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GROWTH AND WEIGHTED POLYNOMIAL APPROXIMATION OF

ANALYTIC FUNCTIONS

DEVENDRA KUMAR

Abstract. Let HR be the class of functions analytic in GR but not in GR′ if R < R′,
GRo

= int SRo
, 0 < Ro < R < 1 and SRo

= {z ∈ C : |ze1−z| = Ro, |z| ≤ 1}. This
paper deals with the characterization of rate of decay of weighted approximation error
on SRo

, in terms of order and type of f ∈ HR.

1. Introduction

Szegö [11] showed that the normalized partial sum sn(nz) satisfies the following equa-
tion:

e−nzsn(nz) = 1−
√
n

τn
√
2π

∫ z

0

(

ζe1−ζ
)n

dζ, n ≥ 1, z ∈ C, (1)

where sn(z) =
∑n

k=0(z
k/k!) and from Sterling’s asymptotic series formula, see Henrici [2]

τn =
n!

nne−n
√
2πn

≃ 1 +
1

12n
+

1

288n2
− 139

51840n3
+ · · · , n → ∞

so that τn → 1 as n → ∞.
The curve {z ∈ C : |φ(z)| = 1}, φ(z) = ze1−z introduced by Szegö divides the complex

plane C into three domains: One of them is the bounded domain G contained in the unit
disc D = {z ∈ C : |z| < 1} whose boundary consists of that part of the Szegö curve, i.e. ,

S = {z ∈ C : |ze1−z| = 1, |z| ≤ 1}
which is contained in the closed unit disc. S is a piecewise analytic Jordan curve with one
corner point at z = 1. Szegö [11] proved that G, in the z-plane is mapped conformally
onto the unit disc D, in the w-plane, by the function w = φ(z), and that the unbounded
domains, also determined from the Szegö curve, are given by Ωo = {z : |φ(z)| < 1, |z| > 1}
and Ω∞ = {z : |φ(z)| > 1}.

For each Ro with 0 < Ro ≤ 1, the set

SRo
= {z ∈ C : |φ(z)| = Ro, |z| ≤ 1, 0 < Ro ≤ 1}

is an associated level curve of the mapping φ. Clearly, SRo
⊂ G for any Ro with 0 <

Ro < 1, and S1 = S. Also, we have GRo
= int SRo

, where int SRo
means the interior

points of the curve SRo
and G1 = G.

Let the error of the best weighted approximation on SRo
, or equivalently, GRo

for a
function f analytic in GR, where 0 < Ro < R < 1 is defined by

Ew
n

(

f,GRo

)

= inf
Pn∈πn

∥

∥e−nzPn(z)− f(z)
∥

∥

SRo

, (2)

where πn is the set of all polynomials of degree ≤ n.
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For classifying analytic functions by their growth, the concept of order was introduced.
If the order is a (finite) positive number, then the concept of type permits a subclassifi-
cation. For the cases of order ρ = 0 and ρ = ∞ no subclassification is possible. For this
particular subclassification the type of f can be defined by using the concept of index-pair
(p, q) introduced by Juneja et.all [1].

Let HR be the class of functions analytic in GR but not in GR′ if R < R′. A function
f ∈ HR, 0 < R < 1 said to be of order ρ, if

ρ = lim sup
r→R

ln+ ln+ M(r)

ln(R/(R− r))
. (3)

If 0 < ρ < ∞, then type T is defined by

T = lim sup
r→R

ln+ M(r)

(R/(R− r))ρ
, (4)

where ln+ x = max(0, lnx), x > 0 and M(r) = maxz∈Gr
|f(z)|.

Pritsker and Varga [9] have given a necessary and sufficient condition for the va-
lidity of the locally uniform approximation of any function f(z) which is analytic in
an open bounded set G∗ in the complex plane by weighted polynomials of the form
{wn

∗
(z)Pn(z)}∞n=0, where w∗(z) is analytic and different from zero in G∗. Also, they have

generalized the Theorems 3.8 and 4.3 of [8].
In this paper, we obtain the characterization of rate of decay of approximation error

(defined by (2)) in terms of order ρ and type T of f ∈ HR.
It is significant to mention that our main results are different from those of Pritsker

and Varga ([8], [9]).
For the weighted normalized partial sums e−nzsn(z), the following inequality is valid

∣

∣e−nzsn(z)− 1
∣

∣ ≤ 4√
2nπ|z − 1|

, z ∈ G \ {1}, n ≥ 1 (5)

The detailed proof of (5) is available in [8].
In view of (5), a consequence of (1) is that e−nzsn(z) converges to f(z) ≡ 1, locally

uniformly in G, (i.e. , uniformly on every compact subset of G). This raises the question
of possibility of uniform approximation of any function analytic in G by weighted polyno-
mials {e−nzPn(z)}, where Pn is a complex polynomial of degree ≤ n, for each n ≥ 0. This
type of problem evolved from Lorentz approximation by ”incomplete-polynomials” [5] on
the real line, and has been developed into the general theory of approximation with vary-
ing weights. Equation (1) opens the door to a special weighted approximation of analytic
functions in the complex plane. This has been noticed that weighted approximation in
complex plane has not been studied so far as in the case of real line.

The harmonic measure at the point z = 0 with respect to G is defined as the pre-image
of the normalized are-length measure on Γ = {w ∈ C : |w| = 1} under the mapping
w = φ(z), where φ(z) = ze1−z, i.e. ,

w(0, B,G) = m(φ(B ∩ S)). (6)

for any Borel set B ⊂ C. Here dm = dθ/2π. From (6), note that w(0, ·, G) is a unit Borel
measure which is supported on S, i.e. , w(0, S,G) = 1 and supp w(0, ·, G) = S. For any
polynomial Pn(z) , the normalized counting measure of its zeros is defined by

νn (Pn) =
1

n

∑

Pn(zi)=0

δzi , (7)

where δz is the unit point mass at z where all zeros are considered with multiplicity.
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2. Auxiliary Results

This section contains various results which have been utilized to prove the main theo-
rems.

Proposition 1. Let (Ro, R) a pair of numbers with 0 < Ro < R ≤ 1. If a function f is

analytic in GR, then there exists a sequence of polynomials {Pn(z)} such that

Ew
n (f,GRo

) ≤
∥

∥f(z)− e−nzPn(z)
∥

∥

GRo

≤ K ′′
1

R− ε−R0
M(R− ε, f) (Ro/R− ε)

n+1
,

(8)
where M(R− ε, f) = maxzǫGR−ε

|f(z)| and K ′′ is a large number.

Proof. The following weighted equilibrium problem provides important tools in the deriva-
tion of the proof. For the weighted energy integral

IE(µ) =

∫ ∫

ln
1

|z − t|w(z)w(t) dµ(z) dµ(t), µ ∈ M(E), (9)

find

τ∗E = inf
µ∈M(E)

IE(µ). (10)

and identify the extremal measure µE ∈ M(E) for which the infimum in (10) is attained.
Here M(E) denotes the class of all positive Borel measure µ on C which are supported
on E and have total mass unity, i.e. , µ(C) = 1.
The logarithmic potential of a Borel measure µ, with compact support which is defined
as

V µ(z) =

∫

ln
1

|z − t|dµ(t).

It follows from Theorem I.3.3 of [10] that the solution of the weighted energy problem
in (10) for the weight function w(z) = eRe z, z ∈ C of (9) on GRo

, 0 < Ro ≤ 1, is given
by

µGRo

= w(0, ·, GRo
),

and

V
µ
GRo (z) +Q(z) =

{

1− lnRo, z ∈ GRo

1− ln|φ(z)|, z ∈ C \GRo
,

(11)

where Q(z) = Rez and φ(z) = ze1−z.

Now, suppose that f(z) is analytic in GR. For each n ≥ 0, let z
(n+1)
1 , z

(n+1)
2 , . . . , z

(n+1)
n+1

be n+1 points in GR. In view of the Hermite interpolation formula, the polynomial Pn(z)
which interpolates enzf(z) at these points is given by, see [12],

enzf(z)− Pn(z) =
wn+1(z)

2πi

∫

SR−ε

f(t)ent

(t− z)wn+1(t)
dt, (12)

where wn+1(z) =
∏n+1

k=1 (z − z
(n+1)
k ) and z ∈ GR−ε; ε > 0 is small enough so that the set

{z(n+1)
1 , z

(n+1)
2 , . . . , z

(n+1)
n+1 } is contained in GR−ε. Division by enz in (2.5) yields

f(z)− e−nzPn(z) =
e−nzwn+1(z)

2πi

∫

SR−ε

f(t) dt

(t− z)e−ntwn+1(t)
, z ∈ GR−ε.

Let νn(wn) be the normalized counting measure of zeros of wn(z) defined as (see (7)),

νn(wn) =
1

n

n
∑

k=1

δzk(n), n ≥ 1.
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Obviously,

|wn(z)| = exp{−nV νn(wn)(z)}, n ≥ 1. (13)

For each Ro with 0 < Ro < R, choosing an interpolation in (12) which satisfies
{

z
(n+1)
k

}n+1

k=1
⊂ SRo

(14)

and

νn(wn) → w(0, ·, GRo
) as n → ∞. (15)

Note that at (15) the convergence is weak-convergence. As an example of an interpolation
where (14) and (15) are valid, one can take the pre-images of equally spaced points on
|w| = Ro under the conformal map w = φ(z) = ze1−z, i.e. , for η = φ−1, we define

z
(n)
k = η

(

Roe
i2πk/n

)

, 1 ≤ k ≤ n, n = 1, 2, . . . .

In view of (13)-(15), we have

lim
n→∞

|wn(z)|1/n = lim
n→∞

exp{−V νn(wn)(z)} = exp{−V w(0,·,GRo )(z)}, (16)

which holds locally uniformly in C \ GRo
. Taking any ε > 0 small enough so that

Ro + ε < R− ε in (12) we obtain

∥

∥f(z)− e−nzPn(z)
∥

∥

GRo

≤ ‖e−nzwn+1(z)‖SRo
‖f‖SR−ε

2π dist (SR−ε, SRo
)mint∈SR−ε

|e−ntwn+1(t)|
.

We see that the immediate outcome of (11) is

V w(0,·,GRo
)(z) = − ln |z|, (17)

where z ∈ C \GRO
. From (11), it is obvious that V w(0,·,GRo

)(z) is continuous on SRo
=

supp w(0, ·, GRo
) and, therefore, is continuous in C by Theorem II.3.5 of [10], see also

Theorem 1.7 in [4]. Assume that z ∈ SRo
, so that from (11), − ln |z|+Re z = 1− lnRo.

Then with (17), it gives

V w(0,·,GRo
)(z) +Q(z) = − ln |z|+Re z = 1− lnRo, Q(z) = Re z.

It can be easily seen from the above definition that V w(0,·,GRo
)+Q(z) is harmonic in GRo

and is identically constant on the boundary SRo
. From (11) we have

V w(0,·,GRo
) +Q(z) = 1− lnRo, z ∈ GRo

. (18)

Using (16) and (18), we obtain

‖ f(z)− e−nzPn(z) ‖GRo

≤ K ′
1

R− ε−R0
M(R− ε, f)

eRez(eln(R0)−1)n+1

eRet(eln(R0−ε)−1)n+1
,

which follows from :

e−nzwn+1(z) = ez(e−zwn+1(z)
1/(n+1))n+1,

so
∣

∣

∣
ez(e−zwn+1(z)

1/(n+1))n+1
∣

∣

∣

is behaves like

|ez|(e−Q−V )n+1 = eRez(eln(R0)−1)n+1,

by (11) and (16).
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So we get

‖f(z)− e−nzPn(z)‖GR0

≤ K ′′
1

R− ε−R0
M(R− ε, f)

(

R0

R− ε

)n+1

.

�

Remark 1. In proving Proposition 1, we have used the technique developed by Pritsker

and Varga.

Proposition 2. A function f has a singularity on SR if and only if

lim sup
n→∞

[

Ew
n (f,GRo

)
]1/n

=
Ro

R
.

Proof. If f(z) is analytic in GR, then by Proposition 1,

lim sup
n→∞

(

Ew
n (f,GRo

)
)1/n ≤ Ro

R− ε
,

for all R − ε sufficiently near to R and so

lim sup
n→∞

(

Ew
n (f,GRo

)
)1/n ≤ Ro

R
, (19)

However, the strict inequality in (19) is equivalent to the analyticity of f(z) in Gρ for
some ρ with R < ρ < 1, which is a contradiction. Thus f(z) has a singularity on SR if
and only if equality holds in (19). �

Proposition 3. For any polynomial Pn(z) of degree ≤ n, we have

∣

∣e−nzPn(z)
∣

∣ ≤ ‖e−nzPn(z)‖SRo

( |φ(z)|
Ro

)n

,

where z ∈ C \GRO
, n ≥ 0 and 0 < Ro ≤ 1.

Proof. Since ln(|φ(z)|/Ro) is the green function, the statement of the proposition follows
on the similar lines as that of the Bernstein-Walsh lemma (see[11]). �

Proposition 4. Let f ∈ HR and let Ro be a fixed number (0 < Ro < R). Then the

function g(z) =
∑

∞

n=0 E
w
n (f,GRo

)zn is analytic in a disk centered at origin whose radius

is R/R0 and for every r, Ro ≤ r < R,we have

M(r, f) ≤ ao + 2g(r/Ro), (20)

where ao is not a constant it depends on r = |z|.
Proof. Since f ∈ HR so f(z) is analytic in GR. Consider the function

g(z) =

∞
∑

n=0

Ew
n

(

f,GRo

)

zn.

As limn→∞

[

Ew
n

(

f,GRo

)]1/n
= Ro/R, by Proposition 2. It follows that g(z) is analytic

in a disk centered at the origin whose radius is R/Ro.
By uniform convergence on GRo

, the function f(z) can be represented in telescopic
series:

f(z) = e−nzPn(z) +
∞
∑

k=n

(

e−(k+1)zPk+1(z)− e−kzPk(z)
)

, z ∈ GRo
.

where Pn′s are best approximation polynomials for which

‖f − e−kzPk(z)‖GR0

= Ew
k .
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Thus,

|f(z)| ≤ |e−nzPn(z)|+
∞
∑

k=n

∣

∣

∣
(e−(k+1)zPk+1(z)− e−kzPk(z))

∣

∣

∣
. (21)

and
∣

∣

∣
e−(k+1)zPk+1(z)− e−kzPk(z)

∣

∣

∣
≤

∥

∥

∥
e−(k+1)zPk+1(z)− e−kzPk(z)

∥

∥

∥

GRo

≤
∥

∥

∥
f − e−(k+1)zPk+1(z)

∥

∥

∥

GRo

+
∥

∥f − e−kzPk(z)
∥

∥

GRo

= Ew
k+1

(

f,GRo

)

+ Ew
k

(

f,GRO

)

≤ 2Ew
k

(

f,GRo

)

.

In view of Proposition 3, we get

∣

∣

∣
e−(k+1)zPk+1(z)− e−kzPk(z)

∣

∣

∣
≤ 2Ew

k

(

f,GRo

)

( |φ(z)|
Ro

)k

, k ≥ n, zǫC \GR0
.

Hence the inequality (21) yields

|f(z)| ≤ ao + 2
∞
∑

k=n

Ew
k

(

f,GRo

)

( |φ(z)|
Ro

)k

.

If z ∈ Sr, i.e.,|φ(z)| = r,then

|f(z)| ≤ ao + 2
∞
∑

k=n

Ew
k

(

f,GRo

)

(

r

Ro

)k

. (22)

The last series in (22) converges inside GR since we can majorate it by g. Now (22)
implies (20). Hence the proof is completed. �

In order to prove the main results we need the concepts of order and type of a function
of a single complex variable which is analytic in the disc |z| < R. Let f(z) =

∑

∞

n=0 bnz
n

be analytic in |z| < R, 0 < R < 1. The order ρo and type To of f(z) are defined in a
analogous manner to (3) and (4). The coefficient characterization of ρo and To for f(z)
are as follows;

ρo = lim sup
n→∞

ln+ ln+(|bn|Rn)

lnn− ln+ ln+ |bn|Rn
, (23)

To =
ρρo

o

(ρo + 1)ρo+1
lim sup
n→∞

(ln+(|bn|Rn))ρo+1

nρo

, 0 < ρo < ∞. (24)

The expression for ρo is due to Beuermann [6], while for To was obtained by Kapoor [3].

3. Main Results

Theorem 1. Let f ∈ HR be order ρ and let 0 < Ro < R < 1 . Then

ρ = lim sup
n→∞

ln+ ln+
(

Ew
n (f,GRo

)(R/Ro)
n
)

lnn− ln+ ln+
(

Ew
n (f,GRo

(R/Ro)n
) . (25)

Proof. Let the limit superior on the right hand side of (25) be denoted by α. Obviously,
0 ≤ α ≤ ∞. First let 0 < α < ∞ and α′ be an arbitrary number such that 0 < α′ < α.
Then by the definition of α there exists a sequence {nk} of positive integers tending to
∞ such that

ln
(

Ew
nk
(f,GRo

)(R/Ro)
nk

)

> n
α′/(1+α′)
k , k = 1, 2 . . . . (26)

Using (8) with (26) we get
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lnM(r, f) ≥ n
α′/(1+α′)
k − nk ln(R/r)− ln(Ro/r)− lnK, (27)

for all large k and all r sufficiently near to R. Let {rk} be a sequence defined by

nk = (3 ln(R/rk))
−(1+α′) . (28)

Then rk → R as k → ∞. Now using (27) and (28) for all sufficiently large k, we have

lnM(rk, f) ≥
1

3α′
(ln(R/rk))

−α′

− ln(R/rk) [3 ln(R/rk)]
−(1+α′) − ln(Ro/rk)− lnK

or
ln+ ln+ M(rk, f) ≥ − ln 3α

′ − α′ ln ln(R/rk) +O(1).

Since ln(R/(R− rk) ≃ − ln ln(R/rk) as k → ∞, above relation gives

lim sup
k→∞

ln+ ln+ M(rk, f)

ln(R/R− rk)
≥ α′.

Since α′ < α is arbitrary, we have ρ ≥ α. This is valid for α = 0. For α = ∞ this ensures
ρ = ∞.

For reverse inequality apply (23) to g(z/R0) to see that the order of g(z/R0) is α. Now
ρ ≤ α follows from (20) and (3). This completes the proof. �

Theorem 2. Let f ∈ HR, 0 < R0 < R < 1. Then f is of order ρ(0 < ρ < ∞) and type

T (0 ≤ T ≤ ∞) if and only if

(ρ+ 1)ρ+1

(ρ)ρ
T = lim sup

n→∞

(

ln+
(

Ew
n

(

f,GRo

)

(R/Ro)
n
))ρ+1

nρ
. (29)

Proof. Let f ∈ HR be of order ρ and type T (T < ∞). But by (4) there exists r′ = r′(ε)
for any ε > 0 such that

lnM(r, f) ≤ (T + ε)(R/(R− r))ρ (30)

for r′ < r < R. Equations (8) and (30) combine to yield

ln+
(

Ew
n

(

f,GRo

)

(R/Ro)
n
)

≤ (T + ε)(R/(R− r))ρ +nln(R/r) + ln(R0/r) + ln+ K (31)

for all r sufficiently near to R and sufficiently large n. Consider a sequence {r∗n} as

R

R− r∗n
=

(

n(ρ+ 1)(ρ+1)/ρ

ρ(T + ε)

)1/(ρ+1)

. (32)

Obviously r∗n → R as n → ∞. In view of (32), (31) gives

ln+
(

Ew
n

(

f,GRo

)

(R/Ro)
n
)

≤ (T + ε)1/(ρ+1)(n)ρ/(ρ+1)(ρ+ 1)

ρρ/(ρ+1)
(1 + o(1))

For all sufficiently large values of n.
Proceeding to limits in above inequality, we get

T ≥ (ρ)ρ

(ρ+ 1)ρ+1
lim sup
n→∞

(

ln+
(

Ew
n

(

f,GRo

)

(R/Ro)
n
))ρ+1

nρ
. (33)

Inequality (33) is obviously true when T = ∞.
For reverse inequality apply (24) to g(z/R0) to see that the type of g(z/R0) is T . Now
reverse inequality in (33) follows from (20) and (4). Thus necessary part of the proof is
done.

For the sufficiency part suppose that right hand side of (29) denoted by v and 0 < v <
∞. Then,(29) implies (25) and hence by Theorem 1,f(z) is of order ρ. Now if v = 0, then
f is of order at most ρ and the reverse inequality in (33) gives that, if f is of order ρ,
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then its type is zero. Therefore, if v = 0, then f is of growth (ρ, o). Similarly, if v = ∞,
then f if of order at least ρ and (33) shows that, if f is of order ρ, then T = ∞. Hence,
v = ∞, then f is of growth (ρ,∞). Hence the proof is completed. �
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