∈ C[0, 1].

Now, from the following estimation:

|K (t, s)| =
t+ s

2
≤ 1, for all t, s ∈ [0, 1]

we obtain the positive constant MK = 1.
Also, we have:

|h(s, u, v, w)− k(s, u, v, w)| = |s+ 2| ≤ 3

for all s ∈ [0, 1], u, v, w ∈ R and

|f(t)− g(t)| = |cos t+ 1| ≤ 2

for all t ∈ [0, 1]. Therefore it results that η1 = 3, η2 = 2.
Since the operator D : C[0, 1] → C[0, 1] attached to the integral equation (13) and

defined by the relation:

D(y)(t) :=

∫ 1

0

t+ s

2

[

sin (y(s))

7
+

y(0) + y(1)

5
− s− 2

]

ds+ cos t, t ∈ [0, 1], (15)

is also an α2-contraction with the coefficient α2 = 19
35 , it results that the conditions of

the theorem 3 are satisfied and therefore the integral equation (13) has a solution that
we denote by y∗ ∈ C[0, 1]. It can see that this solution is even unique but it was not
necessary.
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Now, we observe that the conditions of the theorem 5 are satisfied and therefore the
following estimation is met:

‖x∗ − y∗‖C[0,1] ≤
175

16
.
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