
TJMM
4 (2012), No. 1, 09-14

AN APPLICATION OF UNIVALENT SOLUTIONS TO FRACTIONAL

VOLTERRA EQUATION IN COMPLEX PLANE

AISHA AHMED AMER AND MASLINA DARUS

Abstract. In this article, we discuss the existence and uniqueness of solution to frac-

tional Volterra equation in complex plane. We apply our results on the single species

model of Volterra type. Fixed point theorems are the main tool used here to establish
the existence and uniqueness results. First we use Banach contraction principle and

then Krasnoselskii’s fixed point theorem under certain conditions. Moreover, we prove

that the solution can be extended to maximal interval of existence.

1. Introduction

In these coming years, problems concerning the physical process of fractional order be-
coming popular among the researchers. The fractional calculus has allowed the operations
of integration and differentiation to be applied upon any fractional order. The order may
take on any real or imaginary value. Recently theory of fractional differential equations
attracted many scientists and mathematicians to work on [4, 16, 17, 18, 19]. For the exis-
tence of solutions for fractional differential equations, one can see [6, 5, 7, 8, 9, 10, 11, 12]
and references therein. The results have been obtained by using fixed point theorems
like Picard’s, Schauder fixed-point theorem and Banach contraction mapping principle.
About the development of existence theorems for fractional functional differential equa-
tions, many contributions exist and can be referred to [1, 7, 2, 4]. Many applications of
fractional calculus amounting to replace the time derivative in a given evolution equation
by a derivative of fractional order. Recently, interesting attempts have been made to give
the physical meaning to the initial conditions for fractional differential equations with
Riemann-Liouville fractional derivatives which were proposed in [17, 18].

Many equivalent definitions of fractional derivative and fractional integral are intro-
duced and presented by many authors see for example [13] and [20]. However, we state
the ones given by [14].

Definition 1. [14]. The fractional integral of order α is defined [14] for a function f by

D−αz f(z) =
1

Γ(α)

∫ z

0

f(t)

(z − t)1−α dt, α > 0, (1)

where f is an analytic function in a simply connected region of the z-plane containing the
origin and the multiplicity of (z− t)α−1 is removed by requiring log(z− t) to be real when
z − t > 0.

Definition 2. [14]. The fractional derivative of order α is defined [14] for a function f
by

Dα
z f(z) =

1

Γ(1− α)

d

dz

∫ z

0

f(t)

(z − t)α
dt, 0 ≤ α < 1, (2)
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where f is an analytic function in a simply connected domain of the z-plane containing
the origin and the multiplicity of (z − t)−α is removed by requiring log(z − t) to be real
when z − t > 0.

In this article, our aim is to investigate the existence and uniqueness of univalent
solution for fractional Volterra equation

u(z) = g(z) +
λ

Γ(α)

∫ z

0

f(t, u(t))(z − t)α−1dt, α > 0, (3)

where Γ is the gamma function and λ is an arbitrary parameter, U := {z : |z| < 1}, f :
U × C −→ C is a continuous function and g : U −→ C is a given increasing continuous
function on U , by using fixed point theorem for generalized contractions due to Pathak
and Shahzad [15].

Let B = C[U,C] be the Banach space of continuous functions from U −→ C, endowed
with max norm.

The study for fractional Volterra equation has been investigated by some other authors
include [21] and [3].

Define the operator T : B −→ B by

Tu(z) = g(z) +
λ

Γ(α)

∫ z

0

f(t, u(t))(z − t)α−1dt, α > 0, z ∈ U. (4)

Let the function f be bounded by M , we assume that our function f is Lipschitz
continuous with respect to u with Lipschitz constant Lf .

Consider

|Tu(t)− g(z)| ≤ λ

Γ(α)

∫ z

0

|f(t, u(t))|(z − t)α−1dt

≤ Mλ

Γ(α)

∫ z

0

(z − t)α−1dt

≤ Mλ

Γ(α)

∫ z

0

tα−1dt

≤ Mλ

Γ(α+ 1)
zα

≤ Mλ

Γ(α+ 1)
Tα.

Thus for u bounded, continuous, Tu is also bounded, continuous. For u, v ∈ B, we
have

|Tu(t)− Tv(t)| ≤ λ

Γ(α)

∫ z

0

|f(t, u(t))− f(t, v(t))|(z − t)α−1dt

≤ λLf
Γ(α)

∫ z

0

|u(t)− v(t)|(z − t)α−1dt

≤ λLf
Γ(α)

sup
u∈[0,T ]

|u(t)− v(t)|
(∫ z

0

(z − t)α−1dt

)
≤ λLf

Γ(α)
‖u− v‖

(∫ z

0

tα−1dt

)
≤ λLf

Γ(α+ 1)
‖u− v‖Tα.
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Thus for

λLfT
α

Γ(α+ 1)
< 1,

we have ‖Tu− Tv‖ < ‖u− v‖.
By the contraction mapping principle, we therefore know that T has a unique fixed

point inB. This implies that our problem has a unique solution inB. Hence we summarize
our result in the following theorem.

Theorem 1. Problem (3) has a unique solution in B provided that

λLfT
α

Γ(α+ 1)
< 1.

Now our next target is to use Krasnoselskii’s fixed point theorem to prove the existence
of solution of the problem (3).

First, we mention statement of Krasnoselskii’s fixed point theorem.

Theorem 2. Let B be a nonempty closed convex subset of a Banach space. Suppose that
Λ1 and Λ2 map B into X such that

(i) for any u, v ∈ B, Λ1u+ Λ2v ∈ B,
(ii) Λ1 is a contraction,

(iii) Λ2 is continuous and Λ2(B) is contained in a compact set.

Then there exists z ∈ B such that z = Λ1z + Λ2z.

Now we prove existence of the solutions for the fractional Volterra equation (3) using
Krasnoselskii’s fixed point theorem. We begin with the assumption that our function f
is Lipschitz continuous function with Lipschitz constant Lf .

We denote by Ur the disk {z : |z| < r} where 0 < r ≤ 1, by U = U1 the open unit disk
of the complex plane where r satisfies

λMr

Γ(α+ 1)
Tα ≤ r.

Moreover for u ∈ Ur, we obtain

|Tu(t)| ≤ λ

Γ(α)

∫ z

0

(z − t)α−1|f(t, u(t))|dt

≤ λM‖u‖
Γα

∫ z

0

(z − t)α−1dt

≤ λMr

Γ(α+ 1)
Tα ≤ r.

By using (4), it is easy to prove the continuity of Tu.
Let us consider a sequence un converging to u. Taking the norm of

Tun(t)− Tu(t),
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we have

|Tun(t)− Tu(t)|

≤ λ

Γ(α)

∫ z

0

|f(t, un(t))− f(t, u(t))|(z − t)α−1dt

≤ λ

Γ(α)

∫ z

0

|un(t)− u(t)|(z − t)α−1dt

≤ λLf
Γ(α)

(∫ z

0

tα−1dt
)
‖un − u‖

≤ λLf
Γ(α+ 1)

Tα‖un − u‖.

From the above analysis we obtain

‖Tun(t)− Tu(t)‖ ≤ λLf
Γ(α+ 1)

Tα‖un − u‖,

and hence whenever un → u, Tun → Tu. This proves the continuity of Tu.
Now for z1 ≤ z2 ≤ T, (remember z is real here). we have

|Tu(z2)− Tu(z1)|

≤ λ

Γ(α)

∣∣∣ ∫ z2

0

(z2 − t)α−1f(t, u(t)dt

−
∫ z1

0

(z1 − t)α−1f(t, u(t)dt
∣∣∣

≤ λ

Γ(α)

∣∣∣ ∫ z1

0

(z2 − t)α−1f(t, u(t)dt

+

∫ z2

z1

(z2 − t)α−1f(t, u(t)dt

−
∫ z1

0

(z1 − t)α−1f(t, u(t)dt
∣∣∣

≤ λ

Γ(α)

∫ z1

0

|((z2 − t)α−1 − (z1 − t)α−1)| × |f(t, u(t)|dt

+
λ

Γ(α)

∫ z2

z1

|(z2 − t)α−1| × |f(t, u(t)|dt

≤ λM1r

Γ(α)

∫ z1

0

|(z2 − t)α−1 − (z1 − t)α−1|dt+
λM2r

Γ(α)

∫ z2

z1

|(z2 − t)α−1|dt

≤ rλ

Γ(α+ 1)
max{M1,M2}

∣∣∣− 2(z2 − z1)α + zα2 − zα1
∣∣∣

≤ rλ

Γ(α+ 1)
max{M1,M2}(z2 − z1)α.

The right-hand side of above expression does not depend on u. Thus we conclude
that Tu(Ur) is relatively compact and hence Tu is compact by Arzela-Ascoli theorem.
Using Krasnoselskiis fixed point theorem, we obtain that there exists z ∈ Ur such that
Tu = Tu1(z) + Tu2(z) = z, which is a fixed point of Tu. Hence the problem (3) has at
least one solution in Ur. We summarize the above results in the form of the following
theorem.
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Theorem 3. Model (3) has a solution in the set Ur provided
λLfT

α

Γ(α+1) < 1, and

Mrλ

Γ(α+ 1)
Tα ≤ r .

Consider the function f(t, u(t)) = u(t)(r(t)− a(t)) and let us denote

f1(t, x(t)) = x(t)r(t), f2(t, x(t)) = −a(t)u(t).

It is easy to see that

|f1(t, x(t))| ≤ r∗|x(t)|,
|f2(t, x(t))| ≤ a∗|x(t)|.

Using fractional calculus, (3) can be representable as an integral form of the type

x(t) = φ(0) +
1

Γ(α)

∫ z

0

(z − t)α−1u(t)
(
r(s)− a(s)

)
dt

g(z) = φ(z).

Define a mapping Λ by

Λu(t) = Λ1u(t) + Λ2u(t),

where

Λ1u(t) =
λ

Γ(α)

∫ z

0

(z − t)α−1u(t)r(t)dt,

Λ2u(t) = − λ

Γ(α)

∫ z

0

(z − t)α−1u(t)a(t)dt.

One can easily see that in this case our operator Tu1 coincide with Λ1 and Tu2 coincides
with Λ2. Thus our model systems (3) have at least one solution.
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